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Accelerated Stokesian dynamics: Brownian motion
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A new Stokesian dynamicgSD) algorithm for Brownian suspensions is presented. The
implementation is based on the recently developed accelerated Stokesian dyrASRs
simulation methodSierou and Brady, J. Fluid Mech48 115(2001)] for non-Brownian particles.

As in ASD, the many-body long-range hydrodynamic interactions are computed using fast Fourier
transforms, and the resistance matrix is inverted iteratively, in order to keep the computational cost
O(NlogN). A fast method for computing the Brownian forces acting on the particles is applied by
splitting them into near- and far-field contributions to avoid @EN®) computation of the square

root of the full resistance matrix. For the near-field part, representing the forces as a sum of pairwise
contributions reduces the cost ©©(N); and for the far-field part, a Chebyshev polynomial
approximation for the inverse of the square root of the mobility matrix results i@ (@t->*log N)
computational cost. The overall scaling of the method is thus roughy(dF--2°log N) and makes
possible the simulation of large systems, which are necessary for studying long-time dynamical
properties and/or polydispersity effects in colloidal dispersions. In this work the method is applied
to study the rheology of concentrated colloidal suspensions, and results are compared with
conventional SD. Also, a faster approximate method is presented and its accuracy discussed.

© 2003 American Institute of Physic§DOI: 10.1063/1.157181]9

I. INTRODUCTION scheme, wherdl is the number of particles in the systgm

which limited its use to small system$ypically 27-125
The understanding and prediction of the rheology andbarticles in the simulation bgx

dynamics of Brownian suspensions has bé&smd still i9 a Recently, Sierou and Braflypresented the accelerated

subject of both fundamental and technological interest. In th&tokesian dynamicéASD) algorithm for nonBrownian sus-

last decade, considerable effort has been made to investigaREnsions, a new implementation of the SD method in which

experimentally and theoretically, the structure and dynamicgh® computational cost scales &(NlogN). This new

of colloidal suspensions. The equilibrium structure and shortScheme allows simulations of the order of 1000 or more par-

time dynamics of monodisperse suspensions have been thcﬂgles’ and makes possible the study of highly concentrated

. : suspensions, large-scale structure formation, etc. The method
oughly studied and, in many aspects, are well understdod. . ; ;
. : ... can also be readily extended to study nonspherical particles
The long-time dynamics, rheology, and the nonequilibrium

. : .and mixtures or polydispersity effects.
structure, on the other hand, are still the subject of ongoing 11,4 aim of this work is to develop a new SD simulation

research. The presence of many-body hydrodynamic interagachnique for Brownian suspensions in which the computa-
tions (HI) greatly complicates the theoretical treatment oftjgonal cost scales roughly a®(N'?logN). This will be
these systems, and for this reason the development of simichjeved by extending the ASD code for the efficient treat-
lation techniques capable of addressing the hydrodynamigent of Brownian forces, which in the original SD imple-
interactions has been a significant advance. In particulamentation involvedO(N®) operations. This new algorithm
since its first implementation for Brownian suspensions, thewill now make possible the simulation of much larger sys-
Stokesian dynamicéSD) simulation method has been suc- tems, and will also allow much longer simulatiof@n the
cessfully applied for more than ten years to a wide range oparticle time scalg which is necessary for assessing long-
problems, such as the short-time diffusion and rheology ofime dynamics and time-correlation functions.

Brownian suspensions, as well as the nonequilibrium prop- ~ This article is organized as follows: In Sec. Il, we de-
erties of suspensions under fW to mention but a few. scribe in detail the new simulation method. Results for the
Long-time dynamics and large-scale structure formation,rhec’logy of concentrated colloidal suspensions are presented

. . In Sec. lll. Conclusions are given in Sec. IV.
however, were normally out of the scope of SD simulations 9

owing to the large computational costs involvieth O(N®)
IIl. METHOD

dpresent address: Facultad de Mattcaa Astronoma y Fsica, Univer- : : : : :
sidad Nacional de Qtoba, Ciudad Universitaria, 5000 @ba, Argen- First, we briefly review the conventional Stokesian dy

tina. namics algorithm for Brownian suspensions, emphasizing
YElectronic mail: jforady@caltech.edu the steps in which the computational cost is larger than
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O(N). We will then discuss the changes introduced in thewith
ASD algorithm, and finally we describe in detail the further — — 1
modifications needed for the inclusion of Brownian motion X=0, X()X(t)=2kTReyAt. ®)

in order to keep the scaling of the computations as low a${ere, Ax is the change in particle position during the time

possible. stepAt and X(t) is a Gaussian random displacement com-
For a system oN rigid particles(of characteristic size puted as

a) suspended in an incompressible Newtonian fluid of vis- — IKTA
cosity o and densityp, the particle motion is governed by X(1)=vZKTAtA-¥ (1)

the coupled\-body Langevin equation: with
du AT_p-1
m.ath_f_ Fb+|:p, (1) A-A" =Ry, (6)

where W(t) is a normal deviate, i.e.¥(t)=0 and
wherem is the generalized mass/moment of inertia tendor, W(t)W(t)=1. In conventional SD, the matriA was ob-

is the particle translational/rotational velocity vector, and ontained as a byproduct of the inversionRf, and did not

the right-hand side are the forces/torques acting on the paresult in any additional computational cost.

ticles, which for convenience we split into: hydrodynamic To complete our brief description of the SD algorithm
forces ") due to the motion of the particles relative to the we still have to discuss how the resistance matrices are cal-
fluid; the stochastic forces=F) responsible for the Brownian culated. For this purpose, we define the grand resistance ma-
motion; and deterministic nonhydrodynamic forcesP), trix R as

which may be either interparticle or external.

