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Abstract 
This study presents a simple and scalable synthesis of pyrite (FeS2)starting from S and Fe 
powders, which involves high energy ball milling of precursor powders followed by a thermal 
treatment. The formation of the desired productwas confirmed by X-ray diffraction, Raman 
spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. After the 
synthesis, spherical FeS2 nanoparticles of ~85 nm in size were obtained, with a highly 
crystallineface centred cubic structure and no secondary phases. The synthesized material was 
tested as cathode material for lithium batteries. The cathodes delivered good electrochemical 
lithium storage properties, such as a reversible capacity as high as 470 mAh g-1 even after 120 
cycles, and a good rate capability.Furthermore, aspects regarding the reaction mechanism and 
common electrochemical features of Li/FeS2 batteries are discussed. 
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1. Introduction 

Lithium-ion batteries (LIB) are becoming increasingly popular as portable power sources 
for electronic devices that have high power operating requirements. However, the energy density 
and the capacity of LIB depend on many factors,being one of the most important the cathode’s 
electrochemical performace.[5, 22] Nowadays, the commercial cathodes rely on transition 
metals-based materials, such as LiNi1/3Mn1/3Co1/3O2, LiCoO2 and LiFePO4.[28]These materials 
have low specific capacities (around 200 mAh g-1);[28, 49]therefore the need to find new active 
compounds that improve the performance of the cell. This goalcan be achieved with materials 
that work at higher voltages or with those involving multi-electron reactions. Considering this 
latter aspect, several transition metal sulphides have been studied as cathodes for LIB.[12] In 
particular, iron (II) sulphide, also known as pyrite, has been acknowledged as a promising 
cathode material due to its natural abundance, low cost and non-toxicity.[31] FeS2comprises 
53.3wt% of sulphur and 46.6wt% of iron, organized in a cubic structure. Fe2+ cations in pyrite 
are in a low spin d6 configuration, making it a diamagnetic and semiconductor material.[11, 29] 
Regarding its application in lithium batteries, Li/FeS2 primary battery has been recently launched 
by Energizer®, which outputs a better performance when compared to the alkaline ones.[57] The 
discharge of FeS2 involves four electrons and yields a theoretical specific capacityof 894 mAh g-

1.[34, 43, 52, 54]Its use in rechargeable LIB is limited by its poor stability and cycling at room 
temperature due to: i) the volume change during lithiation, which causes pulverization of the 
electrode, ii) lack of consensus regarding its reversible lithiation/delithiation mechanism which 
prevents the design of proper electrochemical operation conditions, and iii) the low ionic and 
electrical conductivity of thelithiation products. 

Synthesis strategies for obtaining FeS2 is another topic of interest in recent publications 
of pyrite-based cathodes. Son et al.[33], for example, proposed the synthesis of FeS2–
polyacrylonitrile(PAN) composite using dimethylformamide (DMF) as solvent and a thermal 
treatment based on a two-step process at 200 °C and 500 °C. The cathodes prepared with FeS2-
PANshowed specific capacities of ~500 mAh g-1 after 50 cycles, highlighting the importance of 
the protective PAN layer on the reversibility of FeS2. Similar results were obtained by Xu et 
al.[50], who proposed the synthesis of FeS2 nanocrystals in hierarchical porous carbon using 
dodecyl amine, ethanol, chloride acid, tetra ethyl orthosilicate and iron chloride as precursors, 
among others. The obtained materialpresented a specific capacity of720 mAh g-1 after 100 
cycles. As seen in previous reports, the combination of FeS2 with other materials can improve 
the whole electrochemical performance of the battery; butthe high cost, toxicity and complexity 
of the synthetic routesmake these methods not applicable for industrial purposes.  

