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Many-Body Hydrodynamic Interactions in Charge-Stabilized Suspensions
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(Received 6 October 2005; published 5 April 2006)
0031-9007=
In this joint experimental-theoretical work we study hydrodynamic interaction effects in dense
suspensions of charged colloidal spheres. Using x-ray photon correlation spectroscopy we have deter-
mined the hydrodynamic function H�q�, for a varying range of electrosteric repulsion. We show that H�q�
can be quantitatively described by means of a novel Stokesian dynamics simulation method for charged
Brownian spheres, and by a modification of a many-body theory developed originally by Beenakker and
Mazur. Very importantly, we can explain the behavior of H�q� for strongly correlated particles without
resorting to the controversial concept of hydrodynamic screening, as was attempted in earlier work by
Riese et al. [Phys. Rev. Lett. 85, 5460 (2000)].
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Suspensions of colloidal particles undergoing Brownian
motion in a low-molecular-weight solvent are ubiquitous in
chemical industry, biology, food science, and in medical
and cosmetic products. For polar solvents like water, the
particles are usually charged. At long to intermediate
distances these particles interact electrostatically by an
exponentially screened Coulomb repulsion originating
from the overlap of the neutralizing electric double layers.
A considerable effort has been devoted over the past years
to study the dynamics of colloidal model suspensions of
charged spheres at the microscopic level [1,2]. The dynam-
ics is determined by a subtle interplay of direct interactions
and solvent-flow mediated hydrodynamic interaction (HI).
The latter dynamic interaction plays a pivotal role not only
in unconfined colloidal systems, but also in microfluidic
devices where narrow wall confinements or channels are
present [3], and in sedimenting dispersions of large non-
Brownian particles [4]. HI in unconfined suspensions is
very long ranged. It decays with interparticle distance r
like 1=r. An account of HI effects in theoretical and com-
puter simulation studies is quite challenging due to its
many-body nature, which must be accounted for in non-
dilute suspensions.

An important measure of the strength of HI with regard
to short-time particle diffusion caused by local density
gradients is given by the hydrodynamic function [2]

H�q� � Ds=D0 �Hd�q�; (1)

which is the sum of a wave-number-independent self-part
and a q-dependent distinct part. Here, Ds is the short-time
self-diffusion coefficient, and D0 is the particle diffusion
coefficient at infinite dilution. In the limit of large q, H�q�
reduces toDs=D0. Without HI,H�q� � 1 and any variation
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in H�q� is a hallmark of HI. It has a direct physical mean-
ing [5] as the (reduced) mean particle sedimentation ve-
locity for a suspension subject to a weak periodic force
field, collinear to the wave vector q, and oscillating like
cos�q � r�. Experimentally, H�q� can be determined as a
function of wave number through a combination of static
and dynamic scattering experiments [6,7].

Experimental findings [6] for theH�q� of highly charged
colloidal spheres at low volume fractions � (typically
<0:05) are in excellent agreement with theoretical predic-
tions of Nägele et al. [2], based on a pairwise-additivity
approximation of HI. In its simplest form this theory
accounts only for the leading far-field (i.e., Rotne-Prager)
part of the hydrodynamic pair mobilities which dominates
in dilute systems. The far-field part is pairwise additive and
includes terms up to O�1=r3�. The theory necessarily fails
for larger densities where many-body HI comes into play.
For dense charge-stabilized suspensions with strong many-
body HI, the most successful tool to date for calculating
H�q� has been the (zeroth-order) �� method of Beenakker
and Mazur [8]. This method accounts approximately for
many-body HI through ring diagrams, and it requires the
static structure factor S�q� as the only input. Originally it
has been applied to hard-sphere suspensions, where its
degree of accuracy for H�q� has been assessed through
comparison with Stokesian dynamics (SD) and Lattice-
Boltzmann computer simulations. These comparisons
show that it is rather accurate for�< 0:35 (cf. discussions
below).