When the particle Reynolds number is small, the hydro- 1 _ Reu Ree @
dynamic forces/torques acting on the particles in a suspen- Rsu Rsgl’
sion undergoing a bulk linear flow are given by whereRg, and Rgg are similar toRg, and Rgg and relate
F'= — Ry (U—U") + Reg :E”. 2) the particle stressleG—the symmetric first moment of the
w . . force density on a particle—to the velocity and the rate of
Here,u” is the velocity of the bylk linear flqw evaluated at strain by
the center of a particley”(x) =T"-x, whereI is the bulk . b
velocity gradient tensor, witk” its rate of strain. The resis- [F _ . U-u [F +FP @)
tance tensorfRgy(x) and Reg(x) give the hydrodynamic S —E* —rFP |

forces/torques on the particles due to their motion relative torhe inverse of the grand resistance matrix is the grand mo-
the fluid and due to the imposed flow, respectiv@yy(x)  pjlity matrix M and gives the particle velocities and the rate
and Reg(x) depend on the particle positiortboth transla-  of strain (U—u®,E*) in terms of the total forces/torques and
tional and orientationgl represented by the generalized con-gressietgF, S).
figuration vectorx. _ _ In Eq. (8) the definition of the stresslet contribution due
The deterministic, nonhydrodynamic forceS are arbi- g the interparticle forces a&P may need clarification. First,
trary, and we assume that they can be compute®(N) it js assumed that the interparticle forces do not result in a
operations. This might not be the case when particles interagfet force on the suspension, i.BFP=0, whereX stands for
via a long-range potential with no cutoff. Long-range forcesa sym over all particles. A net force should be considered an
of, e.g., electrostatic origin, however, may be evaluated inexternal force and generates bulk translational motion, not
O(NlogN) operations by following a method similar to the stress. ThustF? is independent of the origin and the sum
one used in ASD for the hydrodynamic interactions. over all particles and over all unit cells can be performed. In
~ The Brownian force~ arises from the thermal fluctua- the special case in which the forces are pairwise additive, the
tions in the fluid and is a Gaussian stochastic variable, desiresslet can be written as (1/2)m/2ijrij|:ﬁ’ where the
fined by sum is over all particles,j=r;—r;, andFf is the interpar-
=0, —Fb(O)Fb(t)ZZkTRFUS(t), 3) tig[e force .for the paiij. If 'ghe forges are not pairwise ad-
ditive, as in electrorheological fluids for example, then the
where the overbar denotes an ensemble average over thgore general form implied byFP must be used. Care must
thermal fluctuations in the fluid is Boltzmann’s constant,  3iso be exercised when only summing over a single unit cell;
is the absolute temperature, aa(t) is the delta function. the nearest image must be used.
The correlation at 0 and is a consequence of the Conventional SD exploits the fact that hydrodynamic in-
fluctuation—dissipation theorem for tieparticle system.  teractions among particles can be decomposed into long-
In the conventional SD algorithm, an evolution equationrange mobility interactions and short-range lubrication inter-

for the particle configuration is obtained by integrating Ed.actions and splits the grand resistance matrix according to
(1) twice over a time stepht (larger than the inertial relax-

_ ooy —1
ation time,7g=m/6m nya, but small compared with the time R= (M) "+ R, ©
over which the configuration changeteading to with

Ax={U"+ R} [Reg :E”+FPIJAt+ KTV -RE At
+X(At)+0(At), 4

RFU,nf RFE,nf

Rnt=Rop— Rop= . (10

Rsunt Rsgnt
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Here, M™ is the grand mobility matrix from the infinitevia  from the presence of all other particléspresented as force/
periodic boundary conditionsystem formed by a truncated force-moment densitiesBoth are functions of the far-field
multipole expansion in combination with Faxdaws, and force/torque/stresslet vectofy(ts,s), In Egs. (118 and
Rn¢ contains the near-field lubrication interaction®,; is  (11b) u and w stand for the particle translational and rota-
formed in a pairwise additive fashion from the exact two-tional velocity, respectively, i.elJ=(u,w). We will further
body resistance interactiori®,g, minus the two-body inter- omit the details on howy and e; are obtained from the
actions already included in\(*) %, denoted asR5;. force/torque/stressleg; we only mention that this can be

Due to the near-field character of lubrication interac-done inO(N logN) by representing the particle moments as
tions, only pairs of particles that are closer than a certairforces on a grid, and then solving for the far-field velocity
cutoff distance(typically 4 particle radii have nonzero en- field on that grid using fast Fourier transforms and the
tries in R¢. For this reasonRR is a sparse matrix, and its particle-mesh-Ewald technique. For a detailed description
construction involves onlyO(N) operations.M*, on the see Ref. 8.
other hand, is not sparse, and its construction req@(@¢)
calculations. B C " ticl locities: R =1