Another alternative to enhance the cyclability of FeS2batteries is based on the micro and 
nano-structuration of the active material.Recently, Ma and co-workers developed a cathode 
based on a micro/nano structured FeS2 with specific capacities of 216.8 mAh g-1 after 730 
cycles.[25]Liu et al.[24]preparedpyritenanocubeswithparticlesizes of around 80-120 nmvia a 
solvothermalmethod. They studied the dependence of the formed products with the reaction time 
between the iron(II) chloride and sulphur precursors. 18 hours at 180 °Cwere necessary to obtain 
the desired nanocubes, which delivered a reversible discharge capacity of 540 mAh g-1 after 50 
cycles. The authors related the enhanced lithium storage properties with the higher specific 
surface area of FeS2nanocubes, which can providemore reaction sitesto Li+, leading to less 
polarization.Li et al.[21]proposed the use of pyrite nanowires synthesized by thermal 
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sulphidation of FeF3·3H2O. This method requires a flow oven with two regions of controllable 
temperature, both higher than 400 °C. Even though the cathodes prepared with FeS2 nanowires 
retain a discharge capacity of 350 mAh g-1 after 50 cycles at a rate of 0.1 C, the expensive 
production method makes this strategy complex for large scale applications. Similar drawbacks 
are found in other publications such as the one of Hu et al.,[16] whom synthesized 
FeS2microspheres by a solvothermal method using iron sulphate with DMF and ethylene glycol 
as precursors. The thermal treatment was carried at 180 °C for 8 h. By using this method, the 
authors achieved capacities of 556 mAhg-1 after 50 cycles with 85% of retention capacity.It 
should be mentioned that there is proof of sometoxicity of DMF on animals, plants and humans 
after chronical exposition.[20] For this reason, there is a trend to replace this solvent with 
“greener” ones.  

In view of the need of finding not only an eco-friendly, low cost and simple 
syntheticroute for the production of FeS2, but also achieving the nano-structuration of the 
material,we propose here ascalable method to obtain FeS2 nanoparticles by high-energy ball 
milling of Fe and S powder precursors. The milling of the powders was donein inert atmosphere 
for 72 h, after which they were thermally treated. Our synthesis allowedobtaining highly 
crystallinepyrite nanoparticles of ~85 nm mean particle size and crystallite size of 23 nm, with 
no secondary phases. The characterization by Raman spectroscopy, TGA and XRD 
demonstratedthe high purity of the obtained material. The as-obtained FeS2 was evaluated as a 
cathode material for lithium batteries and its lithiation/delithiationbehaviour was studied by 
means of galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy. 
The resulting battery exhibited capacities of 470 mAh g-1 after 120 cycles, with 
coulombicefficiencies close to 100%, making the obtained material a promising candidate for its 
application in large-scale production. 

 

2. Experimental Details 

2.1. Materials 

Iron powder (particle size < 10 μm, purity 99.9%), sulphur,polyvinylidenefluoride 
(PVdF), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and tetraethylene glycol dimethyl 
ether (TEGDME) were purchased from Sigma-Aldrich. TIMCAL carbon superP was from MTI 
Technologies. Other reagents were battery grade and used without further purification. 

2.2. Synthesis of FeS2 

The samples were prepared in argon atmosphere using a planetary ball mill (Fritsch 
Pulverisette 7 – Premium line). The precursoriron and sulphur powders, with a weight ratio of 
0.33/0.67,were placed inside a hardened steel vial with balls of the same material. The balls-to-
powder mass ratio was 10:1, and the rotation speed was set to700 rpm. The powderswere milled 
for72 h. Small amounts of milled powder were taken at different times to control the synthesis. 
After the ball-milling, the powder was thermally treated at 350 ºC for 1 h under vacuum to 
promote the full formation of the FeS2 phase. The temperature for the thermal treatment was 
selected considering the minimum temperature needed to get the desired pure phase (the reader is 
referred to the Supporting Information for further details). 
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2.3. Characterization methods 