In later work, the �� scheme was additionally used to
predict the H�q� for charge-stabilized systems [2,9].
Contrary to hard spheres, no simulation results have been
available to date to test its accuracy for charged systems.
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FIG. 1. Static structure factor S�q�, short-time collective dif-
fusion coefficient D�q�, and hydrodynamic function H�q� for a
low-salt suspension of charged latex spheres (sample LS:
0:5 mM NaCl). Comparison between experiment (open squares),
�� theory with RY input for S�q� (solid lines), and ASD
simulation data (dashed lines). Dashed-dotted lines: ASD result
for a hard-sphere suspension with same � as in sample LS.
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Yet it came as a surprise when recent measurements by
Riese et al. [7] on essentially deionized suspensions of
charged silica spheres in the fluid regime at � �
0:09–0:15, revealed H�q�’s which could not be explained
by �� theory: the maximum in H�q� is much smaller, and
the variation in q much weaker, than theoretically ex-
pected. Moreover, and equally surprisingly, the maximum
in H�q� was found to be even smaller than the one for a
hard-sphere suspension at equal � [7]. This observation
implies that the short-time self-diffusion coefficient of
these samples is substantially smaller than the hard-sphere
value for the same �. The experimental observation of a
stronger hydrodynamic hindrance beyond the hard-sphere
prediction was interpreted by these authors as strong evi-
dence for the appearance of hydrodynamic screening in
dense (in the sense of strongly correlated) silica-sphere
suspensions at low salinity. The �� theory does not include
HI screening. To support their assertion, Riese et al. fitted
H�q� using a Brinkmann fluid calculation where only the
far-field part of the hydrodynamic pair mobility [decaying
like ��=r�3] is considered. Treating the screening length �
as a fitting parameter, they managed to fit their experimen-
tal H�q� [7].

The interpretation of the experiments by Riese et al. in
terms of hydrodynamic screening caused strong contro-
versy since, on theoretical grounds, there should be no
screening of solvent flow in unbounded suspensions of
mobile spheres [8]. In fact, many-body HI in mobile-sphere
suspensions merely leads to an increase in the effective
suspension viscosity. Thus, on a coarse-grained level and
for distances much larger than typical interparticle dis-
tances, only the prefactor of the leading 1=r part in the
HI is modified. It must be emphasized that, contrary to
nonconfined systems of mobile spheres, hydrodynamic
screening is present in systems with spatially fixed ob-
stacles like porous media [10]. In such systems the mo-
mentum of flow perturbations is absorbed by fixed
obstacles kept in place by external forces. Screening can
also occur in the presence of fixed macroscopic boundaries
like walls and enclosing pipes. For two parallel walls, HI
between two particles in the gap decays asymptotically like
1=r2 for motion parallel to the walls [11]. For cylindrical
pipes, HI decays exponentially at distances large compared
with the pipe diameter [12]. Furthermore, algebraic screen-
ing of fluid flow characterized by a 1=r3 long-distance
decay is found in the electrophoresis of colloidal macro-
ions [13].

To date, it had not been possible to explore the apparent
failure of �� theory in describing the experiments of Riese
et al., since computer simulation studies of dense charge-
stabilized systems did not exist so far. The present work
includes the first Stokesian dynamics computer simulation
study of H�q� for dense charge-stabilized systems with
varying range of electrostatic particle repulsion. The simu-
lations are based on an extension of an accelerated SD code
(ASD) for Brownian hard spheres, developed recently by
Banchio and Brady [14]. Additionally, since an accurate
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experimental determination of H�q� is quite subtle, with
possible sources of error coming, e.g., from an improper
assessment of baselines and remnant multiple scattering
contributions, we have performed careful x-ray photon
correlation spectroscopy (XPCS) measurements of H�q�
and S�q�, for suspensions of monodisperse fluorinated
latex spheres of radius a � 82:5 nm (polydispersity
<5%), with a determined by small-angle x-ray form factor
measurements. Details on the particle synthesis and prop-
erties are given in [15]. The spheres have been suspended
in distilled water with well-controlled amounts of NaCl
added to an initially deionized system. The XPCS experi-
ment was performed at the Troika III of the Troika beam
line ID10A at the European Synchrotron Radiation
Facility. A schematic view of the setup and experimental
details are given in [16]. Measurements were performed at
� � 1:55 �A. The coherent beam is provided by a 12 �m
pinhole placed at 25 cm from the sample. With this setup
the primary beam intensity was about 109 photons=s=mA.
Photons are detected by a Bicron scintillation counter
equipped with an adjustable pair of slits of 150�
150 �m2. Correlation functions are calculated in real
time via an ALV-5000 digital correlator. Figures 1 and 2
include experimental results of S�q�, H�q�, and of the
q-dependent collective diffusion coefficient D�q� �
D0H�q�=S�q�, for two samples of low-salt (0:5 mM
NaCl) and high-salt (50 mM NaCl) content, labeled as
LS and HS, respectively, (cf. Table I). The ionic strength
in the LS sample was chosen such that the system is in the
noncrystalline state. Samples LS and HS are within the �
range where hydrodynamic screening had been reported to
3-2