From Egs.(4)—(6), and the above-presented discussion, - omputing particie velocilies. Fu
we can identify the computations in conventional SD that  As is well known, the most efficient way of solving a
requireO(N?) or larger operations: large sparse linear system of equations is using iterative
() M*: its construction is oD(N2). methods. Conj_ugate gradu_ent methqu have proven to be a
. 1 o . 3 powerful technique for solving large linear systems, and they
(i) Rgy: matrix inversion ofO(N®). ; .
T, -1 - share the advantage of referencing the matrix only through
(i) V-Rgj: usesRgy and M™. ; . L
. ] N T o-1 3 its product with a vector, a necessary condition in our case,
(iv)  X: uses the factorizatiotA-A'=Rgj, anO(N®) op- ; w0 ; :

) since we knowM™ only through its action on the vectgr
eration. . L

Not having Rgy explicitly, forces us to solve for the
velocities and(far-field) stresslet simultaneously. In the ab-
$ence of particle inertidgparticle inertia can be easily in-
cluded if desiregl Egs.(1), (2), (7), and(8) give

0] U-u”| [FP+FP
s~ R~ [T —rrr |

In order to obtain a method with a more favorable scaling,
we need to devise alternate approaches to avoid these co
putations, or to compute them in a more efficient manner.
In ASD Sierou and Bradydeveloped an alternative al-
gorithm that avoided the explicit computation.i” and the
inversion ofR,;j, the computationally more expensive parts _
in absence of Brownian motion. In what follows, we briefly NOte that the unknowns are and S. We further splitU

h
describe their approach and then present different schemes!~ andsinto aso- chled hydrodynamic patt;’ ands”", ?
for addressingiii) and (iv) in order to keep the overall scal- Brownian partU® andS®, and an interparticle force pat,

ing as low as possible. and S, satisfying the following:

(12

A. Far-field hydrodynamics: M ; = _R- —UI; , (13)
In the Stokesian dynamics algorithm the far-field many- =~ ]

body hydrodynamic interactions are accountiedthe resis- [ 0] [UP] [FP

tance formulatiop by the inverse of the far-field mobility _Sb_:_R’_ o] o) (14)

matrix M”. As already mentioned, the explicit computation 0 P Ep

of M~ involvesO(N?) operations; for this reason, we avoid B =_R. ol _er} (15)

computing M” explicitly and, instead, find a way to com-
pute M*-y, for a given(far-field) force/torque/stresslet vec- By doing this, we can compute the particle motion and the
tor y=(fi ,ts , ) - ) rheological properties arising from the Brownian motion
For this purpose, Sierou and Brady use Fakawvs to  separately from the hydrodynamic and interparticle force
obtain an expression for the particle velocities and rate otontributions. The extra cost of solving Ed.3) [and/or Eq.
strain as a function of the particles’ force/torque/stresslet and15); actually, they are combined together in one $tip
the far-field fluid velocity and its rate of strain at the centerusually not considerable since the hydrodynamic quantities

of the particles, namely, change slowly and one can use the solution from the previ-
a2 ous time step as an initial guess, leading to convergence in a
u—u”(x)=— fet+| 1+ _VZ) U , (119 few iterations. Solving Eq(14), on the other hand, must be
6700 6 done anew at each time step, sifieandS® are completely
1 1 uncorrelated(as they must befrom one time step to the
0—w (X)——Wtfﬁ‘ EVXUﬁ, (11b next.

Note that the splitting defined in Eq&l3)—(15) corre-
sponds to the forces in E¢l). The linearity of the hydrody-

)eﬁ (119 namic forces at low Reynolds number allows one to super-
impose effects. The physical interpretation is tigit is

Here,ug corresponds to the far-field fluid velocity evaluated directly proportional to the rate of straif”, S° to the

at the center of the particle, aeglis its rate of strain, arising Brownian forcesF®, and SP to the interparticle force&®.

3
_E®— _ __v2
E 2omoa35“+( 10V
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For example, in a flow cessation experimé#it, is suddenly ~ values are for the computation of the hydrodynamic velocity,
set to zero and the hydrodynamic stressfetirops instanta- and may be considerably reducetbwn to a few by using a
neously to zero, whil&” andSP relax to zero as the structure larger tolerancétaking care that this does not alter the aver-
relaxes back to equilibrium. Calling" the hydrodynamic age results

stresslet is actually a misnomer, since b8trandSP contain
direct contributions due to hydrodynamic interactiqfirs
deedS” is purely hydrodynamic in origin a better name
would be SF, indicating its proportionality to the rate of
strain. Note also, that each stresslet depends on the structure Unlike the deterministic velocity)" in Eq. (13), the
(i.e., the configuration of particleswhich results from the Brownian velocity U fluctuates with a characteristic time
combined effects of hydrodynamic, Brownian, and interpar-€dqual to the Brownian relaxation timegs, which usually is

ticle forces and this “indirect” effect is not Superposable' several orders of magnitude smaller than the time interval
Using Egs.(9), (10), and (13), we find the following needed for the particles to move a significant fraction of their

C. Brownian displacement: X

equation foru", size. Here, we are qnly interested in the diffusive limit, i.e.,
S . when the time step is much larger thag.
Rey U+ Fi=Reg 0 E7, (16) In order to compute the Brownian displacementhat

satisfies Eq.(5), we determine the Brownian velocity®
from Eq.(14). (A similar approach was suggested in Rej. 9.
Note that here, and in the rest of this papdt,(and also the
(17 random forced™) are fixed during the time step.

