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Predictions from a recently developed mode coupling theory (MCT) are compared with experim
results for hard-sphere suspensions. A simple scaling of the MCT results leads to good agr
with the data. The scaled MCT predicts that for hard-sphere suspensions the zero-shear
viscosity obeys a generalized Stokes-Einstein (GSE) relation with both the long-time self-diff
coefficient and the long-time collective diffusion coefficient measured at the peak of the structure
MCT suggests that the same GSE relations do not hold for salt-free charge-stabilized suspe
[S0031-9007(99)08526-9]

PACS numbers: 82.70.Dd, 83.50.Fc, 83.85.Jn
te
he
in
a

ny
t

en
e
i
a
s
te
u-
ca
-

ze
el
s
ro
E

nt

ha
uc
te
la

en
e

tly
al
b
s
ri-

ns
he
ith
ree-
CT
rd-

sed
lf-
tor,
on
ss

ure
ies
sions

e
or
the

ve
]

for
ic

-
ion
T
nc-
a-

it-
The prediction of transport properties of concentra
colloidal suspensions has been the goal of numerous t
retical investigations [1–9]. Properties of particular
terest are the zero-shear rate limiting shear viscosity
long-time collective and self-diffusion coefficients. Ma
attempts have been made to connect experimentally
rheological and diffusional transport behavior of conc
trated colloidal suspensions [10]. The underlying id
is that both processes reflect relaxation by diffusion
response to a structural deformation caused by an
plied flow or by the diffusing particles themselves. The
studies, leading to generalizations of the Stokes-Eins
relation, have yielded empirical formulas in which a diff
sion coefficient qualitatively correlates with a rheologi
property. Segreet al. [11] used new experimental dy
namic light scattering techniques to identify a generali
Stokes-Einstein (GSE) relation which holds quantitativ
for hard-sphere suspensions for particle concentration
to the freezing transition. Their results show that the ze
shear limiting viscosityh of the suspension obeys a GS
relation with the long-time collective diffusion coefficie
DL

Csqmd measured at a wave numberqm, corresponding to
the peak position of the static structure factorSsqd. This
GSE relation reads [11]

hyh0  D0yDL
Csqmd , (1)

where h0 is the solvent shear viscosity andD0 is the
Stokes-Einstein diffusion coefficient.

ReplacingDL
Csqmd in Eq. (1) byDL

S , the long-time self-
diffusion coefficient, results in another GSE relation t
has been widely explored for a variety of systems, s
as hard-sphere suspensions [12–15], surfactant sys
[16], and protein suspensions [17]. While this GSE re
tion works reasonably well for these systems, experim
show that it does not hold for charge-stabilized susp
sions [18].

In this Letter, we explore the predictions of a recen
developed mode coupling theory (MCT) for colloid
suspensions [7–9]. We establish the MCT as a via
predictive theory for both diffusion and linear viscoela
ticity by making quantitative comparisons with expe
0031-9007y99y82(8)y1792(4)$15.00
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mental data. We find that scaling the MCT predictio
for the colloidal transport properties with respect to t
liquid-glass transition concentration and, in addition, w
their corresponding short-time counterparts leads to ag
ment with experimental data. We examine also the M
predictions with regard to the GSE relations for ha
sphere and salt-free charge-stabilized suspensions.

The MCT used differs in several respects from that u
by others [6,19–21]; most importantly, it employs a se
consistent determination of the dynamic structure fac
which in this work obeys a generalized diffusion equati
[7–9]. As a result, the theory predicts an ideal gla
transition where long-time diffusion ceases andh diverges
[22–26]. Hence, within MCTh diverges not at random
close packing, but at the glass transition point. This feat
is particularly important as recent experimental stud
suggest that this is the case for hard-sphere suspen
[27,28]. The theory predicts also vanishing long-tim
self-diffusion coefficients and diverging viscosities f
charge-stabilized systems without resorting to mapping
electrostatic repulsion onto that of hard spheres.

In previous articles, we developed a MCT for collecti
[9] and tracer diffusion [8] and linear viscoelasticity [7
of concentrated colloidal mixtures. The starting point
the MCT is the exact memory equation for the dynam
structure factorSsq, td [29–32]:

≠

≠t
Ssq, td  2q2DeffsqdSsq, td

2
Z t

0
dt0 Mirr sq, t 2 t0d

≠

≠t0
Ssq, t0d , (2)

whereDeffsqd is an effective short-time collective diffu
sion coefficient. The self-intermediate scattering funct
Gsq, td satisfies a similar memory equation [8]. MC
provides an expression for the irreducible memory fu
tion Mirr sq, td in Eq. (2), leading to a closed set of equ
tions which can be solved self-consistently forSsq, td
[23,24,31–33].

