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Accelerated Stokesian dynamics: Brownian motion
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A new Stokesian dynamics~SD! algorithm for Brownian suspensions is presented. The
implementation is based on the recently developed accelerated Stokesian dynamics~ASD!
simulation method@Sierou and Brady, J. Fluid Mech.448, 115~2001!# for non-Brownian particles.
As in ASD, the many-body long-range hydrodynamic interactions are computed using fast Fourier
transforms, and the resistance matrix is inverted iteratively, in order to keep the computational cost
O(N logN). A fast method for computing the Brownian forces acting on the particles is applied by
splitting them into near- and far-field contributions to avoid theO(N3) computation of the square
root of the full resistance matrix. For the near-field part, representing the forces as a sum of pairwise
contributions reduces the cost toO(N); and for the far-field part, a Chebyshev polynomial
approximation for the inverse of the square root of the mobility matrix results in anO(N1.25logN)
computational cost. The overall scaling of the method is thus roughly ofO(N1.25logN) and makes
possible the simulation of large systems, which are necessary for studying long-time dynamical
properties and/or polydispersity effects in colloidal dispersions. In this work the method is applied
to study the rheology of concentrated colloidal suspensions, and results are compared with
conventional SD. Also, a faster approximate method is presented and its accuracy discussed.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1571819#
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I. INTRODUCTION

The understanding and prediction of the rheology a
dynamics of Brownian suspensions has been~and still is! a
subject of both fundamental and technological interest. In
last decade, considerable effort has been made to investi
experimentally and theoretically, the structure and dynam
of colloidal suspensions. The equilibrium structure and sh
time dynamics of monodisperse suspensions have been
oughly studied and, in many aspects, are well understoo1,2

The long-time dynamics, rheology, and the nonequilibriu
structure, on the other hand, are still the subject of ongo
research. The presence of many-body hydrodynamic inte
tions ~HI! greatly complicates the theoretical treatment
these systems, and for this reason the development of s
lation techniques capable of addressing the hydrodyna
interactions has been a significant advance. In particu
since its first implementation for Brownian suspensions,
Stokesian dynamics~SD! simulation method has been su
cessfully applied for more than ten years to a wide range
problems, such as the short-time diffusion and rheology
Brownian suspensions, as well as the nonequilibrium pr
erties of suspensions under flow3–7 to mention but a few.
Long-time dynamics and large-scale structure formati
however, were normally out of the scope of SD simulatio
owing to the large computational costs involved@an O(N3)
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scheme, whereN is the number of particles in the system#,
which limited its use to small systems~typically 27–125
particles in the simulation box!.

Recently, Sierou and Brady8 presented the accelerate
Stokesian dynamics~ASD! algorithm for nonBrownian sus
pensions, a new implementation of the SD method in wh
the computational cost scales asO(N logN). This new
scheme allows simulations of the order of 1000 or more p
ticles, and makes possible the study of highly concentra
suspensions, large-scale structure formation, etc. The me
can also be readily extended to study nonspherical parti
and mixtures or polydispersity effects.

The aim of this work is to develop a new SD simulatio
technique for Brownian suspensions in which the compu
tional cost scales roughly asO(N1.25logN). This will be
achieved by extending the ASD code for the efficient tre
ment of Brownian forces, which in the original SD imple
mentation involvedO(N3) operations. This new algorithm
will now make possible the simulation of much larger sy
tems, and will also allow much longer simulations~on the
particle time scale!, which is necessary for assessing lon
time dynamics and time-correlation functions.

This article is organized as follows: In Sec. II, we d
scribe in detail the new simulation method. Results for
rheology of concentrated colloidal suspensions are prese
in Sec. III. Conclusions are given in Sec. IV.

II. METHOD

First, we briefly review the conventional Stokesian d
namics algorithm for Brownian suspensions, emphasiz
the steps in which the computational cost is larger th
3 © 2003 American Institute of Physics
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O(N). We will then discuss the changes introduced in
ASD algorithm, and finally we describe in detail the furth
modifications needed for the inclusion of Brownian moti
in order to keep the scaling of the computations as low
possible.

For a system ofN rigid particles~of characteristic size
a) suspended in an incompressible Newtonian fluid of v
cosity h0 and densityr, the particle motion is governed b
the coupledN-body Langevin equation:

m"
dU

dt
5Fh1Fb1Fp, ~1!

wherem is the generalized mass/moment of inertia tensorU
is the particle translational/rotational velocity vector, and
the right-hand side are the forces/torques acting on the
ticles, which for convenience we split into: hydrodynam
forces (Fh) due to the motion of the particles relative to th
fluid; the stochastic forces (Fb) responsible for the Brownian
motion; and deterministic nonhydrodynamic forces (Fp),
which may be either interparticle or external.

When the particle Reynolds number is small, the hyd
dynamic forces/torques acting on the particles in a susp
sion undergoing a bulk linear flow are given by

Fh52RFU"~U2u`!1RFE :E`. ~2!

Here,u` is the velocity of the bulk linear flow evaluated
the center of a particle,u`(x)5Ġ"x, where Ġ is the bulk
velocity gradient tensor, withE` its rate of strain. The resis
tance tensorsRFU(x) and RFE(x) give the hydrodynamic
forces/torques on the particles due to their motion relative
the fluid and due to the imposed flow, respectively.RFU(x)
and RFE(x) depend on the particle positions~both transla-
tional and orientational!, represented by the generalized co
figuration vectorx.

The deterministic, nonhydrodynamic forcesFp are arbi-
trary, and we assume that they can be computed inO(N)
operations. This might not be the case when particles inte
via a long-range potential with no cutoff. Long-range forc
of, e.g., electrostatic origin, however, may be evaluated
O(N logN) operations by following a method similar to th
one used in ASD for the hydrodynamic interactions.