The algorithm is as follows: First, a set of random
forces/torqued® is generated according to the discretized
version of Eq(3). Then, Eq.14) for U is solved iteratively
and finally X is given asX=UPAt. It is straightforward to

with the far-field hydrodynamic forces/torqueEPf, and
stressletsS}, satisfying

Fa| [ U
st 7l-E

ReplacingU" in Eq. (17) from Eq. (16) and rearranging
terms leads to the linear system of equationsfibandS; :

M-

- pr ReS nf'FEf show thatX computed this way fulfills Eq(5). To solve Eq.
: =l e | (18 (14), we proceed as with Eq13). (For an alternative ap-
proach for low densities see Appendix)A.
where In the rest of this section, we describe how to generate
R-1 0 the random Brownian forces/torqué8, while keeping the
U= Mo 4| T } (190  overall scaling of the algorithm as low as possible.
0 0 The Brownian forces are split into a near- and a far-field
and part, according to
_pb_ b
Fh=Reg o E”. (20) FP=Fpr+Fq, (23

Note thatU" does not appear explicitly in Eq18), but is ~ With

computed when evaluating the left-hand side. [ (24)
To solve the linear system of equatiofi8) we use a oA

generalized conjugate gradient method, and for computingnd

the action ofR;j’nf (needed to evaluate the right-hand side = ——

and to calculate the action @#) we employ an incomplete FoFn= 2KTRey /AL, (25)
Chglesky preconditioned conjugate gradient methoq as _de— FEFEZZkT(M”)Ej/At, (26)
scribed in Ref. 8. Note that we have two nested iterative

solvers, a preconditioned conjugate gradient for the inner pPpEh—Q, (27)

iterations(inversion ofRgy ) and a generalized conjugate
gradient for the outer iteration@version of/T/lw).

Having Fj} andS}} satisfying Eq.(18), we can obtain the
hydrodynamic contributions to the particle velocities and
stresslets as

Here, Q\/lx);j represents the part d&®, arising from the
inverse of M”.

1. Brownian forces: Near-field part

thRFj,nf'FEf_ RFl},nf'Fg’ (21 To generate the near-field part of the random forces/
= —Rg, nf'Uh"_RSEnf:Em—'—S}r}- (22) torque§,Fﬁf, obeyiqg Eqs(24), (25), and (27) using O(N)
' operations, we write the Brownian force/torque acting on
The operation count i©(N logN) (shown in the follow-  particlei, F; as a pairwise sum over all of its near neigh-
ing) times the number of iterations necessary for converpors according to
gence. Through the use of the preconditioner, a typical num-
ber of iterations for the inner solver i©(20) (with a b _ Yap ) YAt
tolerance of 10° and a time step of I0%), for the outer ot 7;(;,1 (LWt L), 28
solver the number of iterations neededd§25) (with a tol-
erance of 10* for ¢=0.45, Pe=1). These representative with
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T
Ly Ly ) ~ 22X At N 34
Ljyi Ljyj : =2kT(R2g Fu,ij— Ragru,ij) y= A

max 7\min Amax_ )\min

Ly L7

Ly L7

(29  The Chebyshev coefficients; in Eq. (32), depend om\ i,

and ¥, is a random Gaussian deviate of length 6 for par-andAmay, and are usually computed for an approximation of
ticle i in pair y, satisfying much larger order thamNcne, to estimate the truncation

12

error:
F_ O o :
wi=0, Wl W =15,05;. (30 The approximation in Eq(32) can be generalized to a
In Eq. (29), (Rogru,ij—Rosru,j) is the 12¢12 two-body function of matrices, keeping the same Chebyshev coeffi-
pairwise contribution td:QFU’,nf ’arising from pairy=(i,j), cientsa;, if the_ eigenvall_Jes of the m_atrix are bpunded by
which we factorize using Cholesky decomposition to obtain Mmin-Amad- This results in the following approximate ex-
theLy. pression for the action of 1) ~*? on a vectoly:
Ncheb

M*) " V2y~7z= > aCi{(M™)+y. 35

2. Brownian forces: Far-field part (M y 120 iGMO)Yy 39

For the far-field part of the Brownian forces/torques, weThe factorsC;(M™)-y can be computed recursively, and in-
employ Fixman's method’*! consisting of replacing the volve evaluations of the action g¢1* on vectors, which can
square root of (M*)~! by its Chebyshev polynomial ap- be computed irO(N logN) operations(see Appendix B
proximation, and exploit the fact that only its action on a  The number of termd\chep, t0 be included in Eq(35)
vector is needed. Note that in our case, because we computie achieve the desired accuraftypically of O(10 2)] de-
the random forces instead of the random displacements, wgends on the rati@d y,5,/Amin - This dependence was found to
need to approximate the square root of the inverse of thecale roughly asNmax/Amin)% in agreement with similar
(far-field) mobility matrix. findings for the square root of the mobility matrix in simu-

To generate a set of random Gaussian deviates with ktions of polymer chain®*! Taking into account that the
given covariance matriM, the most common way is to ratio \ na/Amin Was found to scale with the number of par-
factorize the covariance matrix as in E@). This factoriza- ticles, N, roughly asN'?, the overall scaling of the compu-
tion, however, is not unique and any choice of the factordation of the far-field part of the Brownian forces is nearly of
satisfyingM =A-AT is valid. In particular, one can choose  orderO(N'#°logN).

to be the square root ofl, i.e., M=A-A, with A=AT. This Before calculating the Chebyshev approximation of
has the advantage that a polynomial approximation can beM>) Y2y, we need to know the ., and \ ., bounding
used to approximate the square root. the eigenvalues of\{”. Following Jendrejaclet al** and

