Geometría Riemanniana y Espacios Simétricos Práctico 3 - Año 2009

- (1) Se dice que una variedad riemanniana M es un espacio localmente simétrico si $\nabla R \equiv 0$, donde R es el tensor de curvatura de M.
 - (a) Demostrar que M es localmente simétrico si y sólo si para toda curva γ en M R(U,V)W es paralelo a lo largo de γ si U,V,W son campos paralelos a lo largo de γ .
 - (b) Demostrar que si M es localmente simétrico, conexo y dim M=2 entonces M tiene curvatura seccional constante.
 - (c) Demostrar que si M tiene curvatura seccional constante entonces M es localmente simétrico.
- (2) Sea M riemanniana de curvatura seccional constante igual a K_0 y $\gamma:[0,l]\to M$ una geodésica parametrizada por longitud de arco.
 - (a) Si J es un campo de Jacobi a lo largo de γ , perpendicular a γ' , demostrar que $R(\gamma', J)\gamma' = K_0J$.
 - (b) Si w(t) es un campo paralelo a lo largo de γ , perpendicular a γ' y |w(t)|=1, entonces

$$J(t) = \begin{cases} \frac{\sin(t\sqrt{K_0})}{\sqrt{K_0}} w(t), & \text{si } K_0 > 0, \\ t w(t), & \text{si } K_0 = 0, \\ \frac{\sinh(t\sqrt{-K_0})}{\sqrt{-K_0}} w(t), & \text{si } K_0 < 0, \end{cases}$$

es solución de la ecuación de Jacobi con condiciones iniciales J(0) = 0, J'(0) = w(0).

- (3) Sea M riemanniana con curvatura seccional $K \equiv 0$. Demostrar que para cada $p \in M$, $\operatorname{Exp}_p : B(0,\epsilon) \to B_{\epsilon}(p)$ es una isometría, donde $B_{\epsilon}(p)$ es un entorno normal de p.
- (4) Sea M riemanniana con curvatura seccional $K \leq 0$. Demostrar que para todo $p \in M$, el conjunto $\mathcal{C}(p)$ de puntos conjugados a p es vacío.
- (5) Sea M riemanniana con curvatura seccional constante b < 0. Sea $\gamma : [0, l] \to M$ una geodésica parametrizada por longitud de arco y $v \in T_{\gamma(l)}M$ ortogonal a $\gamma'(l), |v| = 1$. Como K < 0, según el ejercicio anterior, $\gamma(l)$ no es conjugado a $\gamma(0)$. Demostrar que el campo de Jacobi J a lo largo de γ determinado por las condiciones J(0) = 0, J(l) = v está dado por:

$$J(t) = \frac{\operatorname{senh}(t\sqrt{-b})}{\operatorname{senh}(l\sqrt{-b})} w(t),$$

donde w(t) es el campo paralelo a lo largo de γ tal que

$$w(0) = \frac{u_0}{|u_0|}, \quad u_0 = (d \operatorname{Exp}_p)_{l\gamma'(0)}^{-1}(v),$$

considerando $u_0 \in T_{\gamma(0)}M$ via la identificación $T_{\gamma(0)}M \approx T_{l\gamma'(0)}(T_{\gamma(0)}M)$.

(6) Sea M un espacio localmente simétrico y $\gamma:[0,\infty)\to M$ una geodésica. Si $v=\gamma'(0)$ y $p=\gamma(0)$, definir una transformación lineal $K_v:T_pM\to T_pM$ de la siguiente forma:

$$K_v(x) = R(v, x)v, \quad x \in T_pM.$$

- (a) Demostrar que K_v es autoadjunto.
- (b) Fijar una base ortonormal $\{e_1, \ldots, e_n\}$ de T_pM que diagonalice K_v , es decir, $K_v(e_i) = \lambda_i e_i$ y extender e_i mediante transporte paralelo. Demostrar que para todo t

$$K_v(e_i(t)) = \lambda_i e_i(t),$$

donde λ_i es independiente de t.

(c) Sea $J(t) = \sum_i x_i(t)e_i(t)$ un campo de Jacobi a lo largo de γ . Demostrar que la ecuación de Jacobi es equivalente al siguiente sistema de ecuaciones:

$$\frac{d^2x_i}{dt^2} + \lambda_i x_i = 0, \quad i = 1, \dots, n.$$

- (d) Demostrar que los puntos conjugados a p a lo largo de γ están dados por $\gamma(\pi k/\sqrt{\lambda_i})$, donde k es un entero positivo y λ_i es un autovalor positivo de K_v .
- (7) Sea M una variedad riemanniana.
 - (a) Supongamos que existe $p \in M$ y una isometría $\sigma : M \to M$ tal que $\sigma(p) = p$ y $d\sigma_p(v) = -v$ para todo $v \in T_pM$. Sea V(t) un campo paralelo a lo largo de una geodésica γ tal que $\gamma(0) = p$. Demostrar que $d\sigma_{\gamma(t)}V(t) = -V(-t)$.
 - (b) Una simetría local en pinM es una aplicación $\sigma: B_{\epsilon}(p) \to B_{\epsilon}(p)$ tal que $\sigma(\gamma(t)) = \gamma(-t)$ para toda geodésica radial $\gamma(t)$ ($\gamma(0) = p$), donde $B_{\epsilon}(p)$ es un entorno normal de p. Probar que M es localmente simétrico si y sólo si toda simetría local es una isometría.
- (8) Sea $\pi: M \to N$ una submersión riemanniana.
 - (a) Dado $X \in \mathfrak{X}(N)$, demostrar que existe un único campo $\bar{X} \in \mathfrak{X}(M)$ tal que \bar{X} es horizontal y \bar{X} está π -relacionado con X.
 - (b) Dada $\gamma:(a,b)\to N,\ \gamma(0)=p\ \mathrm{y}\ q\in\pi^{-1}(p),$ demostrar que existe un único levantamiento horizontal $\bar{\gamma}:(a,b)\to M$ de γ tal que $\bar{\gamma}(0)=q$.
 - (c) Dada $\gamma:(a,b)\to N$, demostrar que

$$\overline{\frac{D\dot{\gamma}}{dt}}(t) = \frac{D\dot{\bar{\gamma}}}{dt}(t).$$