In a previous paper [7], we linked the zero-shear lim
ing linear viscoelastic behavior toSsq, td. This provides a
© 1999 The American Physical Society
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hat
route to calculatingh from the self-consistent MCT solu
tion for Ssq, td. Although the theory provides opportuni
for inclusion of leading order hydrodynamic interactio
and is applicable to colloidal mixtures [7,9], the present
sults have been obtained for monodisperse suspension
der neglect of hydrodynamic interactions (HI). With the
simplifications, the viscosity is given by [7]

hMCT  h0 1
kBT
60p2

Z `

0
dt

Z `

0
dk k4

3

"
Ssk, td
Sskd

d
d k

ln Sskd

#2

, (3)

Similar results have been obtained by Geszti [34]
de Schepperet al. [5,6]. The result in [5,6] can be obtaine
from Eq. (3) by substituting an exponential form forSsq, td
with a q-dependent decay rate. Unlike these auth
we require thatSsq, td must satisfy Eq. (2) and the MC
expression forMirr sq, td self-consistently, giving rise to
glass transition [22–24].

The q-dependent long-time collective diffusion coef
cient and the long-time self-diffusion coefficient are a
calculated fromSsq, td, according to

D
L,MCT
C sqd  2q22 lim

t!`

d
dt

ln Ssq, td , (4)

D
L,MCT
S  2 lim

t!`
lim
q!0

q22 d
dt

ln Gsq, td . (5)

As seen from these expressions, there is no evident re
to expect that a universal GSE relation exists betweeh

and eitherDL
S or DL

Csqmd.
In Fig. 1 we compare the MCT predictions forDL

S of
hard-sphere suspensions as a function of particle vol
fraction f with Brownian Dynamics (BD) simulation
data [35,36]. The MCT glass transition occurs atf 
0.525 [23,24,37], whereDL

S vanishes. The caging o
particles is overestimated in MCT, leading to a gl
transition concentration which is too low compared
experiments [23–25,37,38]. While the idealized MC
does not predict an exact glass transition concentra
it reproduces the special features of the colloidal ha
sphere glass transition scenario [24,25,38]. Theref
we follow Götze and co-workers [23–25,32] and sc
the concentration dependence asDL

S ffsfgy0.525dg. We
determinefg such that the MCT result forDL

S reproduces
the BD simulation data at high concentrations. T
procedure yieldsfg  0.62, which is somewhat large
than the experimental finding of 0.58 for hard spheres [
A similar fit of the MCT prediction forDL

S of atomic hard
spheres to MD simulation data results infg  0.60 [37].

As seen in Fig. 1, this scaling of thef dependence ca
be used to obtain agreement between the MCT and BDDL

S
for f . 0.4. The exact dilute limiting behavior is als
shown in Fig. 1, illustrating that MCT does not reprodu
the correct dilute limit. For such low concentration
the calculation of both long- and short-time suspens
properties can be accomplished by Batchelor’s relaxa
approach and extensions thereof [39].
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FIG. 1. Normalized long-time self-diffusion coefficient as
function of volume fractionf, showing BD simulation data
for hard-sphere suspensions (without HI) [35,36] and the M
results with and without scaling off. Also shown is the exac
dilute limit: DL

S yD0  1 2 af, with a  2 without HI. For
comparison, MCT leads toa  4y3.

In comparing the MCT results forhyh0 and
D0yDL

Csqmd, we find that hyh0 is about a factor of
2 smaller at highf. However, in our MCT calculation
we include many-body excluded volume effects but do
account for HI. The formulation of the MCT with far-field
HI included, which compares well with data for dilu
charge-stabilized suspensions [31], will not suffice
hard-sphere suspensions due to the neglect of near-
HI and the assumption of pairwise additive HI. Therefo
we attempt to account for HI by identifying a scalin
procedure similar to those proposed by Medina-Noy
[40] and Brady [14,15]. They suggest thatDL

S can be
factored into a hydrodynamic part, given by the short-ti
self-diffusion coefficientDS

S , and a structural part, calcu
lated without HI. They give different justifications fo
the factorization, and, while Brady also considersh [14],
neither of them address collective diffusion.

We find that the MCT long-time coefficients, with th
f dependence adjusted as described above, can be br
into accord with the experimental data through scal
with their corresponding short-time counterparts:h ø
h0

`hMCTyh0, DL
Csqmd ø HsqmdDL,MCT

C sqmd, and DL
S ø

DS
S D

L,MCT
S yD0, where h0

` is the high-frequency shea
viscosity, and Hsqmd is the hydrodynamic function
[1,3]. Hsqmd arises from the ratio of the effectiv
short-time collective diffusion coefficient with HI
Deffsqd  D0HsqdySsqd, to that without,D0ySsqd; the
latter is used in the MCT solution.

