Detailed analysis of an Eigen quasispecies model in a periodically moving sharp-peak landscape

Armando G. M. Neves
aneves@mat.ufmg.br

Departamento de Matemática
Universidade Federal de Minas Gerais
BRASIL
Supported by PRPG/UFMG

6o BIOMAT, La Falda, August 4 to 7, 2014
The problem

Under which conditions on the mutation rates can a virus survive if its environment (immune system persecution) changes periodically?
The Eigen quasispecies model

- Introduced by Eigen in the 1970’s to study the origin of life.
- Later used to study virus replication, taking into account the possibility of replication errors.
- A virus genome is $\sigma = (s_1, s_2, \ldots, s_\ell)$ with $s_i \in \{0, 1\}$.
- ℓ is large, in the range 10^3 to 10^5 for viruses.
- Genome space is $\Lambda = \{0, 1\}^\ell$.
- Phase transitions, methods from Statistical Mechanics and Quantum Field Theory. Interest of physicists.
The Eigen model in general

• If $p_\sigma(t)$ be the virus population with genome σ in generation t, then

$$p_\sigma(t + 1) = \sum_{\sigma' \in \Lambda} W_{\sigma, \sigma'} f(\sigma', t) p_{\sigma'}(t). \quad (1)$$
The Eigen model in general

- If $p_{\sigma}(t)$ be the virus population with genome σ in generation t, then

$$p_{\sigma}(t + 1) = \sum_{\sigma' \in \Lambda} W_{\sigma, \sigma'} f(\sigma', t) p_{\sigma'}(t).$$

- $f(\sigma, t)$ is the fitness at time t of individuals with genome σ, i.e., the number of its descendants in generation $t + 1$.
The Eigen model in general

- If \(p_{\sigma}(t) \) be the virus population with genome \(\sigma \) in generation \(t \), then

\[
p_{\sigma}(t + 1) = \sum_{\sigma' \in \Lambda} W_{\sigma,\sigma'} f(\sigma', t) p_{\sigma'}(t). \tag{1}
\]

- \(f(\sigma, t) \) is the *fitness* at time \(t \) of individuals with genome \(\sigma \), i.e., the number of its descendants in generation \(t + 1 \).

- \(W_{\sigma,\sigma'} \) is the probability that an individual with genome \(\sigma' \) has a descendant with genome \(\sigma \).
The Eigen model in general

- If $p_\sigma(t)$ be the virus population with genome σ in generation t, then

$$p_\sigma(t + 1) = \sum_{\sigma' \in \Lambda} W_{\sigma,\sigma'} f(\sigma', t)p_{\sigma'}(t).$$ \hspace{1cm} (1)

- $f(\sigma, t)$ is the fitness at time t of individuals with genome σ, i.e., the number of its descendants in generation $t + 1$.
- $W_{\sigma,\sigma'}$ is the probability that an individual with genome σ' has a descendant with genome σ.
- We shall use Hamming distance $d(\sigma, \sigma')$ to measure distance between genomes:
The Eigen model in general

• If \(p_\sigma(t) \) be the virus population with genome \(\sigma \) in generation \(t \), then

\[
p_\sigma(t + 1) = \sum_{\sigma' \in \Lambda} W_{\sigma, \sigma'} f(\sigma', t) p_{\sigma'}(t) .
\]

(1)

• \(f(\sigma, t) \) is the fitness at time \(t \) of individuals with genome \(\sigma \), i.e., the number of its descendants in generation \(t + 1 \).

• \(W_{\sigma, \sigma'} \) is the probability that an individual with genome \(\sigma' \) has a descendant with genome \(\sigma \).

• We shall use Hamming distance \(d(\sigma, \sigma') \) to measure distance between genomes:

\[
d(\sigma, \sigma') = \sum_{i=1}^{\ell} |s_i - s'_i| .
\]
Let μ be the per site mutation probability.

Naturally, $W_{\sigma\sigma'} = \mu^d (1 - \mu)^{\ell-d}$, where d is the Hamming distance between σ and σ'.

As μ is very small, of order 10^{-7} or less, a useful simplification is taking

$$W_{\sigma\sigma'} = \begin{cases}
1 - \beta, & \text{if } d(\sigma, \sigma') = 0 \\
\mu, & \text{if } d(\sigma, \sigma') = 1 \\
0, & \text{if } d(\sigma, \sigma') > 1
\end{cases}, \quad (2)$$

where $\beta \equiv \mu \ell$ is the genome mutation probability.
A simple and popular choice for the fitness is the *sharp-peak landscape* (SPL):

\[
f(\sigma, t) = \begin{cases}
1 + k, & \text{if } \sigma = \sigma_0(t) \\
1, & \text{if } \sigma \neq \sigma_0(t)
\end{cases}.
\] (3)
A simple and popular choice for the fitness is the *sharp-peak landscape (SPL)*:

\[
f(\sigma, t) = \begin{cases}
1 + k, & \text{if } \sigma = \sigma_0(t) \\
1, & \text{if } \sigma \neq \sigma_0(t)
\end{cases}
\]

(3)

The fittest genome \(\sigma_0(t)\) at time \(t\) is called the *wild type* or *master sequence*.