The Brownian forceFb arises from the thermal fluctua
tions in the fluid and is a Gaussian stochastic variable,
fined by

Fb50, Fb~0!Fb~ t !52kTRFUd~ t !, ~3!

where the overbar denotes an ensemble average ove
thermal fluctuations in the fluid,k is Boltzmann’s constant,T
is the absolute temperature, andd(t) is the delta function.
The correlation at 0 andt is a consequence of th
fluctuation–dissipation theorem for theN-particle system.

In the conventional SD algorithm, an evolution equati
for the particle configuration is obtained by integrating E
~1! twice over a time stepDt ~larger than the inertial relax
ation time,tB5m/6ph0a, but small compared with the tim
over which the configuration changes!, leading to

Dx5$u`1RFU
21"@RFE :E`1Fp#%Dt1kT“"RFU

21Dt

1X~Dt !1o~Dt !, ~4!
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with

X̄50, X~ t !X~ t !52kTRFU
21Dt. ~5!

Here,Dx is the change in particle position during the tim
stepDt and X(t) is a Gaussian random displacement co
puted as

X~ t !5&kTDtA"C~ t !

with

A"AT5RFU
21, ~6!

where C(t) is a normal deviate, i.e.,C(t)50 and
C(t)C(t)51. In conventional SD, the matrixA was ob-
tained as a byproduct of the inversion ofRFU , and did not
result in any additional computational cost.

To complete our brief description of the SD algorith
we still have to discuss how the resistance matrices are
culated. For this purpose, we define the grand resistance
trix R as

R5FRFU RFE

RSU RSE
G , ~7!

whereRSU and RSE are similar toRFU and RFE and relate
the particle stresslet,S—the symmetric first moment of the
force density on a particle—to the velocity and the rate
strain by

FFSG52R"FU2u`

2E` G1FFb1Fp

2rF p G . ~8!

The inverse of the grand resistance matrix is the grand
bility matrix M and gives the particle velocities and the ra
of strain (U2u`,E`) in terms of the total forces/torques an
stresslets~F, S!.

In Eq. ~8! the definition of the stresslet contribution du
to the interparticle forces asrF p may need clarification. First
it is assumed that the interparticle forces do not result i
net force on the suspension, i.e.,(Fp50, where( stands for
a sum over all particles. A net force should be considered
external force and generates bulk translational motion,
stress. Thus,rF p is independent of the origin and the su
over all particles and over all unit cells can be performed.
the special case in which the forces are pairwise additive,
stresslet can be written as (1/2)(1/N) ( i j r i j Fi j

p , where the
sum is over all particles,r i j 5r j2r i , andFi j

p is the interpar-
ticle force for the pairi j . If the forces are not pairwise ad
ditive, as in electrorheological fluids for example, then t
more general form implied byrF p must be used. Care mus
also be exercised when only summing over a single unit c
the nearest image must be used.

Conventional SD exploits the fact that hydrodynamic
teractions among particles can be decomposed into lo
range mobility interactions and short-range lubrication int
actions and splits the grand resistance matrix according

R5~M`!211Rnf , ~9!

with

Rnf5R2B2R2B
` 5FRFU,nf RFE,nf

RSU,nf RSE,nf
G . ~10!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Here,M` is the grand mobility matrix from the infinite~via
periodic boundary conditions! system formed by a truncate
multipole expansion in combination with Faxe´n laws, and
Rnf contains the near-field lubrication interactions.Rnf is
formed in a pairwise additive fashion from the exact tw
body resistance interactions,R2B , minus the two-body inter-
actions already included in (M`)21, denoted asR2B

` .
Due to the near-field character of lubrication intera

tions, only pairs of particles that are closer than a cert
cutoff distance~typically 4 particle radii! have nonzero en
tries in Rnf . For this reason,Rnf is a sparse matrix, and it
construction involves onlyO(N) operations.M`, on the
other hand, is not sparse, and its construction requiresO(N2)
calculations.

From Eqs.~4!–~6!, and the above-presented discussi
we can identify the computations in conventional SD th
requireO(N2) or larger operations:

~i! M`: its construction is ofO(N2).
~ii ! RFU

21 : matrix inversion ofO(N3).
~iii ! “"RFU

21 : usesRFU
21 andM`.

~iv! X: uses the factorization:A"AT5RFU
21 , anO(N3) op-

eration.

In order to obtain a method with a more favorable scali
we need to devise alternate approaches to avoid these
putations, or to compute them in a more efficient manne

In ASD Sierou and Brady8 developed an alternative a
gorithm that avoided the explicit computation ofM` and the
inversion ofRFU

21 , the computationally more expensive pa
in absence of Brownian motion. In what follows, we briefl
describe their approach and then present different sche
for addressing~iii ! and~iv! in order to keep the overall sca
ing as low as possible.

A. Far-field hydrodynamics: M`

In the Stokesian dynamics algorithm the far-field man
body hydrodynamic interactions are accounted~in the resis-
tance formulation! by the inverse of the far-field mobility
matrix M`. As already mentioned, the explicit computatio
of M` involvesO(N2) operations; for this reason, we avo
computingM` explicitly and, instead, find a way to com
puteM`"y, for a given~far-field! force/torque/stresslet vec
tor y5(fff ,tff ,sff).

For this purpose, Sierou and Brady use Faxe´n laws to
obtain an expression for the particle velocities and rate
strain as a function of the particles’ force/torque/stresslet
the far-field fluid velocity and its rate of strain at the cen
of the particles, namely,

u2u`~x!52
1

6ph0a
fff1S 11

a2

6
“

2Duff , ~11a!

v2v`~x!52
1

8ph0a3 tff1
1

2
“Ãuff , ~11b!