In the case of the far-field Brownian forces/torques, noting that if we assume we are using a valid eigenvalue

the covariance matrix is proportional to thé&J) block of the  range, we have

inverse of M [cf. Eq. (26)]. Since we do not have\1™ i Ao — )

explicitly, and we only can compute its action on vectar NChIng[Z MEz)=yy, (36)
force/torque/stresslet vecjpmwe generate}:f@"f as the forces/

torques part of . . L
resulting from the polynomial approximation as

BT eyl @ 72y
= —_— . ﬁ . Z. .Z— y.y
S‘an At ‘I’S ECheb: W (37)

Here, W =[ W W] is an 1N normal deviate. If we fur-

ther require each component ¥ to be independent of any & COMPUteEche,for each configuration and use its value to.
component qu,r;fi , it is straightforward to show théﬁfbf as decide whether or not it is necessary to compute a new ei-

defined in Eq.(31) fulfills Eqgs. (24), (26), and(27). We will genvalu_e range for the given configuration. The upper and
approximate the inverse of the square roof\df in Eq. (31) lower eigenvalues are calculated @(N logN) operations

H 13
by its polynomial approximation as described in the follow- USing the free software packagapAck.
ing.

The Chebyshev polynomial approximation of the scalar,
function 1A/x over the rangéX min Amax reads

which allows us to define an estimate of the relative error

D. Mean drift term:  V-RZ},

The presence of the mean drift term in E4) is a con-

Ncheb . . . . .
Unfx~ a:Ci(x), 32 sequence of the simple forward time-stepping integration
Vx JZO i (32 scheme used. Replacing it by any higher order scheme, such

as a mid-point or end-point algorithm, leads to an evolution
equation without a mean drift tertfIn this way, the explicit
computation ofV-R;j, of orderO(N®), may be completely

whereC;(x) are the shifted Chebyshev polynomials, which
have the following recursion relations:

Cira(y)=2yCi(y)—C_a(y), avoided. However, the price for this is that one has to com-
Co(y)=1, Ci(y)= (33)  pute two velocities by iteratively invertinBgy at each time
ot¥ Y=Y step.(More sophisticated methods do not improve the accu-
with racy because of the discontinuities in the random fojces.
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We chose a slightly modified mid-point scheme for the
computation of the Brownian velocitiand similarly for the

A. J. Banchio and J. F. Brady

To solve Eqs(38) and(40) we proceed as before for Eq.
(13) (see Sec. II B and Appendix)A

Brownian stresses which also include divergences in their

expressions; see the followingnstead of evaluating an in-

termediate velocity at the middle of the time step, we pre- ) hod
ferred to move the particles to an intermediate position by APProximate metho

using a fraction of the time stepri,/with n typically on the
order of 100. This is used to avoid particle “overlaps” in the
intermediate configuration.

If at time ty the system has the configuratigg, and the
corresponding grand resistance matrix of the systefis

As we show in the following, the above-presented
method has a favorable scaling of roughly the order of
N12logN as desired, but the computational overhead for
achieving this performance still renders this method a com-
putationally intensive scheme, preventing, for the moment,

then we compute the Brownian velocity for a given set ofits use for large systems on personal compute®. Paral-

random forces™ (with F5F5=2kTR0/At) in the following
manner.
(1) Compute the random velocilyg (and Sg) satisfying
ugl [ P
0] |-So)
(2) Move the particles to the intermediate positioh
according to

Ro’[ (39

At

X' =Xo+ u(‘;?. (39

(3) Compute a new random velocity?’ (andS”’) sat-
isfying

Fb

|

Ub/

0 (40

Note, that hereR’ represents the grand resistance matrix at

the configuratiorx’, and the force§® are the same as used
in Eq. (39).

(4) Compute a realization of the mean drift and of the
Brownian stressS’= —kTV-(RsRr(), as

USipAt= g(ub' —Up)At, (41)

= g(R’SU-Ub’—RSU-UB). (42)

It is straightforward to show that

U =KTV-RE +0(Al), (43
and

P=—KTV-(RsyRe}) +0(Al), (44)

as desired. From Eq$41) and (42), it is apparent that we
preferred to numerically compute a realization of the drift
term (and Brownian stregsinstead of actually using a true

lelization and faster CPU speeds should in the near future
allow one to take full advantage of the method. For this
reason, we also have developed an approximate scheme that
has the same favorable scaling with but that allows the
study of large systems on a single PC.

The most time-consuming parts of the algorithm are the
(iterative inversions of the resistance matrix. In particular,
solving for the Brownian velocities consumes most of the
time, since the velocities of the previous time step may not
be used as initial guesséthe Brownian forces are random
and uncorrelated in contrast to the hydrodynamic velocity,
which is strongly correlated from one time step to the next.
Furthermore, two Brownian velocities are needed at each
time step, and needed with good accuracy in order to com-
pute the mean drift and Brownian stress.

An alternative approximate faster algorithm is the fol-
lowing near-field schem@ASDB-nf):

(1) For the hydrodynamic velocity)" solve with thefull
resistance matrixas in ASD. For consistency, all hy-
drodynamic quantities are computed with full hydrody-
namic interactions.

For the computation of the Brownian velocitiéand
other Brownian quantitigsuse a mean-field-like ap-
proximation for the hydrodynamic far-field interactions,
i.e., replaceM™ by a diagonal matrix with effective val-
ues that depend on volume fraction.