The powder X-ray diffraction (XRD) patterns were recorded with a Philips PW1800/10 
diffractometer using Cu-Kα radiation (λ=1.5405 Å) in a 2θ range from 20° to 80°. The operation 
voltage and current were kept at 40 kV and 30 mA, respectively. Thermogravimetric analyses 
(TGA) of approximately 5 mg of each compound were recorded on a TGA Q600 (TA 
Instruments) under N2 atmosphere, by equilibrating at 100 °C, and following a heating ramp rate 
of 10 °C min−1 up to 800 °C. The mean particle size of the powder and morphology 
wereexamined using a field emission scanning electron microscope (Zeiss Sigma FE-SEM) 
operating at 5 kV and a transmission electron microscope (Hitachi HT7700 high resolution 
TEM) operating at 100 kV. Energy dispersive X-ray spectroscopy was performed using an 
Oxford detector attached to the FE-SEM.Sample preparation for TEM images was done by 
dropping ethanolultrasonicated suspensions of the synthetized material onto carbon-coated 
copper grids (400 mesh) and then dried. The Raman spectrum was measured in a Confocal 
Horiba Jobin-YvonLabRam HR, using and excitation wavelength of 514.3 nm. The magnetic 
properties of the samples were determined with a vibrating-sample magnetometer (VSM, Lake 
Shore 7300). XPS spectra were obtained using aThermo Scientific™ K-Alpha™+ X-ray 
Photoelectron Spectrometerequipped with an Al-Kα radiation source(operating at 1200 W) and a 
hemispherical electrostatic electron energy analyzer. For the analysis, the C1s peak at 284.5 eV 
was used as reference to calibrate the binding-energy (BE) scale. The base pressure in the 
analysis chamber was 1 x10-8 mbar. No degradation or changes in the spectra were observed 
during the experiments. ICP-OES determination was performed using a Shimadzu, ICPE-9820 
instrument at PlaPiMu-LaSeISiC (UNLP-CIC) laboratory.  The sample solution was prepared by 
an acid digestion method adding 15 mL HNO3 and 5 mL of HCl to 0.1 g of powder. Then, 3 mL 
H2O2 was added and heated until all pyrite was dissolved. After that, the sample was cooled and 
the solution was diluted to 100 mL using tri-distilled water. The magnetization hysteresis loops 
were measured in a field ranging ±13.5 kOe, at room temperature, with a Lakeshore 7300 
vibrating sample magnetometer.Galvanostatic charge-discharge profiles and impedance 
spectroscopy (EIS) experiments were performed with an Arbin battery cycler (Arbin 
Instruments, USA) and an Autolab PGSTAT320N Potentiostat/Galvanostat (Metrohm, The 
Netherlands), respectively.  

 

2.4. Electrode preparation and electrochemical measurements 

The electrodes used for electrochemical measurements were prepared by doctor-blade 
coatinga 9 µm thick copper foil with a slurry madeof FeS2, TIMCAL carbon superP andPVdF 
binder (in a 3:6:1 mass proportion), using N-methyl-2-pyrrolidone as solvent. All the electrodes 
were dried at 80 °C for 2 h before introducing them in a glovebox (MBraun, filled with Ar 
atmosphere having less than 1 ppm concentration of O2 and H2O). The electrodes were punched 
into 12 mm diameter disks. The coin cells were assembled inside the glovebox using a Celgard 
2325 membrane as separator with 40 L electrolyte (1.0 M LiTFSI + 0.25 M LiNO3 in 
TEGDME) and lithium foil as counter and reference electrode. 

 

 



 

3. Results and Discussion 

3.1. Synthesis and characterization of FeS

Fig. 1 (A) X-ray diffractograms of Fe, S and the mixture of the powders milled for 3 h, 24 h  and 
72 h. The dashed lines indicate the position of the main reflections coming from pyrite. 
(B)Rietveld refinement of the 
vacuum 

 
Fig. 1 A shows the XRD patterns of the pure Fe and S 

the mixture at different times
evolution with milling time, the position of pyrite’s main XRD peaks are 
lines. After milling for 3h, only 
indicating the formation of new phases coming from the reaction between iron and sulfur. 
XRD for the 72h-milled mixture
corresponding to Fe/S/Fe-S phases
Since mechanical milling is not enough for 
treatment at 350 ºC in vacuum was performed. 
to the most intense peak) of 
28.3º, 33.1º, 36.8º, 40.5º, 47.0º, 56.4º, 55.8º, 61.5º and 64.2º, corresponding to the crystal planes 
(111), (200), (210), (211), (220), (311), (222), (320) and (321) of the cubic struc
#96-901-001) indexed for pyrite (FeS
space group Pa3, is confirmed
limits of this technique). The lattice parameter
crystallite size, calculated using the Williamson
peaks, is 18 nm. 