2E`52
3

20ph0a3 sff1S 11
a2

10
“

2Deff . ~11c!

Here,uff corresponds to the far-field fluid velocity evaluat
at the center of the particle, andeff is its rate of strain, arising
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from the presence of all other particles~represented as force
force-moment densities!. Both are functions of the far-field
force/torque/stresslet vector (fff ,tff ,sff), In Eqs. ~11a! and
~11b! u and v stand for the particle translational and rot
tional velocity, respectively, i.e.,U5(u,v). We will further
omit the details on howuff and eff are obtained from the
force/torque/stresslety; we only mention that this can b
done inO(N logN) by representing the particle moments
forces on a grid, and then solving for the far-field veloc
field on that grid using fast Fourier transforms and t
particle-mesh-Ewald technique. For a detailed descript
see Ref. 8.

B. Computing particle velocities: R FU
À1

As is well known, the most efficient way of solving
large sparse linear system of equations is using itera
methods. Conjugate gradient methods have proven to b
powerful technique for solving large linear systems, and th
share the advantage of referencing the matrix only thro
its product with a vector, a necessary condition in our ca
since we knowM` only through its action on the vectory.

Not having RFU explicitly, forces us to solve for the
velocities and~far-field! stresslet simultaneously. In the ab
sence of particle inertia~particle inertia can be easily in
cluded if desired!, Eqs.~1!, ~2!, ~7!, and~8! give

F0
SG52R"FU2u`

2E` G1FFb1Fp

2rF p G . ~12!

Note that the unknowns areU and S. We further splitU
2u` andS into a so-called hydrodynamic part,Uh andSh, a
Brownian part,Ub andSb, and an interparticle force part,Up

andSp, satisfying the following:

F 0
ShG52R"F Uh

2E`G , ~13!

F 0
SbG52R"FUb

0 G1FFb

0 G , ~14!

F 0
SpG52R"FUp

0 G1F Fp

2rF pG . ~15!

By doing this, we can compute the particle motion and
rheological properties arising from the Brownian motio
separately from the hydrodynamic and interparticle fo
contributions. The extra cost of solving Eq.~13! @and/or Eq.
~15!; actually, they are combined together in one step# is
usually not considerable since the hydrodynamic quanti
change slowly and one can use the solution from the pr
ous time step as an initial guess, leading to convergence
few iterations. Solving Eq.~14!, on the other hand, must b
done anew at each time step, sinceFb andSb are completely
uncorrelated~as they must be! from one time step to the
next.

Note that the splitting defined in Eqs.~13!–~15! corre-
sponds to the forces in Eq.~1!. The linearity of the hydrody-
namic forces at low Reynolds number allows one to sup
impose effects. The physical interpretation is thatSh is
directly proportional to the rate of strainE`, Sb to the
Brownian forcesFb, and Sp to the interparticle forcesFp.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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For example, in a flow cessation experiment,E` is suddenly
set to zero and the hydrodynamic stressletSh drops instanta-
neously to zero, whileSb andSp relax to zero as the structur
relaxes back to equilibrium. CallingSh the hydrodynamic
stresslet is actually a misnomer, since bothSb andSp contain
direct contributions due to hydrodynamic interactions~in-
deedSb is purely hydrodynamic in origin!; a better name
would be SE, indicating its proportionality to the rate o
strain. Note also, that each stresslet depends on the stru
~i.e., the configuration of particles!, which results from the
combined effects of hydrodynamic, Brownian, and interp
ticle forces and this ‘‘indirect’’ effect is not superposable.

Using Eqs.~9!, ~10!, and ~13!, we find the following
equation forUh,

RFU,nf"U
h1Fff

h5RFE,nf :E
`, ~16!

with the far-field hydrodynamic forces/torques,Fff
h , and

stresslets,Sff
h , satisfying

M`"FFff
h

Sff
h G5F Uh

2E`G . ~17!

ReplacingUh in Eq. ~17! from Eq. ~16! and rearranging
terms leads to the linear system of equations forFff

h andSff
H :

M̃`
•FFff

h

Sff
h G5FRFU,nf

21 "Fnf
h

2E` G , ~18!

where

M̃`5M`1FRFU,nf
21 0

0 0G , ~19!

and

Fnf
h 5RFE,nf :E

`. ~20!

Note thatUh does not appear explicitly in Eq.~18!, but is
computed when evaluating the left-hand side.

To solve the linear system of equations~18! we use a
generalized conjugate gradient method, and for compu
the action ofRFU,nf

21 ~needed to evaluate the right-hand si
and to calculate the action ofM̃`) we employ an incomplete
Cholesky preconditioned conjugate gradient method as
scribed in Ref. 8. Note that we have two nested iterat
solvers, a preconditioned conjugate gradient for the in
iterations~inversion ofRFU,nf) and a generalized conjuga
gradient for the outer iterations~inversion ofM̃`).

HavingFff
h andSff

h satisfying Eq.~18!, we can obtain the
hydrodynamic contributions to the particle velocities a
stresslets as

Uh5RFU,nf
21 "Fnf

h 2RFU,nf
21 "Fff

h , ~21!

Sh52RSU,nf"U
h1RSE,nf :E

`1Sff
h . ~22!

The operation count isO(N logN) ~shown in the follow-
ing! times the number of iterations necessary for conv
gence. Through the use of the preconditioner, a typical n
ber of iterations for the inner solver isO(20) ~with a
tolerance of 1025 and a time step of 1023), for the outer
solver the number of iterations needed isO(25) ~with a tol-
erance of 1024 for f50.45, Pe51). These representativ
Downloaded 31 Mar 2006 to 170.210.248.7. Redistribution subject to AIP
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values are for the computation of the hydrodynamic veloc
and may be considerably reduced~down to a few! by using a
larger tolerance~taking care that this does not alter the ave
age results!.

