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Abstract 

This work is focused on the characterization of Ni-ferrite nanocrystals and their subsequent doping with Gd, in an attempt 

to explore Gd inclusion in the thermomagnetic properties of prepared ferrofluids. 

Spinel ferritesNiFe2O4, and NiFe1.88Gd0.12O4 were prepared by the auto-combustion method. The substituted sample is 

obtained with a small amount of Gd inclusion and the excess appears as GdFeO3. The smallest nanoparticles of both samples 

were properly coated and dispersed in kerosene. Thermal conductivities of the produced ferrofluids were measured at 25 °C in a 

magnetic field. There is a significant enhancement in thermal conductivity of the ferrofluid prepared with NiGd ferrite with respect to the 

one with Ni ferrite, in presence of a magnetic field. This effect is directly related to the well-known magnetocaloric effect of Gd. 
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1. Introduction 

Spinel ferrites are among the most widely used magnetic materials [1]because of their low cost, high electrical resistivity and high 

Curie temperature. Many basic and applied investigations on the frequency behavior of ferrites have been carried out. The studies of 

electrical and magnetic properties of ferrites are useful for their applications in electronics[2-6]. The semiconducting properties of 

nickel ferrite have also been discussed in detail [7]. The electrical conductivity and magnetic properties of ferrites are mainly governed 

by the Fe-Fe interaction (spin coupling of the 3d electrons) and also by Ni2+ ions. The electromagnetic properties of Ni-ferrites may be 

modified by the doping with rare earth (R) cations [8] which play an important role in determining magnetocrystalline anisotropy in the 

4f-3d intermetallic compounds [9]. From Rezlescu´s studies[10]it is known thatR atoms with a large radius and a stable valenceof  3+ 

(such asGd in Gd2O3) produce the best modification in ferrites´structure and properties.In a previous work, we investigated the 

structure of R-doped Ni-Zn ferrites [11]finding an increment in the cell parameter with increasing R content, indicating that R had been 

incorporated within the spinel structure. Sileo et al.[12] reported that an orthorhombic phase appears, for low Gd substitution, 

when samples are calcined at 1000ºC. Notwithstanding, Gd inclusion was confirmed by an increase in cell parameters of 

Ni ferrite as Gd content increased while electromagnetic properties. 

On the one hand, Gdinclusion in MnZn ferrites has been explored by O-Peralez-Perez et al [13-14]. They related an 

improvement in thermomagnetic properties in these compounds and the displacement of Fe ions from B sites to A, sites as 

a consequence of Gd inclusion. In turn, the fact that Gd-ferrite exhibits a Curie temperature TC as low as 298 K and high 

pyromagnetic coefficient [14] could open the possibility to tune TC in Mn–Zn ferrites by a controlled incorporation of this R element 

into the ferrite structure. 

On the other hand, there is wide experimental demonstration of Gd magnetocaloric effect, mostly when pure or in alloys [15], and to 

the best of our knowledge, it has not yet been reported the influence of Gd in Gd-doped Ni ferrite compounds for ferrofluids.  

The magnetocaloric effect is a phenomenon in which a temperature change is produced in a material by applying a 

magnetic field. In this process, a change in the magnetic field intensity allows the magnetic moments to orient or disorient 

with respect to the magnetic field, by thermal energy variation of the phonons inside the material. The temperature 

variation produced by the magnetocaloric effect is described by: ∆T = -� � T

CP(T,H)
�H2

H1
�∂M(T,H)

∂T
� dH , where T is the 

temperature, H the applied field, and CP and M are the isobaric heat capacity and the magnetization of material, 

respectively. 

Magnetocaloric compounds are of special interest for applications in industrial heat transfer devices, for which high 

thermal conductivity and low heat capacity ferrofluids are required. Keeping this in mind, the purpose of this work is the 

structural and magnetic characterization of Gd-doped Ni ferrite nanoparticles (NPs) and the preparation of a ferrofluid for applications 

in heat transfer devices. Kerosene-based ferrofluids were investigated and a thermomagnetic characterization of the prepared fluids was 

performed. In order to investigate if the magnetocaloric effect of Gdin Ni-ferrite also influences the ferrofluid behavior, their thermal 

conductivities as a function of magnetic field and heat capacity were studied. 