The complete formation of FeS
magnetic measurements (Fig.
magnetization, because of the presence of 
thermal treatment, a low magnetization is observed in good agreement with the 
behavior of the paramagnetic FeS

Synthesis and characterization of FeS2 nanoparticles  

ray diffractograms of Fe, S and the mixture of the powders milled for 3 h, 24 h  and 
72 h. The dashed lines indicate the position of the main reflections coming from pyrite. 

the powder milled for 72 h after thermal treatment 

shows the XRD patterns of the pure Fe and S powders used as precursors and
different times of the milling. For an easier understanding of the structural 

, the position of pyrite’s main XRD peaks are 
only the peaks of Fe and S are observed. After 24

indicating the formation of new phases coming from the reaction between iron and sulfur. 
milled mixture, FeS2 broad peaks can be clearly seen along with other

S phases. Longer milling times do not change the peaks significantly. 
is not enough for promoting a complete reaction to pyrite

treatment at 350 ºC in vacuum was performed. Fig. 1 B displays the diffractogram (normalized 
) of the powder after the thermal treatment. It exhibits peaks at 2

28.3º, 33.1º, 36.8º, 40.5º, 47.0º, 56.4º, 55.8º, 61.5º and 64.2º, corresponding to the crystal planes 
(111), (200), (210), (211), (220), (311), (222), (320) and (321) of the cubic struc

001) indexed for pyrite (FeS2). From the Rietveld analysis, single phase pyrite
, is confirmed, with no segregation of secondary phases

. The lattice parameter obtained from the fit is 5.42471(6) 
, calculated using the Williamson-Hall analysis considering all the reflection 

The complete formation of FeS2 after the thermal treatment was also confirmed by 
. 2 A). After milling for 72 h, the powder still has a relatively high 

magnetization, because of the presence of α-Fe, as previously determined by XRD. After the 
thermal treatment, a low magnetization is observed in good agreement with the 
behavior of the paramagnetic FeS2.[44] 
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Fig. 2(A) Magnetization hysteresis loops
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2 B). Before the thermal treatment, two weight loss processes are 

observed, one at 300 ºC corresponding to the free S evaporation and a 
corresponding to endothermic decomposition of pyrite to pyrrhotite.[44]
treatment, only oneweight loss at 600 ºC is observed, indicating the absence of
sample.The weight loss of 20% is in perfect agreement with the theoretical mass change 

for the desulfurization of FeS2.[15, 39] Fe and S were 
a Fe content of 440 mg/g of sample was found

which is in good agreement with the pyrite composition.

The XPS spectra for S 2p and Fe 2p are shown in Fig. 3 A and B, respectively. 
two peaks of sulfur XPS spectrum at 162.4 and 163.6 eV BE correspond to the bulk S

[56] The little tail observed at low BE comes from the surface S
while the two peaks at 164.3 and 165.4 eV are a combination of core-hole effect signals and the 
presence, in the surface of the material, of oxidized Sn

2- species. [13, 38]
and 169.82 eV correspond to the 2p3/2 and 2p1/2 SO4

2- peaks, formed due to the surface oxidation 
XPS peaks from FeS2, in Fig. 3 B, appear at 707.1 and 719.9 eV 

and 2p1/2 signals (iron exhibits a spin-orbit splitting of
small peak at 708.1 eV arises from the contribution of Fe2+ in electron deficient sites.
doublets at 709.1/721.6, 711.1/723.8 and the peak at 713.1 eV correspond to the 2p

2(SO4)3 compounds (in the latter the 2p1/2 peak is not seen because 
its expected intensity is in the order of the baseline noise). [38]No Fe satellite peaks are observed 

spin configuration. The XPS spectra reveal that there is a surface 
oxidation of the material and therefore iron sulfates and iron oxides in it, but the major 
component of the sample is pyrite. This is further corroboratedby Raman spectroscopy