Parameter \(k > 0\) is called the *selective advantage* of the master sequence above all other genomes.
The error catastrophe

- In the static SPL, if β is too large, or k too small, the virus population will not be concentrated within genomes close to the master sequence, being spread throughout genome space.
- In the static SPL, this error catastrophe will occur if $\beta > \beta_{u}^{\text{static}}$, where
 \[\beta_{u}^{\text{static}} = \frac{k}{1 + k}. \] (4)
- The error catastrophe is a transition between a localized phase in Λ, the quasispecies, and a delocalized phase in Λ, in which the virus population is not able to maintain genetic identity.
The Nilsson-Snoad model

Nilsson and Snoad proposed in Phys. Rev. Lett. 84 (2000) a time-dependent version of the SPL in which at every \(\tau \) generations the master sequence hops to a random nearest neighbor in \(\Lambda \).

- Nilsson and Snoad treated the model using several questionable approximations. They found not only the well-known error catastrophe characterized by an upper threshold \(\beta_{NS}^u \), but also an adaptability catastrophe characterized by a lower threshold \(\beta_{NS}^l \).
- A quasispecies will exist if \(\beta_{NS}^l < \beta < \beta_{NS}^u \).
The Nilsson-Snoad model

- Nilsson and Snoad proposed in Phys. Rev. Lett. 84 (2000) a time-dependent version of the SPL in which at every τ generations the master sequence hops to a random nearest neighbor in Λ.
- The idea is to model a viral population forced to periodically change its master sequence due to persecution by an immune system.
The Nilsson-Snoad model

- Nilsson and Snoad proposed in Phys. Rev. Lett. 84 (2000) a time-dependent version of the SPL in which at every τ generations the master sequence hops to a random nearest neighbor in Λ.
- The idea is to model a viral population forced to periodically change its master sequence due to persecution by an immune system.
- Nilsson and Snoad treated the model using several questionable approximations. They found out not only the well-known error catastrophe characterized by an upper threshold β_{u}^{NS}, but also an adaptability catastrophe characterized by a lower threshold β_{l}^{NS}.
- A quasispecies will exist if $\beta_{l}^{\text{NS}} < \beta < \beta_{u}^{\text{NS}}$.
• In Phys. Rev. E 82(3):031915 (2010), we have shown that the conclusions by Nilsson and Snoad about the existence of upper and lower thresholds were correct.

• But their approximation scheme was not so much accurate, particularly for small values of the selective advantage k.

$k = 0.5$ $k = 1.5$
Some ideas about our techniques

- Nilsson and Snoad divide the virus population into 3 classes: viruses in the present master sequence, viruses in the next master sequence and all others.
- Existence of a quasispecies turns out to be the calculation of the dominant eigenvalue of a 3×3 matrix.
- We divide instead the population into $M + 1$ classes: each of the M genomes which are going to be master sequences at some time plus one class for all other genomes.
- M should be of order 2^ℓ, but smaller values produce almost the same results.
- We seek the dominant eigenvalue of the non-negative matrix $A = S^{-1}E_1^\tau$, where E_1 gives the evolution for one generation while the master sequence remains unchanged and S represents the shift of the master sequence after τ generations.
Some ideas about our techniques 2

- By the Perron-Frobenius theory for non-negative matrices, the dominant eigenvalue λ_{PF} is given by the maximum over non-negative vectors of the Collatz-Wielandt function

$$f_A(v) = \min_{v_i \neq 0} \frac{(Av)_i}{v_i}.$$

- The vector v which maximizes the above function is an eigenvector corresponding to λ_{PF}.

- For any vector v, $f_A(v)$ is a lower bound to λ_{PF}. If v is a good approximant to the dominant eigenvector, $f_A(v)$ will be a large lower bound approximating λ_{PF}.

- If e_k is the k-th vector in the canonical basis for \mathbb{R}^M, a good guess for the dominant eigenvector is

$$v(\delta) = \delta e_1 + (1 - \delta) e_M.$$

- It is straightforward to find the value of $\delta_{\text{max}} \in [0, 1]$ maximizing $f_A(v(\delta))$.
Some ideas about our techniques 3

Surprisingly, \(f_A(\nu(\delta_{\text{max}})) \) is not only a lower bound, but a very good approximation for \(\lambda_{PF} \).

\[
\lambda_{PF} \approx \frac{(1 + k)^{\tau}(2 + k)}{k \ell} \beta (1 - \beta)^{\tau-1}.
\]

\(k = 0.5, \quad \tau = 18, \quad \ell = 100 \)