For the diagonal approximation 91~ use the values of
the translational and rotational short-time self-
diffusivities for an equilibrium system in absence of
near-field hydrodynamic interactions.

2

)

Replacing M~ by a diagonal matrix dramatically sim-
plifies the computations since the inverse of this matrix
(trivially obtained can be added td&Rgy s, and then the
iterative inversion can simply be done using the Cholesky
preconditioned conjugate gradient algorithm.

To obtain the equilibrium translational and rotational

mid-point-like scheme, which would have given the sameshort-time self-diffusivities in absence of near-field hydrody-

results. We found this approach to reduce tiwése arising
from terms that average to zero in the computatioébe
Note thatug in Eq. (41) is the Brownian velocity used
for generating the Brownian displacemefifsee Sec. II ¢
For comparison, if one chooses=2 and uses a mid-
point scheme, the Brownian velocity would be

Umig= 3(U°" +Up),

mid ™

(49)

and would replac&J}+ UB,;, in our scheme.

namic interactions, we generated for each volume fraction a
set of equilibrium configurationtobtained using molecular
dynamic$ and computed the diffusivities and the high fre-
guency dynamic viscosities)(.) as an average over all con-
figurations(here, we followed Sierou and Bratifor com-
puting the self-diffusivities

The translational self-diffusivity shows a stromg /3
dependencé& and for this reason we used an extension of
Ladd's'® proposed expression to extract the infinite system
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FIG. 1. Short-time self-diffusion coefficient in absence of near-field hydro-FlG. 3. The CPU timdin arbitrary units for 100 time steps of a shearing

dynamic interactions vs the number of particles in the system. The close imulation até=0.45 and Pe 1, starting from an equilibrium configura-
circles are ASD results, the crosses are extrapolated values according to n. Dashed lines are a guide ’to the eye to show the approximate scalings
(46), the dotted line is a fitted curve of the forax-bN~3 and the solid (as .Iabeleid

line represents the ordinate of this fit. Here, results are showngfor
=0.45.

ume fractions.(The rotational diffusivities do not have a
diffusivity from the N-particle periodic diffusion coefficient, StrongN-dependence and need not be corrected for finite
which reads N.) Polynomial fits of the diffusivities are also shown. These

s s , 3 might be useful for the simulation of other volume fractions
Ds#=Ds#(N)+(70/ 72 1) Dol 1.760X /N)™=$IN]. - yithout the need to compute the far-field diffusivities. We
(46) used these functions for our ASDB-nf runs. It is interesting
Here, we have replaced the self-diffusivities and the susperto note that according to the fitted polynomia, the first-order
sion viscosity from Ladd’s expression by their counterparts(in ¢) term of the far-field translational self-diffusion coeffi-
in the absence of near-field interactions. In Fig. 1 we plot thecient has a factor 1.5, which is to be compared with the exact
translational self-diffusion coefficient versus number of par-value 1.83, first obtained by BatcheldrBatchelor’s result
ticles for ¢=0.45, compared with the corresponding ex-contains the near-field interactions and is therefore larger,
trapolated translational self-diffusivities from E@6). For  implying a smaller diffusivity.
comparison, a fitted curve of the fora+bN~*? is also The scaling of this approximate method is dominated by
shown; the value oh is shown by the solid line. Figure 1 the computation of the hydrodynamic velocity, which scales
shows that Eq(46) gives a good estimate for the infinite asO(N logN). In case of an equilibrium suspension, the ap-
system self-diffusivity. proximate method is a®(N) scheme.
Figure 2 shows the results obtained for the short-time
translational and rotational self-diffusivities for different vol-
I1l. RESULTS AND DISCUSSION

In this section we present results obtained with both the

1_ R 1 new ASD for Brownian suspensiori&SDB) and the ap-
0.9 """"""""""""" — — proximate version ASDB-nf, illustrating the scaling of the
- * '-‘ 1 methods and also comparing their results with those obtained
0.8 e by the conventional SD algorithm. The aim of this section is
ol 1 to verify the predicted scalings, to assess the accuracy of the
_ 0'7__ ] ASDB-nf, as well as to verify the proper implementation of
“at 0.6 A | the ASDB scheme.
L. _ AL | Figure 3 shows the CPU time needed for 100 time steps
translational ~A . . . . .
0.5 = rotational Sea . of a typical simulation of a system with a volume fraction
F 121509407597 Al ] ¢$=0.45 and Pe 1, starting from an equilibrium configura-
04 <= 1-033¢-0.16¢° ™ tion, as a function of the number of particles in the simula-
LT tion box, N. (The Peclet number measures the relative im-
035 0.1 0.2 0.3 0.4 0.5 portance of shear to thermal forces and is given by Pe
o =6mnya’y/kT, with the shear raté given by the magni-

i o . ) : tude of the velocity gradient tenspiVe have chosen 100
FIG. 2. Short-time self-diffusion coefficients in absence of near-field hydro-

dynamic interactions vs volume fracti¢malues for the translational diffu- tl_mG steps to try_ to_capture _the average CompUtatlonal cost,
sivities have been corrected according to E46) from values forN since at the beginning the eigenvalues need to be computed