C. Brownian displacement: X

Unlike the deterministic velocityUh in Eq. ~13!, the
Brownian velocityUb fluctuates with a characteristic tim
equal to the Brownian relaxation timetB , which usually is
several orders of magnitude smaller than the time inter
needed for the particles to move a significant fraction of th
size. Here, we are only interested in the diffusive limit, i.
when the time step is much larger thantB .

In order to compute the Brownian displacementX that
satisfies Eq.~5!, we determine the Brownian velocityUb

from Eq.~14!. ~A similar approach was suggested in Ref. 9!
Note that here, and in the rest of this paper,Ub ~and also the
random forcesFb) are fixed during the time step.

The algorithm is as follows: First, a set of rando
forces/torquesFb is generated according to the discretiz
version of Eq.~3!. Then, Eq.~14! for Ub is solved iteratively
and finally X is given asX5UbDt. It is straightforward to
show thatX computed this way fulfills Eq.~5!. To solve Eq.
~14!, we proceed as with Eq.~13!. ~For an alternative ap-
proach for low densities see Appendix A.!

In the rest of this section, we describe how to gener
the random Brownian forces/torquesFb, while keeping the
overall scaling of the algorithm as low as possible.

The Brownian forces are split into a near- and a far-fie
part, according to

Fb5Fnf
b 1Fff

b , ~23!

with

Fnf
b 5Fff

b50, ~24!

and

Fnf
b Fnf

b 52kTRFU,nf /Dt, ~25!

Fff
bFff

b52kT~M`!FU
21/Dt, ~26!

Fnf
b Fff

b50. ~27!

Here, (M`)FU
21 represents the part ofRFU arising from the

inverse ofM`.

1. Brownian forces: Near-field part

To generate the near-field part of the random forc
torques,Fnf

b , obeying Eqs.~24!, ~25!, and ~27! using O(N)
operations, we write the Brownian force/torque acting
particle i , Fnf,i

b as a pairwise sum over all of its near neig
bors according to

Fnf,i
b 5 (

g5( i , j )
ur i2r j u,4a

~L i i
g "Cg,i

nf 1L i j
g "Cg, j

nf !, ~28!

with
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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F L i i
g L i j

g

L j i
g L j j

g G "F L i i
g L i j

g

L j i
g L j j

g GT

52kT~R2B,FU,i j 2R2B,FU,i j
` !,

~29!

and Cg,i
nf is a random Gaussian deviate of length 6 for p

ticle i in pair g, satisfying

Cg,i
nf 50, Cg,i

nf Cn, j
nf 51dgnd i j . ~30!

In Eq. ~29!, (R2B,FU,i j 2R2B,FU,i j
` ) is the 12312 two-body

pairwise contribution toRFU,nf arising from pairg5( i , j ),
which we factorize using Cholesky decomposition to obt
the L i j

g .

2. Brownian forces: Far-field part

For the far-field part of the Brownian forces/torques, w
employ Fixman’s method,10,11 consisting of replacing the
square root of (M`)21 by its Chebyshev polynomial ap
proximation, and exploit the fact that only its action on
vector is needed. Note that in our case, because we com
the random forces instead of the random displacements
need to approximate the square root of the inverse of
~far-field! mobility matrix.

To generate a set of random Gaussian deviates wi
given covariance matrixM , the most common way is to
factorize the covariance matrix as in Eq.~6!. This factoriza-
tion, however, is not unique and any choice of the fact
satisfyingM5A"AT is valid. In particular, one can chooseA
to be the square root ofM , i.e.,M5A"A, with A5AT. This
has the advantage that a polynomial approximation can
used to approximate the square root.

In the case of the far-field Brownian forces/torques,Fff
b ,

the covariance matrix is proportional to theFU block of the
inverse ofM` @cf. Eq. ~26!#. Since we do not haveM`

explicitly, and we only can compute its action on vector~a
force/torque/stresslet vector!, we generateFff

b as the forces/
torques part of

F Fff
b

Sran
G5A2kT

Dt
~M`!21/2"FCF

ff

CS
ff G . ~31!

Here,Cff5@CF
ff ,CS

ff# is an 11N normal deviate. If we fur-
ther require each component ofCff to be independent of an
component ofCg,i

nf , it is straightforward to show thatFff
b as

defined in Eq.~31! fulfills Eqs. ~24!, ~26!, and~27!. We will
approximate the inverse of the square root ofM` in Eq. ~31!
by its polynomial approximation as described in the follo
ing.

The Chebyshev polynomial approximation of the sca
function 1/Ax over the range@lmin ,lmax# reads

1/Ax' (
j 50

NCheb

ajCj~x!, ~32!

whereCj (x) are the shifted Chebyshev polynomials, whi
have the following recursion relations:

Cl 11~y!52yCl~y!2Cl 21~y!,
~33!

C0~y!51, C1~y!5y,

with
Downloaded 31 Mar 2006 to 170.210.248.7. Redistribution subject to AIP
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2x

lmax2lmin
2

lmax1lmin

lmax2lmin
. ~34!

The Chebyshev coefficients,aj in Eq. ~32!, depend onlmin

andlmax, and are usually computed for an approximation
much larger order thanNCheb to estimate the truncation
error.12

The approximation in Eq.~32! can be generalized to
function of matrices, keeping the same Chebyshev coe
cientsaj , if the eigenvalues of the matrix are bounded
@lmin ,lmax#. This results in the following approximate ex
pression for the action of (M`)21/2 on a vectory:

~M`!21/2"y'z5 (
j 50

NCheb

ajCj~M`!"y. ~35!

The factorsCj (M`)"y can be computed recursively, and in
volve evaluations of the action ofM` on vectors, which can
be computed inO(N logN) operations~see Appendix B!.