FIG. 2. Same as in Fig. 1 but for a high-salt sample (HS) with
50 mM NaCl.
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occur [7]. We have managed to determine D�q� with great
precision from the genuine short-time decay of the XPCS
scattering function, in contrast to the work in [7] where
D�q� for the deionized sample was determined from a
narrow and noisy part of the intermediate scattering func-
tion. As seen in Figs. 1 and 2, the experimental S�q� of both
samples are in excellent accord with Rogers-Young (RY)
integral equation calculations [2,17], made using the stan-
dard macroion fluid model of charge-stabilized spheres.
The effective pair potential in this model is the sum of a
hard-core repulsion and the effective pair potential [1],

u�r�=kBT � LBZ2

�
e�a

1� �a

�
2 e��r

r
; r > 2a; (2)

acting between two spheres. The screening parameter � is
determined by colloid surface-released counterions and
salt ions. The only adjustable parameter is the effective
charge number Z, which we have selected to match the
maximum in S�q� (cf. Table I for a list of parameters). The
RY scheme is very accurate for charge-stabilized suspen-
TABLE I. Parameters used in ASD and �� theory calculations
for the low-salt (LS) and high-salt (HS) samples. Charge number
Z: determined from ASD and Rogers-Young S�q� fits to experi-
mental peak heights. Radius used in calculations: a � 82:5 nm.
Temperature: T � 293:15 K. Single-sphere diffusion coeffi-
cient: D0 � 2:69� 10�8 cm2=s, using a hydrodynamic radius
ah � 80 nm determined from dynamic light scattering. Bjerrum
length of water: LB � e2=��kBT� � 0:71 nm (� � 80:1).
Weight fraction of spheres: 231 g=l. The two slightly different
volume fractions have been obtained from matching the peak
location of the experimental S�q�.

� salt (M) ZASD-RY �a DASD
s =D0 D��

s =D0

LS 0.123 5� 10�4 1400 6.8 0.83 0.735
HS 0.142 5� 10�2 1400 85 0.73 0.699
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sions [2]. Only the RY-S�q� are shown since they are
practically coincident with the ASD simulation data in
the whole displayed q range. The RY-S�q� is used as input
to the �� calculations. From Figs. 1 and 2, one can see for
both samples that the �� theory results for H�q� and D�q�
compare rather well with the results from the more elabo-
rate ASD simulations. We have verified the validity of a
finite system-size scaling procedure [5] also for charged
particles, by considering simulation runs with an increas-
ing number N � 125–860 of spheres. The procedure leads
to H�q� practically independent of N.

Within experimental uncertainty, both the ASD and ��
theory results are in good accord with the experimental
data. This good agreement is remarkable, particularly re-
garding D�q�, a quantity obtained more directly through
experiment than H�q� from a first cumulant analysis of the
dynamic scattering function [1,2]. Whereas the variations
in q of the simulated H�q� are well captured by the ��
scheme, the ASD H�q� is underestimated overall. This
finding can be easily understood: in �� theory applications
to charged particles, the self-part of H�q� is approximated
by its value for a hard-sphere suspension at the same �,
independent of particle charge and screening parameter
[9]. The actual charged-sphere S�q� enters in �� theory
only into the distinct part of H�q�. This fact allows us to
improve the �� scheme by substituting the simulation
input for Ds. Since the charged-sphere Ds is larger than
the hard-sphere value at the same density, this substitution
merely shifts the �� prediction of H�q� upwards, by an
amount depending on the parameters under consideration.
We find that this hybrid-�� scheme is in good accord with
all our ASD simulation results for charged suspensions.
Figures 1 and 2 do not show the hybrid-�� results forH�q�
and D�q�, since these are nearly coincident with the ASD
data. It is evident that the ASD predictions of D�q�, H�q�,
and S�q� for a hard-sphere suspension with the same
density as in sample LS, are clearly different from those
of sample LS. In particular, the maximum in H�q� is
smaller and located at a larger wave number.