=427-512]. Dotted lines represent the quadratic fits of the data. and in many cases they are not computed again for hundreds
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of time steps(depending on volume fraction and P&e- 10 T
member also that the SD algorithm usually computes the H
inverse of M™ only every 100 time steps. gl T v
Two aspects are to be noted in Fig. 3. First, the observec ;

scalings of the different algorithms witk are roughly those f I ie |
expected. For small systems, however, the ASDB schem¢= 6/~ i e m,/m,SD(N=27) 7|
scales nearly abl?, since the size of the simulation box is .. ¢ i ¢ 3 [ A n,/m, ASDB
smaller than the cutoff distance for the real sum contribution = | Vv 1, /M, ASDBf |
to the far-field fluid velocity(see Sierou and Brafly Sec- = & > M/Mp 30 (=00

. L = o m,/m, SD(N=27) |
ond, the computational overhead for achieving the favorable A m,/m, ASDB
N1?°logN scaling is quite important, such that the break- 2 2 5 v M,/n, ASDB-nf ]
even point is for a system of about 300 particles. The - 5F 5 P MADESE
ASDB-nf approximate scheme, on the other hand, is aboul Oéll £ g |1 B g .....llo ¥, e Iy

20 times faster than ASDB for the system under consider-

ation; the factor of 20 is the cost of computing the far-field

random Brownian forces and resulting velocities. FIG. 4. Hydrodynamic and Brownian viscosity contributions for a Brownian
For a suspension under steady simple shear flow the visuspension withp=0.45, vs Pe. Results are shown for systems wWth

cosity is related to thexy componentif (x,y) define the =64, using SD, ASDB, and ASDB-nf, also included are SD data from Foss

velocity—velocity-gradient plarjeof the bulk stresss, and 29 Brady(Ref. 7 for systems with 27 particles.

rate of strain in the following manner:

_ 2‘vxy (47) ’ v ”

7 2EZ, Mp=17" nm—ﬁfo (oxy()oxy(0))dt. (50
where the bulk stress is defined as an average over the vdhere, o,,(t) represents the instantaneous Brownian shear
umeV containing theN particles and is given by stress, ando(t) o,y(0)) is the Brownian shear—stress au-

_ tocorrelation function.
3= —(p)l +27(E*)—nkTl+n((S") +(S") +(S)). In Fig. 5 we compare ASDB, ASDB-nf, and Sfaken

from Foss and Brady results for the Brownian contribution

Here, —nkTl is the isotropic stress associated with the ther10 the zeéro-shear limiting viscosity as a function of the vol-
mal energy of the Brownian particlejs the isotropic ten- Ume fraction. All sets of data are obtained using &@). As

sor, anch is the number density of the particles. The angularn the nonequilibrium case, we find good agreement between

brackets denote an average over all particles and over time fi€_aPproximate ASDB-nf and the more accurate @D
a dynamic simulation. ASDB) algorithm. For¢p=0.2 there is some discrepancy be-

The individual hydrodynamicg") and Brownian §) tween Fhe Sp and the_ ASDB results, but we atribute this to
contributions to the viscosity are denoted as and 7, the difficulty in computingys, using Eq/(50), since very Iong'
respectively; hence, in absence of interparticle forces, runs and a large number of p_artcheS are needed to obtain an

accurate stress-autocorrelation function. The exact low-
7= 10+ 7+ 7 - (49)  density limit/*?° 5,/7,=0.913p*+0(4%), is also in-
cluded for comparison.
Results for the Brownian and hydrodynamic viscosities as a

function of Pe for a typical suspension with=0.45 are
presented in Fig. 4. Here, the number of particles used in the g,
simulation box was 64 in order to compare with conventional

SD results. In this plot we include data for the three schemes

SD, ASDB, and ASDB-nf. The agreement between data ob-  '°
tained using SD and ASDB confirms the proper implemen-
tation of the scheme. ASDB-nf values are also in near perfec _
guantitative agreement with the ASDB results. At the lowest £
Pe, there is an appreciable scatter of the data, but this can ke
attributed to the quite large error associated with these
points. Similarly, for high Pe the SDN=27) data seem to

lie systematically above the ASDB and ASDB-nf data. This  0.01
can be related to the fact that SDN+€ 27) results were ob-

tained allowing some slight particle overlap, while the other T S P TS I
methods do not allow any particle overlap, and furthermore, 0 0.1 0.2 0.3 0.4 0.5
a minimum interparticle separation of 2.0@0®as enforced. o

For Equ"lb”um suspensions itis pOSSIb|e to compute thq:IG. 5. Brownian viscosity contribution as a function of the volume fraction

Brownie_m contribution to the zero-shear limiting viscosity 4 Results obtained using ASDB-nf are compared with SD data from Foss
employing the Green—Kubo formidfa and Brady(Ref. 7).

[ T & T T = 3
A ASDB (N=64) v
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» SD (N=27): Foss & Brady (2000) ) S
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. m As was mentioned® the rotational diffusivitiegFig. 7)
AL . | do not have an appreciable size dependence and we simply
o A 5 present results obtained for systems wiNk=64. Transla-
i v ] tional diffusivities obtained using ASDB-nf are also not sen-
; s 1 sitive to the size of the system since the far-field hydrody-
o 061 v a ] namic interactiongresponsible for theN~ %3 dependende
st ¥ . . - are approximated in a mean-field-like manner. Data for
B gal 3 ASDB-nf in Fig. 6 correspond to systems with= 64.
L A ASD N 1 In Fig. 6 the rigorous dilute IimiDStra/Dozl—l.S&b is
¥ abb v 4 also included for comparison. Note that the inclusion of the
02k ¢ ASDB far-field only v ] . i X : X K .
T __ low density limit Vya ] near-field interactions in the Stokesian dynamics algorithm
r (compared with the far-field only computations shown in
ol v v 1 e e L 1 Fig. 2 recovers the correct dilute limit.
0 0.1 0.2 0.3 0.4 0.5
o

IV. CONCLUSIONS

FIG. 6. Short-time translational self-diffusion coefficient for equilibrium . .