The number of terms,NCheb, to be included in Eq.~35!
to achieve the desired accuracy@typically of O(1022)] de-
pends on the ratiolmax/lmin . This dependence was found t
scale roughly as (lmax/lmin)

1/2, in agreement with similar
findings for the square root of the mobility matrix in simu
lations of polymer chains.10,11 Taking into account that the
ratio lmax/lmin was found to scale with the number of pa
ticles,N, roughly asN1/2, the overall scaling of the compu
tation of the far-field part of the Brownian forces is nearly
orderO(N1.25logN).

Before calculating the Chebyshev approximation
(M`)21/2"y, we need to know thelmin and lmax bounding
the eigenvalues ofM`. Following Jendrejacket al.11 and
noting that if we assume we are using a valid eigenva
range, we have

lim
NCheb→`

@z"M`"z#5y"y, ~36!

which allows us to define an estimate of the relative er
resulting from the polynomial approximation as

ECheb5Auz"M`"z2y"yu
z"M`"z

. ~37!

We computeEChebfor each configuration and use its value
decide whether or not it is necessary to compute a new
genvalue range for the given configuration. The upper a
lower eigenvalues are calculated inO(N logN) operations
using the free software packageARPACK.13

D. Mean drift term: “"RFU
À1

The presence of the mean drift term in Eq.~4! is a con-
sequence of the simple forward time-stepping integrat
scheme used. Replacing it by any higher order scheme,
as a mid-point or end-point algorithm, leads to an evolut
equation without a mean drift term.14 In this way, the explicit
computation of“"RFU

21 , of orderO(N3), may be completely
avoided. However, the price for this is that one has to co
pute two velocities by iteratively invertingRFU at each time
step.~More sophisticated methods do not improve the ac
racy because of the discontinuities in the random forces.!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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We chose a slightly modified mid-point scheme for t
computation of the Brownian velocity~and similarly for the
Brownian stresses which also include divergences in t
expressions; see the following!. Instead of evaluating an in
termediate velocity at the middle of the time step, we p
ferred to move the particles to an intermediate position
using a fraction of the time step 1/n, with n typically on the
order of 100. This is used to avoid particle ‘‘overlaps’’ in th
intermediate configuration.

If at time t0 the system has the configurationx0 , and the
corresponding grand resistance matrix of the system isR0 ,
then we compute the Brownian velocity for a given set
random forcesFb ~with FbFb52kTR0 /Dt) in the following
manner.

~1! Compute the random velocityU0
b ~andS0

b) satisfying

R0"FU0
b

0 G5F Fb

2S0
bG . ~38!

~2! Move the particles to the intermediate positionx8,
according to

x85x01U0
b Dt

n
. ~39!

~3! Compute a new random velocityUb8 ~andSb8) sat-
isfying

R8"FUb8
0 G5F Fb

2Sb8G . ~40!

Note, that hereR8 represents the grand resistance matrix
the configurationx8, and the forcesFb are the same as use
in Eq. ~38!.

~4! Compute a realization of the mean drift and of t
Brownian stress,Sb52kT“"(RSU"RFU

21), as

Udrift
b Dt5

n

2
~Ub82U0

b!Dt, ~41!

Sb52
n

2
~RSU8 "Ub82RSU"U0

b!. ~42!

It is straightforward to show that

Udrift
b 5kT“"RFU

211o~Dt !, ~43!

and

Sb52kT“"~RSU"RFU
21!1o~Dt !, ~44!

as desired. From Eqs.~41! and ~42!, it is apparent that we
preferred to numerically compute a realization of the d
term ~and Brownian stress!, instead of actually using a tru
mid-point-like scheme, which would have given the sa
results. We found this approach to reduce thenoisearising
from terms that average to zero in the computation ofSb.

Note thatU0
b in Eq. ~41! is the Brownian velocity used

for generating the Brownian displacementX ~see Sec. II C!.
For comparison, if one choosesn52 and uses a mid

point scheme, the Brownian velocity would be

Umid
b 5 1

2~Ub81U0
b!, ~45!

and would replaceU0
b1Udrift

b in our scheme.
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To solve Eqs.~38! and~40! we proceed as before for Eq
~13! ~see Sec. II B and Appendix A!.

E. Approximate method

As we show in the following, the above-present
method has a favorable scaling of roughly the order
N1.25logN as desired, but the computational overhead
achieving this performance still renders this method a co
putationally intensive scheme, preventing, for the mome
its use for large systems on personal computers~PC!. Paral-
lelization and faster CPU speeds should in the near fu
allow one to take full advantage of the method. For th
reason, we also have developed an approximate scheme
has the same favorable scaling withN, but that allows the
study of large systems on a single PC.

The most time-consuming parts of the algorithm are
~iterative! inversions of the resistance matrix. In particula
solving for the Brownian velocities consumes most of t
time, since the velocities of the previous time step may
be used as initial guesses~the Brownian forces are random
and uncorrelated!, in contrast to the hydrodynamic velocity
which is strongly correlated from one time step to the ne
Furthermore, two Brownian velocities are needed at e
time step, and needed with good accuracy in order to co
pute the mean drift and Brownian stress.

An alternative approximate faster algorithm is the fo
lowing near-field scheme~ASDB-nf!:

~1! For the hydrodynamic velocityUh solve with thefull
resistance matrix~as in ASD!. For consistency, all hy-
drodynamic quantities are computed with full hydrod
namic interactions.

~2! For the computation of the Brownian velocities~and
other Brownian quantities! use a mean-field-like ap
proximation for the hydrodynamic far-field interaction
i.e., replaceM` by a diagonal matrix with effective val
ues that depend on volume fraction.