The characteristic S2 (Eg), S-S in-phase (Ag) and coupled vibration and stretch (T
modes of the pyrite are observed at 328, 363 and 412 cm-1, respectively.[2]
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Fig. 3Fitted XPS spectra for (
the annealed FeS2 

 
 
 

Fig. 4 SEM images of the thermally treated FeS

Fitted XPS spectra for (A) S 2p and (B) Fe 2p of annealed pyrite. (C

SEM images of the thermally treated FeS2 at two different magnifications 
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Fig. 5 TEM images of dispersed FeS
distribution determined over 100 nanoparticles

The morphology of the as
images at different magnifications. As 
particles of  7̴5 nmin diameter
the morphology of the untreated FeS
can be seen on top of the pyrite aggregate. 
asdisaggregated and having a spherical geometry with a Gaussian size distribution centered at 
(85 ± 2) nm mean diameter. The mean size obtained from TEM data is larger than the size of the 
crystallites calculated with Scherrer’s formula, indicating that the particles are polycrystalline.

 

3.2. Electrochemical characterization

Fig. 6 (A) Charge-discharge galvanostatic curves for FeS
second (─) and tenth (─) cycle. (
panel A. The vertical lines in panel 
the experiments in Fig. S3 

 

TEM images of dispersed FeS2 nanoparticles, at two different magnifications. 
distribution determined over 100 nanoparticles 

The morphology of the as-synthesized materialwas studied by SEM. 
images at different magnifications. As it can be seenthe sample consists of

diameter. The thermal treatment effect can be verified by comparing with 
the morphology of the untreated FeS2 sample (depicted in Fig. S1), in which a deposit of sulphur 
can be seen on top of the pyrite aggregate. The TEM images ofFig.5

a spherical geometry with a Gaussian size distribution centered at 
mean diameter. The mean size obtained from TEM data is larger than the size of the 

crystallites calculated with Scherrer’s formula, indicating that the particles are polycrystalline.

Electrochemical characterization and test as cathode for Li-batteries 

discharge galvanostatic curves for FeS2 cathodes at 0.10 A g
) cycle. (B) Derivative dQ/dV plots from the charge

. The vertical lines in panel B labeled 1 and 2 correspond to the cut
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The charge/discharge galvanostatic curves of the FeS2 cathode for the first, second and 
tenth cycle are displayed in Fig.6 A. The first discharge cycle shows a sloping voltage profile 
from 1.73 V until the experiment’s cut-off limit, with an initial specific capacity of 1450 mAh g-

1. This high initial capacity is a frequently reported feature of Li/FeS2 batteries[8, 19, 24, 40, 45, 
48, 50] and could be related to the initial reduction of Fe-O oxides present in the material (as 
seen in the XPS spectra) and the SEI formation at the Li anode,[47, 55]amongst others. It is 
worth mentioning that no phase change was observed in the active material after the processing 
of the slurry, as the XRD of the cathode shows no differences with the thermally treated pristine 
pyrite (Figure S2). The dQ/dV curve (Fig.6 B) shows multiple peaks associated with a rather 
complex mechanism, which has been acknowledged as an irreversible reaction.[34, 52, 54] The 
subsequent charge cycle (black dashed curve in Fig.6 A) displays two voltage plateaus at 1.84 
and 2.50 V, having this last one more capacity than the first. The features of the second 
discharge cycle are completely different from the first one due to the irreversible reaction, 
showing plateaus centered at 2.00 V and 1.47 V. As the cycling proceeds, the high voltage 
plateaus are reduced and the capacity of the FeS2 cathode fades. 