Brownian suspensions as a function of volume fraction. ASD data taken [N this paper we have presented a new Stokesian dynam-

from Ref. 8 are compared with ASDB-nf resulsSD values are corrected  ics algorithm for Brownian suspensiof8SDB) with a fa-

according to Ladd's proposed expressidfor comparison, the extrapolated ygoraple scaling of roughI)O(Nl'ZSIog N). This new algo-

short-time self-diffusion coefficient in absence of near-field HI are included, . . . .

as well as the rigorous low density limRef. 17, rlt_hm is seen to be accur_ate, reproducing regults obtained
with conventional SD. While accurate, ASDB is computa-
tionally still involved, and is only faster than conventional

_ i SD for systems of the order of 200—300 particles. For this

Figures 6 and 7 show results for the short-time tra”5|a'reason, full advantage of this new scheme has only been
tional and rotational self-diffusion coefficients, respectively, possible for the study of static quantities where a set of con-
as a function of the volume fraction for equilibrium colloidal figurations are given and static and short-time dynamic prop-
suspensions. In the case of ASDB and ASDB-nf, the selfgiies can be computed using ASDB without moving the par-
diffusivities were obtained as ticles. For dynamic simulations, which may require very
long runs, it is still very demanding using the current state of
the art PCs.

A very fast approximate algorithiftASDB-nf) was also
Here(...) denotes an average over all particles and an eMpresented, whose scaling is of ordétog N for nonequilib-
semble averagéover configurations during the simulation  rjum simulations and i€(N) for equilibrium suspensions.
andu’ represents the component of the particle Brownian This approximate algorithm was tested by comparing both
velocity, so that depending anwe compute the translational static and dynamic quantities and showed, in general, a re-
or rotational diffusivity with respect to one axis. Since the markable agreement with the ASD®r SD) data. Using
suspension is isotropic we average over the three axes I®SDB-nf, dynamic simulations of systems of the order of
obtain the plotted results. Note that Computing the dIﬁUSIVI-SOO partides are possib|e on a 1.5GHz PC. The Study of
ties according to Eq(51) also constitutes a test for the sta- |arger systems, or long-time dynamics of Brownian suspen-
tistics of the Brownian forces. sions, is therefore now accessible with ASDB-nf.

The scope of this article was limited to introducing the
new algorithms, and we leave the application of them for the
| —————————————— study of long-time dynamics and rheology of highly concen-

1
D3ii=(Re{,i)= SAplurur). 6D

L trated colloidal suspensions to future works.
09F X . As a final note, ASDB is constructed for infinite periodic
IS systems and achieves its favorable scaling through the use of
0.8 . the FFT. If one wishes to study an isolated assembly of par-
& N 1 ticles, such as a bead-spring model of a polymer in an un-
g 07 - bounded fluid, then the method cannot be directly applied.
a7 However, to model an isolated system it might prove more
0.6 % _ advantageous to employ a very dilute periodic representation
A ASDB x with ASDB, than to treat a truly isolated system for which
0.5 ¥ A5DBat % the algorithm would scale roughly &(N229.1! [Fast mul-
i ] tipole methods might, in principle, allow one to reduce this
| S SR R NP (S ' X o TR
0 0.1 0.2 0.3 0.4 0.5

FIG. 7. Short-time rotational self-diffusion coefficient for equilibrium
Brownian suspensions as a function of volume fraction. Results are from

simulations forN=64.
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APPENDIX A: ALTERNATIVE APPROACH since it reduces the number @ute) iterations considerably.

FOR THE INVERSION OF R

Solving Eq.(13) as described in Sec. II B is inadequate APPENDIX B: CHEBYSHEV POLYNOMIAL
when the matrixRg  is ill-conditioned, which may occur APPROXIMATION
for low volume fractions. In particular, in the limit of infinite C;(M*) are the(matrix-) generalized shifted Cheby-
dilution Rgy =0. To overcome this inconvenience, we shev polynomials, which satisfy the following recursion re-
present here an alternative approach that does not involve thations:
inversion ofRgy ¢, Which is then more appropriate for low N gt N ,
volume fraction systeméypically ¢<0.3). Ci+1(MH)=2M7C(M7) = Cy-o(M7),

From Egs.(16), (17), and (20), it follows that Fjj=F", Co(M)=1, Cy(M")=M’, (B1)
—Rru, nU", which we replace in Eqi17) to obtain with
[Fhi— Rey prU" uh
3 : _ 2 Mot M
M| _Ee| (AL) M’ = M@ — Smax tmin g (B2)

)\max_)\min )\max_)\min

We now define~ and S according to Here, A nax @and\ i, are the maximum and minimum eigen-

0 value of M”, respectively.
} (A2) Using these recursion relations, it is possible to compute
the action ofC;(M™) on an arbitrary vectoy, by j repeti-
Note that this can be solved without knowing the velocity,tions of computations of the formM’-x, which are
and, if desired, the values & andS can be kept unchanged O(NIogN).
for many time steps sincé” varies slightly with small
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