~3! For the diagonal approximation toM` use the values of
the translational and rotational short-time se
diffusivities for an equilibrium system in absence
near-field hydrodynamic interactions.

ReplacingM` by a diagonal matrix dramatically sim
plifies the computations since the inverse of this mat
~trivially obtained! can be added toRFU,nf , and then the
iterative inversion can simply be done using the Choles
preconditioned conjugate gradient algorithm.

To obtain the equilibrium translational and rotation
short-time self-diffusivities in absence of near-field hydrod
namic interactions, we generated for each volume fractio
set of equilibrium configurations~obtained using molecula
dynamics! and computed the diffusivities and the high fr
quency dynamic viscosities (h 8̀ ) as an average over all con
figurations~here, we followed Sierou and Brady8 for com-
puting the self-diffusivities!.

The translational self-diffusivity shows a strongN21/3

dependence,15 and for this reason we used an extension
Ladd’s16 proposed expression to extract the infinite syst
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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diffusivity from the N-particle periodic diffusion coefficient
which reads

Ds,ff
s 5Ds,ff

s ~N!1~h0 /h`,ff8 !D0@1.7601~f/N!1/32f/N#.
~46!

Here, we have replaced the self-diffusivities and the susp
sion viscosity from Ladd’s expression by their counterpa
in the absence of near-field interactions. In Fig. 1 we plot
translational self-diffusion coefficient versus number of p
ticles for f50.45, compared with the corresponding e
trapolated translational self-diffusivities from Eq.~46!. For
comparison, a fitted curve of the forma1bN21/3 is also
shown; the value ofa is shown by the solid line. Figure 1
shows that Eq.~46! gives a good estimate for the infinit
system self-diffusivity.

Figure 2 shows the results obtained for the short-ti
translational and rotational self-diffusivities for different vo

FIG. 1. Short-time self-diffusion coefficient in absence of near-field hyd
dynamic interactions vs the number of particles in the system. The clo
circles are ASD results, the crosses are extrapolated values according
~46!, the dotted line is a fitted curve of the forma1bN21/3, and the solid
line represents the ordinate of this fit. Here, results are shown fof
50.45.

FIG. 2. Short-time self-diffusion coefficients in absence of near-field hyd
dynamic interactions vs volume fraction@values for the translational diffu-
sivities have been corrected according to Eq.~46! from values for N
5427– 512]. Dotted lines represent the quadratic fits of the data.
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ume fractions.~The rotational diffusivities do not have
strongN-dependence15 and need not be corrected for finit
N.) Polynomial fits of the diffusivities are also shown. The
might be useful for the simulation of other volume fractio
without the need to compute the far-field diffusivities. W
used these functions for our ASDB-nf runs. It is interesti
to note that according to the fitted polynomia, the first-ord
~in f! term of the far-field translational self-diffusion coeffi
cient has a factor 1.5, which is to be compared with the ex
value 1.83, first obtained by Batchelor.17 Batchelor’s result
contains the near-field interactions and is therefore lar
implying a smaller diffusivity.

The scaling of this approximate method is dominated
the computation of the hydrodynamic velocity, which sca
asO(N logN). In case of an equilibrium suspension, the a
proximate method is anO(N) scheme.

III. RESULTS AND DISCUSSION

In this section we present results obtained with both
new ASD for Brownian suspensions~ASDB! and the ap-
proximate version ASDB-nf, illustrating the scaling of th
methods and also comparing their results with those obta
by the conventional SD algorithm. The aim of this section
to verify the predicted scalings, to assess the accuracy o
ASDB-nf, as well as to verify the proper implementation
the ASDB scheme.

Figure 3 shows the CPU time needed for 100 time st
of a typical simulation of a system with a volume fractio
f50.45 and Pe51, starting from an equilibrium configura
tion, as a function of the number of particles in the simu
tion box, N. ~The Peclet number measures the relative i
portance of shear to thermal forces and is given by
56ph0a3ġ/kT, with the shear rateġ given by the magni-
tude of the velocity gradient tensor.! We have chosen 100
time steps to try to capture the average computational c
since at the beginning the eigenvalues need to be comp
and in many cases they are not computed again for hund

-
ed
Eq.

-

FIG. 3. The CPU time~in arbitrary units! for 100 time steps of a shearing
simulation atf50.45 and Pe51, starting from an equilibrium configura
tion. Dashed lines are a guide to the eye to show the approximate sca
~as labeled!.
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of time steps~depending on volume fraction and Pe!. Re-
member also that the SD algorithm usually computes
inverse ofM` only every 100 time steps.

Two aspects are to be noted in Fig. 3. First, the obser
scalings of the different algorithms withN are roughly those
expected. For small systems, however, the ASDB sche
scales nearly asN2, since the size of the simulation box
smaller than the cutoff distance for the real sum contribut
to the far-field fluid velocity~see Sierou and Brady8!. Sec-
ond, the computational overhead for achieving the favora
N1.25logN scaling is quite important, such that the brea
even point is for a system of about 300 particles. T
ASDB-nf approximate scheme, on the other hand, is ab
20 times faster than ASDB for the system under consid
ation; the factor of 20 is the cost of computing the far-fie
random Brownian forces and resulting velocities.

For a suspension under steady simple shear flow the
cosity is related to thexy component@if ( x,y) define the
velocity–velocity-gradient plane# of the bulk stressS and
rate of strain in the following manner:

h5
Sxy

2Exy
` , ~47!

where the bulk stress is defined as an average over the
umeV containing theN particles and is given by

S52^p&I12h0^E
`&2nkTI1n~^Sh&1^Sb&1^Sp&!.

~48!

Here,2nkTI is the isotropic stress associated with the th
mal energy of the Brownian particles,I is the isotropic ten-
sor, andn is the number density of the particles. The angu
brackets denote an average over all particles and over tim
a dynamic simulation.