FeS2 can theoretically react with 4 Li+ions per formula unit, according to the global 
reaction given in eq. 1 below, yielding a capacity of 894 mAh g-1.[10] This first irreversible 
reaction occurs through a two-step mechanism in which there is first a breakage of S–S2- bonds 
due to the formation of Li2FeS2 (eq. 2), and then a conversion of Fe2+ to Fe0and the consequent 
release of Li2S (eq. 3). The probability of eq. 1 going through one effective stepor viaequations 2 
and 3 has been previously discussed and depends on the current/potential rate, temperature and 
solvent.[18, 32, 41] 

FeS2(s)  +  4 Li+
(org)+ 4 e-   Fe (s)  +  2 Li2S (s)  (eq. 1) 

FeS2(s)  +  2 Li+
(org))+ 2 e-   Li2FeS2(s)   (eq. 2) 

Li2FeS2(s)  +  2 Li+
(org)+ 2 e-   Fe (s)  +  2 Li2S (s) (eq. 3) 

 There is still controversy concerning FeS2-based cathode subsequent 
charge/dischargereactions. Some reports suggest that Fe and Li2S are recombined to form 
Li2FeS2/Li2-xFeS2intermediates (lower voltage plateau)and orthoFeS2 + FeS8/7 + S structures 
(upper voltage plateau).[10, 18, 51]Others postulate that the Fe/Li2S oxidation mechanism 
follows two different pathways: first, delithiation of Li2S + Fe forming a FexSyphase (lower 
voltage plateau) and S/Li2S known chemistry (upper voltage battery).[36, 37, 52, 53]Regarding 
the latter, in our experiments we didnot find polysulfidesneither in the electrolyte nor at the 
surface of the Li anode after cycling the Li-FeS2 batteries. If the cycling would proceed through 
Li-S chemistry and taking into account that we are usingTEGDME-based electrolyte, 
polysulfides should have been found due to their high solubility in the ether-based solvent.[26]In 
this work, instead of trying to fully identifypossible intermediates and reduction/oxidation 
products, we will focus our explanation on general trends and types of reactions that take place. 

 Cut-off 1 at the first dQ/dV peak of Fig.6B (at 1.70 V, discharge/charge curves shown in 
Fig. S3 A) shows almost no plateau in the first recharge and the capacity fade between the first 
and the second cycle is 45%. Furthermore, cut-off 2 at the second dQ/dV peak of Fig.6B (at 1.56 
V, discharge/charge curves shown in Fig. S3 B shows a capacity fade of 27%, demonstrating that 
the process associated to upper re-charge/discharge plateau is relatively independent of the lower 
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one (at 1.84/1.47 V) in terms of features and capacity fading. Cut-off limited cycling up to the 
first plateau (Fig. S4) also showed the same behavior and capacity fading. Therefore, the 
electrochemical fingerprint of both processes after the first discharge are inherent to 
FeS2lithiation, and constrained cycling does not prevent its irreversible features and loss of 
capacity,contrary to what it was suggested as a possible solutionin previous reports.[4, 
36]According to a recent thorough work by Butala et al.[1]the first recharge (and subsequent) 
plateau corresponds to the conversion of Fe and Li2S to an intermediate ternary structure while in 
the second one, this ternary Li-Fe-S phase acts as a host structure for insertion-extraction 
reaction with Li+. The latter disappears rapidly both in our case and in other reported Li-FeS2 
systems: as this is an intercalation-deintercalation reaction, it critically relies on the crystallinity 
of the host structure. As reported [1, 9], during cycling progressive amorphization of the phases 
is observed, so it is clear that this reaction will progressively fade. 