 

2. Experimental 

Spinel ferrites of nominal composition NiFe2O4 (labeled S-Ni) and NiFe1.88Gd0.12O4 (labeled S-NiGd) were prepared according to 

Ref. [12] from Fe(III), Gd(III) and Ni(II) citrates. X-Ray diffractograms were measured in a Philips diffractometer using Cu Kα 

radiation. Diagrams were collected in the 2θ range 25-75°, with a step-size of 0.02º, at a counting rate of 4 seconds per step. The 

crystallite sizes of the samples were estimated from the line width of the (311) peak. The morphology of precursors and calcined 

samples was examined by Scanning and Transmission Electronic Microscopy (SEM and TEM).The magnetic properties of the 
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samples compacted in 1-2mm thick disks were measured at room temperature (RT) in a vibrating sample magnetometer 

LakeShore 7200 with a maximum applied field of 15 kOe.  

Kerosene-based ferrofluids were prepared by coating the NPs with oleic acid and dispersing them in kerosene 

during ultrasound treatment. Two fractions were separated by centrifugation from an initial ferrofluid previously 

sonicated in order the select the smallest particles. Mean particle diameters were explored by SEM and TEM. Kerosene-

based ferrofluids were prepared with S-Ni and S-NiGd particles at two concentrations (5% and 10%), and were named F-

Ni and F-NiGd, respectively. These fluids showed good stability for 24 hours. 

For investigating the thermal variables of the prepared fluids and evaluating their properties, a specific device 

was used. It was designed, constructed and calibrated exclusively for this purpose in our laboratory and it is based on the 

transient hot wire method [16-18]. It allows measuring temperature vs. time under applied magnetic fields while heating a 

cylindrical container with the tested fluid.  

 

3. Results and Discussion 

3.1 Structural characterization 

Figure 1 shows the diffractograms of the studied samples. 

 

Figure 1: X-Ray diffractograms of the powders S-Ni and S-NiGd. The peaks corresponding to the orthorhombic phase GdFeO3 

are indicated. 

 

The peaks in the spectra indicate that S-Nihas the cubic structure of spinel ferrite with no extra reflections. Small variations 

in the peak positions of the ferrite-phase are observed. However, a gadolinium ferrate orthorhombic phase (GdFeO3) is well 

detected in sample S-NiGd with a fraction of 13%. These results indicate that Gd ions cannot totally enter into the ferrite lattice, 

probably because of the larger radii of Gd ions relative to Fe ions. Some Gd ions may reside at grain boundaries and form 

oxides. Rietveld analysis and Mössbauer studies reported by us on this sample[12] support the previous hypothesis. The cell 

parameter ofNi-ferrite increases from 8.3359(1) Å to 8.3384(1) Å (Table I) with the incorporation of Gd ions. For sample S-

NiGd the calculated ferrite composition indicates a smaller degree of Gd-for-Fe substitution, this fact agrees with the slight 

increase in lattice parameter. For this substitution,13% GdFeO3 is segregated. Crystallite size slightly decreases with Gd 

inclusion. 
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Table I: Notation, crystallite sizes and lattice parameters of the synthesized samples.  

Sample Crystallite size, D [nm] Lattice parameter, a [Å] 
S-Ni 58 8.3359 (1) 

S-NiGd 43 8.3384 (1) 
 

Nickel ferrite has an inverse spinel structure, with the following cation distribution: (Fe3+)A [Ni2+Fe3+]BO4. When Gd3+ 

is introduced in the lattice, some of the Gd ions may occupy octahedral sites (B), resulting in a migration of Fe3+ ions to 

tetrahedral sites (A).This migration is related to changes in Ms. 

The microstructure of the synthesized powders was studied by scanning electron microscopy (SEM). Figure 2 a) 

shows agglomerated particles of S-Ni with a wide size distribution centred in 270 nm, while Figure 2 b) corresponds to S-

NiGd particles, with a mean size of 250 nm. 

a  

b  

Figure 2: SEM images of samples S-Ni (a) and S-NiGd (b) and the particle size histogram corresponding to each sample. 