The above scaling procedure is empirical and d
not reproduce the correct dilute limits of the long-tim
transport coefficients, but corrects the neglect of the
in the short-time contributions. Moreover, it assumes t
1793
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the memory contribution to the dynamics is determin
by structural effects and not HI. The scaled express
for DL

Csqmd with qm replaced byq reduces to that for
DL

S when q ! `. The latter is the scaling expressio
proposed in Refs. [14,15,40].

To make quantitative comparisons with experimen
data, we have used the semiempirical hard-sphere for
las forh0

` andDS
S given in [4]. Hsqmd is well represented

by the formHsqmd  1 2 1.35f, which reproduces both
the computer simulation results and the experimental d
of Segreet al. [41] up to the freezing transition, and con
forms also unexpectedly to the exact numerical value
the dilute limit.

In Fig. 2 we compare the scaled MCT results f
hyh0 andD0yDL

Csqmd with the experimental hard-spher
results in [11]. The experimental GSE relation betwe
hyh0 and D0yDL

Csqmd is well reproduced by the scale
MCT, althoughhyh0 lies slightly above the result fo
D0yDL

Csqmd. The scaling is, however, sensitive to thef

dependence of the short-time coefficients, so we ac
small discrepancies. We also note that the hard-sp
hyh0 data measured by Phanet al. [42] agree with those
in [11] shown in Fig. 2, whereas the data of de Kruifet al.
[43] lie below—presumably due to a higher particle si
polydispersity.

In Fig. 2 we also display the scaled MCT resu
for DL

S . There is near quantitative agreement betwe
D0yDL

S and hyh0, both obtained from the scaled MCT
Close agreement between these two quantities was in
observed experimentally by Imhofet al. [18], while Segre
et al. found differences at highf. According to our
scaled MCT for hard-sphere suspensions,h obeys GSE
relations with bothDL

Csqmd andDL
S .
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FIG. 2. Normalized zero-shear limiting viscosity (±) and
reciprocal long-time collective diffusion coefficient at wav
vector qm (≤) for hard-sphere suspensions as functions
volume fraction from experiments of Segreet al. [11]. The
lines are the corresponding scaled MCT predictions as labe
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The GSE relation found experimentally and the MC
results in Fig. 2 lead to the question of whether Eq.
holds independent of the form of the interaction potent
To answer this question, we have solved the MCT
salt-free charge-stabilized suspensions, modeled by the
pulsive screened Coulomb part of the Derjaguin-Land
Verwey-Overbeek (DLVO) interaction potential [3]. Als
for systems with long-range repulsive interactions MC
predicts the presence of a glass transition, which is s
ported by experiments [44]. We have selected a dei
ized charge-stabilized system with particle diameters 
100 nm, Bjerrum lengthLB  7.14 Å, and effective sur-
face chargeZ  500e. Here, the MCT glass transition
occurs atf ø 0.10 when the rescaled mean spherical a
proximation is used forSsqd. This value is much lower
than that measured experimentally (fg ø 0.2) due to the
high surface charge chosen.

Figure 3 shows the MCT results forhyh0, D0yDL
Csqmd,

and D0yDL
S as functions off. These results are show

without scaling of either thef dependence or using th
short-time coefficients. Thef scaling is not employed be
cause an experimental reference point forfg is not known
for systems with such high surface charge. The short-t
scaling is not used because the short-time coefficie
vary little as f increases from 0 to 0.10; for example
for f  0.10, we find h0

`yh0  1.28, DS
S yD0  0.87,

andHsqmd  1.58 using pairwise additive HI. For thes
highly charged particlesHsqmd is well approximated by
Hsqmd ø 1 1 1.5f0.4; the fractional f dependence is
typical for short-time properties of salt-free charg
stabilized suspensions [45]. Although the application
the scaling with these short-time coefficients shifts t
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FIG. 3. MCT results for the long-time transport coefficien
of model charge-stabilized suspensions withZ  500 ands 
100 nm as functions of volume fraction. The Hansen-Ver
criterion [Ssqmd ø 2.85] reveals that abovef ø 2.4 ? 1023 the
suspension is in an undercooled liquid state;DL

S yD0 ø 0.1 for
this f, in agreement with the dynamic freezing criterion
Löwen et al. [46].
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MCT results forD0yDL
Csqmd to smaller values, it does no

lead to a GSE relation withh. Also the GSE relation
betweenh and DL

S , which holds within the scaled MCT
for hard spheres, is violated for these salt-free hig
charged particle systems. Similar observations have b
made in [18].

While these results do not provide conclusive evide
for a violation of the GSE relations for charge-stabiliz
suspensions, taken together with the experimental ob
vations, it is unlikely that the GSE relations are univer
for concentrated or highly correlated colloidal suspensio
Thus, the near equality ofhyh0 and the reciprocal long
time diffusion coefficients for hard-sphere suspension
likely fortuitous. For hard-sphere suspensions, the p
posed scaling provides an empirical means by which
MCT can be used to predict quantitatively the dynami
and linear viscoelastic suspension properties.
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