The individual hydrodynamic (Sh) and Brownian (Sb)
contributions to the viscosity are denoted ashh and hb ,
respectively; hence, in absence of interparticle forces,

h5h01hh1hb . ~49!

Results for the Brownian and hydrodynamic viscosities a
function of Pe for a typical suspension withf50.45 are
presented in Fig. 4. Here, the number of particles used in
simulation box was 64 in order to compare with conventio
SD results. In this plot we include data for the three schem
SD, ASDB, and ASDB-nf. The agreement between data
tained using SD and ASDB confirms the proper implem
tation of the scheme. ASDB-nf values are also in near per
quantitative agreement with the ASDB results. At the low
Pe, there is an appreciable scatter of the data, but this ca
attributed to the quite large error associated with th
points. Similarly, for high Pe the SD (N527) data seem to
lie systematically above the ASDB and ASDB-nf data. Th
can be related to the fact that SD (N527) results were ob-
tained allowing some slight particle overlap, while the oth
methods do not allow any particle overlap, and furthermo
a minimum interparticle separation of 2.0002a was enforced.

For equilibrium suspensions it is possible to compute
Brownian contribution to the zero-shear limiting viscosityhb

employing the Green–Kubo formula18
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hb5h2h 8̀ 5
V

kT E0

`

^sxy~ t !sxy~0!&dt. ~50!

Here, sxy(t) represents the instantaneous Brownian sh
stress, and̂sxy(t)sxy(0)& is the Brownian shear–stress a
tocorrelation function.

In Fig. 5 we compare ASDB, ASDB-nf, and SD~taken
from Foss and Brady7! results for the Brownian contribution
to the zero-shear limiting viscosity as a function of the v
ume fraction. All sets of data are obtained using Eq.~50!. As
in the nonequilibrium case, we find good agreement betw
the approximate ASDB-nf and the more accurate SD~or
ASDB! algorithm. Forf50.2 there is some discrepancy b
tween the SD and the ASDB results, but we atribute this
the difficulty in computinghb using Eq.~50!, since very long
runs and a large number of particles are needed to obtai
accurate stress-autocorrelation function. The exact lo
density limit,19,20 hb /h050.913f21O(f3), is also in-
cluded for comparison.

FIG. 4. Hydrodynamic and Brownian viscosity contributions for a Browni
suspension withf50.45, vs Pe. Results are shown for systems withN
564, using SD, ASDB, and ASDB-nf, also included are SD data from F
and Brady~Ref. 7! for systems with 27 particles.

FIG. 5. Brownian viscosity contribution as a function of the volume fracti
f. Results obtained using ASDB-nf are compared with SD data from F
and Brady~Ref. 7!.
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Figures 6 and 7 show results for the short-time trans
tional and rotational self-diffusion coefficients, respective
as a function of the volume fraction for equilibrium colloid
suspensions. In the case of ASDB and ASDB-nf, the s
diffusivities were obtained as

Ds,i i
S [^RFU,i i

21 &5
1

2Dt
^ui

Bui
B&. ~51!

Here ^ . . .& denotes an average over all particles and an
semble average~over configurations during the simulation!,
andui

B represents thei component of the particle Brownia
velocity, so that depending oni we compute the translationa
or rotational diffusivity with respect to one axis. Since t
suspension is isotropic we average over the three axe
obtain the plotted results. Note that computing the diffusi
ties according to Eq.~51! also constitutes a test for the st
tistics of the Brownian forces.

FIG. 6. Short-time translational self-diffusion coefficient for equilibriu
Brownian suspensions as a function of volume fraction. ASD data ta
from Ref. 8 are compared with ASDB-nf results~ASD values are corrected
according to Ladd’s proposed expression!. For comparison, the extrapolate
short-time self-diffusion coefficient in absence of near-field HI are includ
as well as the rigorous low density limit~Ref. 17!.

FIG. 7. Short-time rotational self-diffusion coefficient for equilibriu
Brownian suspensions as a function of volume fraction. Results are f
simulations forN564.
Downloaded 31 Mar 2006 to 170.210.248.7. Redistribution subject to AIP
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As was mentioned,15 the rotational diffusivities~Fig. 7!
do not have an appreciable size dependence and we si
present results obtained for systems withN564. Transla-
tional diffusivities obtained using ASDB-nf are also not se
sitive to the size of the system since the far-field hydrod
namic interactions~responsible for theN21/3 dependence!
are approximated in a mean-field-like manner. Data
ASDB-nf in Fig. 6 correspond to systems withN564.

In Fig. 6 the rigorous dilute limitDs,tra
S /D05121.83f is

also included for comparison. Note that the inclusion of t
near-field interactions in the Stokesian dynamics algorit
~compared with the far-field only computations shown
Fig. 2! recovers the correct dilute limit.

IV. CONCLUSIONS

In this paper we have presented a new Stokesian dyn
ics algorithm for Brownian suspensions~ASDB! with a fa-
vorable scaling of roughlyO(N1.25logN). This new algo-
rithm is seen to be accurate, reproducing results obtai
with conventional SD. While accurate, ASDB is comput
tionally still involved, and is only faster than convention
SD for systems of the order of 200–300 particles. For t
reason, full advantage of this new scheme has only b
possible for the study of static quantities where a set of c
figurations are given and static and short-time dynamic pr
erties can be computed using ASDB without moving the p
ticles. For dynamic simulations, which may require ve
long runs, it is still very demanding using the current state
the art PCs.