 EIS provides further information regarding to the capacity fading. Fig.7 A depicts the 
impedance spectra of FeS2 cathodes at o.c.p. (blue circles in the inset), fully discharged (1.00 V, 
upper panel) and fully charged (3.00 V, bottom panel) for the first (black squares), second (red 
squares) and tenth (green squares) cycle. The impedance spectra were fitted with the equivalent 
circuit shown in Fig. S3. It consists of the solution/contact resistance (RS) and the charge transfer 
resistance (RCT) in parallel with a constant phase element (CPE) for the capacitive interfacial 
phenomena. These elements correspond to the high frequency semi-circle, whose characteristic 
frequency varies from 924/2082 Hz to 763/1104 Hz for full discharged/charged 1st and 10th 
cycle, respectively. In the mid-to-lowfrequency region, the features depend on if the fully 
charged (3.00 V) or discharged (1.00 V) state is under analysis.For the EI spectra at 1.00 V a 
semicircular-like response can be noticed, with a characteristic frequency of 0.7-1 Hz, while at 
3.00 V (and at o.c.p.) a linear dependence of  -Z’’ vs Z’ is observed, with one or two different 
slopes. For the latter, also the frequencies oscillate between 0.5 and 2 Hz.These frequency 
domainsare associated with hindered Li+ diffusion phenomena inside the porous electrode 
(limited mass transport)[6, 30], which correspond to the Zdiff element in the equivalent circuit of 
Fig. S5.The analysis of this behavior is beyond the aim of the present work, but it is a common 
feature observed in C-based composite electrodes and is frequently misinterpreted as an 
interfacial RC element. The effective capacitance of the process (Ceff) was calculated from the 
RS, RCT and CPE elements according to previous theoretical framework[7, 14] and it is plotted as 
a function of the discharge/charge voltage, along with RCT, in Fig.7 B(all the EI spectra 
corresponding to the intermediate potentials are depicted in Fig. S6). 

Within any cycle, the resistances increase while discharging and decrease upon charging. 
As RCT is inversely proportional to the concentration of active material, when lithiating, FeS2is 
consumed throughout the discharge so its amount diminishes, while the opposite holds when 
delithiating the cathode. Overall, when passing from the first to the second cycle, the 
capacitances are the values that decrease the most, especially from the first discharge to the first 
charge. This suggests that the main factor that contributes to capacity fading is the decrease in 
the total electroactive area. In this sense, detailed studies of phase transformations during 
lithiation of FeS2 nanoparticles [9, 27] concluded that it proceeds via the radial movement of a 
reaction front into the particle, which consumes the pyrite and leaves behind intermixed Li2S and 
Fe domains with a larger total volume. Upon recharging, a tri-phasic contact point must be 
established between Li2S, Fe and Li+ in the electrolyte for the reaction to take place. Therefore, 
the change in the volume and phase segregation reduces the surface of contact in which these 
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three phases meet to react. Concomitantly, after 10 cycles important changes are also observed in 
RCT, which increases notably compared to the previous cycles. In this case, the main cause for 
the capacity fading is the sluggishness of the electrochemical processes because of the loss of 
active material. 

As a final remark, we would like to point out that the specific capacities are calculated 
based on the initial irreversible reaction of FeS2 and subsequent battery operation occurs by a 
still not fully understood mechanism. Therefore, “capacity fading” in Li/FeS2 is a phenomenon 
that should be revisited in the future with a complete characterization of the intervening species, 
to allow the assessment of the full reaction mechanism without doubts. 

In spite of the above discussed issues with pyrite’s electrochemical mechanism and 
capacity fading, the present cathode exhibits a competitive specific capacity. Fig.8displays the 
cyclability of Li-FeS2battery for 120 discharge/charge cycles (A) and the rate capability for 180 
cycles at various current densities (B). This cathode delivered a specific capacity of 470 mAh g-1 
after 120 cycles and showed capacities as high as 300 mAh g-1 even at current densities of 2.00 
A g-1. After high C rate cycling and when returning to the initial 0.10 A g-1 current density value, 
a retention of 92% of capacity is observed. The obtained results confirm the excellent 
electrochemical behavior of the material resulting from an inexpensive and simple method for 
developing potential cathodes for lithium batteries.  

 

Furthermore, a brief comparison with other FeS2 cathodes proposed in the 
literature(presented in Table 1)showsthat that the present cathode material is very competitive in 
terms of specific value and cyclability.The comparisonpresented here includes only equivalent 
systems that use pristine FeS2 as active cathode material, without considering its composites with 
carbon materials or other oxides. It has been postulated that the use of composite materials 
should boostcapacity retention due to the presence of different phases able to be lithiated and the 
possibility of buffering FeS2 structural changes during lithiation/delithiation.[3, 35]Nonetheless, 
and to the best of our knowledge, in most reportedpublications a strong capacity fading is also 
observed, typical of conversion-type cathodes.[46] 

 



 