 

As the stability of ferrofluids increases as particle size diminishes, suspended particles were centrifuged and separated 

in order to keep the fraction of the smallest particles. Figure 3 a) and b) show the morphology of the particles used to 

prepare the studied ferrofluids. 
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  a    b  

Figure 3. SEM (a) and TEM (b) images of the smallest selected nanoparticles of S-NiGd, after coating with oleic acid. 

 

3.2 Magnetic measurements  

 

Figure 4: Hysteresis loops M vs. H at room temperature for samples S-Ni and S-NiGd, after correcting for Gd ferrate. 

 

Figure 4 shows the hysteresis loops at room temperature of the studied samples. Sample S-Ni shows the expected 

ferrimagnetic behavior of spinel ferrites, reaching saturation at relatively low fields (6 kOe) with a saturation 

magnetization value (Ms) of 52 emu/g. Sample S-NiGd is not single phase, since a fraction of 13% GdFeO3 was 

determined from X-Ray results [12].This phase is paramagnetic, with a magnetization value of 1.5 emu/g at 15 kOe [19] 

and its contribution can be subtracted from the measured data in order to keep only the ferrimagnetic contribution from 

the spinel phase. The corrected hysteresis loop for S-NiGd is shown in Figure 4. Gd inclusion in the spinel lattice of Ni 

ferrite increases saturation magnetization approximately 5%.Coercivity (Hc) is very small, with values < 50 Oe in both 

samples. 

 

3.3 Thermomagnetic characterization of ferrofluids 

The ferrofluids prepared with S-Ni and S-NiGd were labeled F-Ni and F-NiGd, respectively. 
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Thermal conductivity of both F-Ni and F-NiGd ferrofluids was measured as a function of magnetic field for 

concentration values of 5 and 10 % v/v. Magnetic field values ranged from 0 to 2000 Oe. The thermal diffusivity was also 

calculated with the hot transient method and the obtained results are not shown here for exceeding the purpose of this 

work.The influence of dispersing the NPs in kerosene on the thermal conductivity was calculated as the increment: I= (kF 

-k0)/k0 100%. In this expression, kF and k0 are the FF and the kerosene conductivities, respectively. Heat capacity was also 

calculated using the expression: CP = k/ρα, being α the diffusivity and ρ the fluid density, calculated as: ρ = xρNPs + (1-

x)ρ0, being x the weight fraction of NPs, and ρ0 and ρNPs the base liquid and the NPs densities, respectively. For a better 

interpretation, the relative heat capacity was calculated as the ratio between FF and kerosene heat capacity values (CPF 

and CP0, respectively): CPr = CP0/CPF. 

In Figure 5, the results of thermal conductivity measurements for F-Ni and F-NiGd with concentrations of 5% and 

10% v/v are shown. 

 

Figure 5: Thermal conductivity increments. 

 

It is clear from Figure 5 that thermal conductivity of the studied FFs is enhanced up to a maximum and then 

diminishes in every case. At zero applied field, the presence of NPs in the fluid enhances the properties with respect to 

that of pure kerosene. This behavior of increasing and diminishing in the thermal variables has also been observed by 

Philip et al [20] in water-based ferrofluids prepared with magnetite NPs. 

In a FF at room temperature, the NPs magnetic moments are randomly oriented because the thermal energy is higher 

than the dipolar interaction between the NPs. When applying a magnetic field, the energy corresponding to the dipolar 

interaction is enough for the formation of particles doublets, triplets and chains –along the field direction– whose lengths 

become larger while increasing the magnetic field. This thermal conductivity enhancements are well-explained with 

Phillip’s theory based in percolation [20]. The number of magnetic NPs in the field direction is significantly increased at 

higher magnetic field intensities and it produces considerable enhancements in the thermal conductivity of kerosene. 

When the applied magnetic field is high enough, many particle-chains link with another, forming cluster-like structures 

and larger liquid zones, free of NPs -with lower thermal conductivity- appear, therefore diminishing the FF thermal 

conductivity. 