A very fast approximate algorithm~ASDB-nf! was also
presented, whose scaling is of orderN logN for nonequilib-
rium simulations and isO(N) for equilibrium suspensions
This approximate algorithm was tested by comparing b
static and dynamic quantities and showed, in general, a
markable agreement with the ASDB~or SD! data. Using
ASDB-nf, dynamic simulations of systems of the order
500 particles are possible on a 1.5GHz PC. The study
larger systems, or long-time dynamics of Brownian susp
sions, is therefore now accessible with ASDB-nf.

The scope of this article was limited to introducing th
new algorithms, and we leave the application of them for
study of long-time dynamics and rheology of highly conce
trated colloidal suspensions to future works.

As a final note, ASDB is constructed for infinite period
systems and achieves its favorable scaling through the us
the FFT. If one wishes to study an isolated assembly of p
ticles, such as a bead-spring model of a polymer in an
bounded fluid, then the method cannot be directly appli
However, to model an isolated system it might prove mo
advantageous to employ a very dilute periodic representa
with ASDB, than to treat a truly isolated system for whic
the algorithm would scale roughly asO(N2.25).11 @Fast mul-
tipole methods might, in principle, allow one to reduce th
to O(N1.25).]
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APPENDIX A: ALTERNATIVE APPROACH
FOR THE INVERSION OFR

Solving Eq.~13! as described in Sec. II B is inadequa
when the matrixRFU,nf is ill-conditioned, which may occur
for low volume fractions. In particular, in the limit of infinite
dilution RFU,nf[0. To overcome this inconvenience, w
present here an alternative approach that does not involve
inversion ofRFU,nf , which is then more appropriate for low
volume fraction systems~typically f<0.3).

From Eqs.~16!, ~17!, and ~20!, it follows that Fff
h5Fnf

h

2RFU,nf"U
h, which we replace in Eq.~17! to obtain

M`
•FFnf

h 2RFU,nf"U
h

Sff
h G5F Uh

2E`G . ~A1!

We now defineF̃ and S̃ according to

M`
•F F̃

S̃
G5F 0

2E`G . ~A2!

Note that this can be solved without knowing the veloci
and, if desired, the values ofF̃ andS̃ can be kept unchange
for many time steps sinceM` varies slightly with small
configuration changes~in conventional SD the inverse o
M` was kept constant for up to 100 time steps!.

Subtracting Eq.~A2! from Eq. ~A1! yields

M`"FFnf
h 2F̃
0 G1M`"F2RFU,nf"U

h

Sff
h2S̃ G5FUh

0 G , ~A3!

and rearranging terms leads to the final equation forUh and
(Sff

h2S̃),

M`̂"F Uh

Sff
h2S̃G52M`"FFnf

h 2F̃
0 G , ~A4!

where

M`̂5M`
•F2RFU,nf 0

0 1G2F1 0

0 0G . ~A5!

For the Brownian velocity the approach is complete
analogous, the only difference is that since the rate of st
does not appear there is no need to define~and compute! the
analogues ofF̃ and S̃.

The advantage of solving Eq.~A4! instead of Eq.~18! is
that there are no inner iterations in this approach, since
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have replaced the inversion ofRFU,nf ~which was done itera-
tively with a Cholesky preconditioned conjugate gradient
gorithm! by just a dot product ofRFU,nf and a vector. This
makes this approach more convenient for low to intermed
concentrations. For concentrated suspensions, however
extra work of the inner solver for invertingRFU,nf pays off
since it reduces the number of~outer! iterations considerably

APPENDIX B: CHEBYSHEV POLYNOMIAL
APPROXIMATION

Cj (M`) are the ~matrix-! generalized shifted Cheby
shev polynomials, which satisfy the following recursion r
lations:

Cl 11~M 8!52M 8Cl~M 8!2Cl 21~M 8!,
~B1!

C0~M 8!51, C1~M 8!5M 8,

with

M 85
2

lmax2lmin
M`2

lmax1lmin

lmax2lmin
1. ~B2!

Here,lmax andlmin are the maximum and minimum eigen
value ofM`, respectively.

Using these recursion relations, it is possible to comp
the action ofCj (M`) on an arbitrary vectory, by j repeti-
tions of computations of the formM 8"x, which are
O(N logN).

1W. B. Russel, D. A. Saville, and W. R. Schowalter,Colloidal Dispersions
~Cambridge University Press, Cambridge, 1989!.

2J. K. G. Dhont,An Introduction to Dynamics of Colloids~Elsevier, Am-
sterdam, 1996!.

3G. Bossis and J. F. Brady, J. Chem. Phys.87, 5437~1987!.
4G. Bossis and J. F. Brady, J. Chem. Phys.91, 1866~1989!.
5T. N. Phung, J. F. Brady, and G. Bossis, J. Fluid Mech.313, 181 ~1996!.
6D. R. Foss and J. F. Brady, J. Fluid Mech.401, 243 ~1999!.
7D. R. Foss and J. F. Brady, J. Fluid Mech.407, 167 ~2000!.
8A. Sierou and J. F. Brady, J. Fluid Mech.448, 115 ~2001!.
9R. C. Ball and J. R. Melrose, Physica A247, 444 ~2001!.

10M. Fixman, Macromolecules19, 1204~1986!.
11R. M. Jendrejack, M. D. Graham, and J. de Pablo, J. Chem. Phys.113,

2894 ~2000!.
12W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-

merical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed.
~Cambridge University Press, Cambridge, UK, 1992!.

13R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users Gu
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
noldi Methods, 1997, ftp://ftp.caam.rice.edu/pub/software/ARPACK

14P. S. Grassia, E. J. Hinch, and L. C. Nitsche, J. Fluid Mech.282, 373
~1995!.

15R. J. Phillips, J. F. Brady, and G. Bossis, Phys. Fluids31, 3462~1988!.
16A. J. C. Ladd, J. Chem. Phys.93, 3484~1990!.
17G. K. Batchelor, J. Fluid Mech.74, 1 ~1976!.
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