Fig. 7 (A) Impedance spectra of FeS
(1.00 V, upper panel) and charged (3.00 V, low panel) for the first (black squares), second (red 
squares) and tenth (green squares) cycle. EI experimental conditions: 
range = 105 – 10-2 Hz. (B) Charge transfer resistance (
capacitance (Ceff, right axis, blue squares) obtained from the EIS of panel 
potential of discharge/charge galvanostatic cycling. For a better interpretati
values corresponding to each cycle have been depicted using the same color scheme as that 
employed in panel A 

 
Impedance spectra of FeS2 cathodes at o.c.p. (blue circles in the inset), discharged 

(1.00 V, upper panel) and charged (3.00 V, low panel) for the first (black squares), second (red 
squares) and tenth (green squares) cycle. EI experimental conditions: Edc

Charge transfer resistance (RCT, left axis, black squares) and effective 
, right axis, blue squares) obtained from the EIS of panel 

potential of discharge/charge galvanostatic cycling. For a better interpretati
values corresponding to each cycle have been depicted using the same color scheme as that 
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. (blue circles in the inset), discharged 
(1.00 V, upper panel) and charged (3.00 V, low panel) for the first (black squares), second (red 

dc = 0.010 V, frequency 
, left axis, black squares) and effective 

, right axis, blue squares) obtained from the EIS of panel A, as a function of the 
potential of discharge/charge galvanostatic cycling. For a better interpretation of the graphics, the 
values corresponding to each cycle have been depicted using the same color scheme as that 



 

Fig. 8 (A) Cycling performance of the FeS
and charge (black circles) processes. The right axis shows the coulombic efficiency. 
capability of the FeS2 cathode at various current densities

 

Table 1. Comparative analysis of cathodes 
batteries. 

Active material* 

Initial s
capacity

[mAh g

FeS2 nanoparticles 

FeS2 – porous 
microsphere 

FeS2 

FeS2 

FeS2 

FeS2 microsphere 

FeS2 

FeS2 nanoparticles 

 

4. Conclusions 

Pyrite was obtained via 
followed by a thermal treatment. 

Cycling performance of the FeS2 cathode at 0.10 A g-1 for the discharge (red circles) 
and charge (black circles) processes. The right axis shows the coulombic efficiency. 

cathode at various current densities 

alysis of cathodes prepared using FeS2 as active material

Initial specific 
capacity 

mAh g-1] 

Current 
density 

Specific capacity
after cycling
(number of 

cycles)[mAh g

574.6 0.2 mA cm-2 332 (2)

425 0.10 A g−1 216.8 (730)

849 0.2 mA cm-2 492 (50)

̴ 800 0.2 C 250 (70)

̴ 230 0.5 C 76.9 (200)

842 0.1 A g-1 683 (10)

740 0.5 C 185 (50)

1450 0.1 A g-1 470 (120)

obtained via a scalable and low cost mechanochemical synthetic rout
followed by a thermal treatment. The obtained FeS2powder was single phase and 
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for the discharge (red circles) 

and charge (black circles) processes. The right axis shows the coulombic efficiency. (B) Rate 

as active material for lithium 

pecific capacity 
after cycling 
(number of 

mAh g-1] 

Ref. 

332 (2) [43] 

216.8 (730) [25] 

492 (50) [36] 

250 (70) [35] 

.9 (200) [3] 

683 (10) [17] 

185 (50) [23] 

0 (120) Our work 

mechanochemical synthetic route, 
powder was single phase and consisted of 
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spherical particles with a mean particle size of 85 nm and crystallite size of 18 nm. The as-
prepared pyrite was tested as an active material for cathodes in lithium batteries. The material 
presents a high specific capacity of 470 mAh g-1 after 120 cycles, without memory effects after 
workingwith current densities as high as 2.00 A g-1. Thesimplicity of preparation and the high 
cyclability,make the proposed synthetic route promising for practical applications in real 
technological processes.Our work also points out the need of carrying on a deeper study about 
the electrochemistry behind the mechanisms that take place when using pyrite as a cathode 
material, in order to have a better understanding of capacity fade related with these cathodes. 
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