Some parameters of interest were defined: the zero field conductivity enhancement (I(H=0)), the maximum 

conductivity enhancement (Imáx) and the magnetic field that produces the maximum enhancement (Hk). These parameters 

are presented in Table II, together with the heat capacity for each FF. 
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Table II: Ferrofluids concentration, thermal conductivity enhancements at zero and maximum field, field intensities 

that produce the maximum values, and relative heat capacity. 

 

Fluid 

 

C[% v/v] 

I(H=0) 

[± 5 %] 

Imáx 

[± 5 %] 

Hk 

[± 20 Oe] 

 

ααααr (H = 0) 

 

CPr 

F-Ni 

 

5 29 46 1400 (1.8 ± 0.2) (0.50 ± 0.05) 

10 25 48 500 (1.4 ± 0.2) (0.5 ± 0.1) 

F-NiGd 5 20 54 1000 (1.0 ± 0.3) (0.5 ± 0.1) 

10 18 63 200-600 (2.2 ± 0.3) (0.30 ± 0.05) 

 

In fluids with 10 % v/v concentration, the maximum enhancement is reached at lower intensity fields than for the 5 % 

v/v concentration, as indicated in Table II. This is due to the increment of NPs amount in a volume unity that favors even 

more the interaction between particles in presence of a magnetic field, forming chains that enhance the heat conduction 

with low intensity fields. 

The most remarkable aspect is that, according to Table II, the conductivity enhancement produced in F-Ni (without 

Gd) at zero field are higher, while, in presence of a magnetic field, the enhancement is higher for F-NiGd. This effect is 

clearly associated to Gd inclusion. Besides, for F-NiGd10 % v/v, a lower field intensity is required for maximizing the 

increments of conductivity. The maximum increment for F-NiGd 10% v/v reaches 63% for a wide range of low fields 

(200 – 600 Oe) which are easily produced by commercially available permanent magnets. 

From this study, it is evident that Gd inclusion in the Ni-ferrite structure enhances the thermomagnetic properties of 

kerosene-based FF prepared in the same conditions, while at zero field the FFs prepared with Ni-ferrite NPs gave a better 

response. 

The significant enhancement in conductivity of the fluids F-NiGd with respect to those of F-Ni in presence of 

magnetic field is straightforwardly related to the well-known magnetocaloric effect of Gd. In order to have a deeper 

insight into this aspect, the heat capacity relative to kerosene was calculated (see Table II) for F-Ni and F-NiGd. 

The heat capacity of kerosene diminishes when incorporating the NPs, as CPr is less than 1 in every case. Besides, CPr 

of F-NiGd is lower than CPr of F-Ni for 10 % v/v concentration. This decrease in heat capacity of the FF has been recently 

reported by Angayarkanni et al [21] in other systems, and in our case is directly associated to the Gd magnetocaloric 

effect. This confirms that doping Ni-ferrite with Gd modifies the heat capacity of the fluids in which the NPs are 

suspended, and enhance the thermal conductivity. In this sense, the fluid F-NiGd 10 % v/v is the most appropriate 

candidate for application in heat transfer devices. 

 

4. Conclusions 

 

The influence of Gd ions on structural, magnetic and thermomagnetic properties of Ni-ferrites has been investigated. 

• Gd enters the spinel lattice of Ni-ferrite only partially, as a gadolinium ferrate orthorhombic phase (GdFeO3) is well 

detected. 

• Saturation magnetization of the spinel phase slightly increases with Gd content. 



 

 8

• The prepared FF reaches increments of 48% (F-Ni 10%) and 63% (F-NiGd 10%) in thermal conductivity, under 

applied magnetic fields of 500 and 200 Oe, respectively. This result indicates that Gd induces magnetocaloric 

effects in Ni-ferrite FF, and the thermal properties of the FF can by optimized the by applying a low intensity 

magnetic field. 

• F-NiGd 10 % v/v fluid has a lower heat capacity than F-Ni 10 % v/v, favoring the increase of the magnetocaloric 

effect at constant magnetic field. 

• The magnetocaloric effect of Gd as a dopant in Ni-ferrite is a novel contribution to the state of art in 

magnetocaloric effect of Gd alloys. 
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