The electrostatic screening in the case of the HS sample
is so large (��1 < 0:01a), that H�q� is practically equal to
the equal-density hard-sphere form. The maximum,
H�qm� � 0:81, of the simulated H�q� at wave-number qm
is in accord with the linear expression, H�qm� � 1–1:35�,
quantifying very accurately the peak height of hard spheres
for all �< 0:5. This � dependence for hard spheres has
been established through comparison with Lattice-
Boltzmann [5,18] and SD simulations [19], dynamic light
scattering experiments [18], and numerically exact low
density calculations [20]. For comparison, the �� theory
prediction for hard spheres with Percus-Yevick input for
S�q�, is well parametrized by H�qm� � 1–2:03��
1:94�2, with values located moderately below the linear
form for all �< 0:35. To summarize and highlight the
points discussed above, we compare now the density de-
pendence of H�qm� for hard spheres with that of com-
pletely deionized charge-stabilized suspensions, and to
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FIG. 3. Maximum of H�q� vs �. Dashed line: � dependence
for deionized dilute suspensions; solid line: hard spheres; filled
circles: ASD simulation data for salt-free systems; open circles:
ASD data for systems with added 1-1 electrolyte (amount
increasing from top to bottom). System parameters: Bjerrum
length LB � 5:62 nm, sphere radius a � 100 nm, and effective
charge Z � 100 (assumed fixed).
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explore changes in H�qm� induced by adding salt. Such a
comparison, which is representative for charge-stabilized
suspensions, is shown in Fig. 3. The effective charge has
been selected to obtain a model system which remains in
the liquid state, even when deionized, up to a large volume
fraction of � � 0:15. For small �, the H�qm� of deionized
systems increases for fixed Z according to H�qm� � 1�
0:7�0:4. A fractional � dependence with exponent 0.4 was
found in earlier work where the full form of the two-body
HI had been considered, but without many-body correc-
tions [20]. When � is further increased (beyond � � 0:06
in Fig. 3), many-body HI becomes important. It causes
H�qm� to decrease with increasing � due to enlarged
hydrodynamic hindrance. When 1-1 electrolyte is added
for a fixed � (here: � � 0:15), H�qm� decreases mono-
tonically towards the hard-sphere value (open circles in
Fig. 3). The upper most data point with nonzero salt
corresponds to �a � 1:99; the lowest data point close to
the hard-sphere line is the result for the largest amount of
salt considered, corresponding to �a � 10:15. Likewise,
the maximum in S�q� decreases from 2.8 for zero salt (the
system is then rather close to the freezing transition) to the
hard-sphere-like value 1.15 at �a � 10:15. The maxima in
S�q� and H�q� are located practically at the same wave
number qm. Finally, we point out that according to simu-
lation and �� theory alike, the H�qm� with added salt
always lies between the zero-salt and hard-sphere curves.

In summary, we have shown that our experimental H�q�
for charged latex spheres are quantitatively describable by
the ASD simulation results, also for low-salt suspensions,
and even in the range of concentrations where hydrody-
namic screening had been reported to occur. The behavior
of H�q� for dense charge-stabilized suspensions, in par-
ticular, values of H�qm� smaller than 1, is explainable by
13830
many-body HI without hydrodynamic screening. Two ge-
neric relations between charged-sphere systems (CS) and
equal-density hard-sphere systems (HS) are found to be
valid, namely HCS�qm;��>HHS�qm;�� and DCS

s ���>
DHS
s ���. Even without an improved input for the self-part

of H�q�, the �� theory is found to be useful for predicting,
on a semiquantitative level, general trends in the behavior
of H�q� and D�q� for charge-stabilized suspensions.
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