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Abstract. A Tsallis-statistics-based generalization of the gradient descent dynamics (using non-
extensive cost functions), recently introduced by one of us, is proposed as a learning rule in a
simple perceptron. The resulting Langevin equations are solved numerically for different values
of an indexq (q = 1 andq 6= 1 respectively correspond to the extensive and non-extensive
cases) and for different cost functions. The results are compared with the learning curve (mean
error versus time) obtained from a learning experiment carried out with human beings, showing
an excellent agreement for values ofq slightly above unity. This fact illustrates the possible
importance of including some degree of non-locality (non-extensivity) in computational learning
procedures, whenever one wants to mimic human behaviour.

1. Introduction

Learning from examples is one of the topics of greatest current interest in the field of
neural networks [1]. Learning procedures (orlearning rules) are, in general, synaptic
modification algorithms that allow an arbitrarily connected network to develop an internal
structure appropriate for a particular task. This goal can be achieved on the basis of direct
comparison of the output of the network with known correct answers (examples). The
synaptic couplings are then modified in order to reproduce the examples as well as possible.
This is sometimes calledsupervised learning. Learning rules can also be interpreted as a
dynamical search of global minima of somead hoc introducedcost function, through the
space of synaptic couplings.

The constraints to be imposed over the cost function are, in general, very weak, allowing
enormous freedom of choice. One of the most widely used constraints is that the cost
function should induce alocal learning rule. This means that the variation of the synapse
between two neurons at a given time should depend only on the instantaneous post-synaptic
potentials (PSP) received by them, and not on thePSPreceived by the rest of the neurons.
Such a requirement has a heuristic character and, although quite plausible from a biological
point of view, it is not supported by concrete empirical evidence. Therefore, it is of interest
to investigate the effects of introducingnon-local learning rules in a neural network.

In this paper we analyse the dynamical effects of some kinds of cost functions that induce
non-local rules, in a simple perceptron. The associated dynamics is a Tsallis-statistics-based
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generalization of the gradient descent dynamics, recently introduced by one of us [2]. The
effects of different choices of the cost function, which generate both local and non-local
rules, are analysed in the problem of ‘memorization’, i.e. the perceptron learns a single
random pattern, uncorrelated withp previously learnt ones. The results are compared with
the learning curve(mean error versus time) obtained from a learning experiment carried
out with human beings [3]. In section 2 we briefly describe the experiment. In section 3
we analyse the proposed learning dynamics. In section 4 we present the numerical results
and compare them with the experiment; in section 5 we draw our conclusions.

2. The experiment

The ‘memorization’ experiment consists of a series of steps, during which the individual
(the subject of the experiment) has to ‘learn’ a visual pattern. The pattern is a 5× 5 grid
(or checkerboard) filled by circles and crosses (randomly chosen once for ever).

At every step the grid is shown to the individual for a period of eight seconds and
then hidden. Then, the individual is asked to reproduce the pattern in an empty grid; when
he (she) finishes, the reproduced picture is removed and the individual is left to rest for
ten seconds before a new step starts. The procedure is repeated until the visual pattern is
reproducedexactly, i.e. the Hamming distance (number of squares in which the patterns
are different)H = 0 in two successive steps, or after 10 steps even ifH 6= 0, in order to
avoid fatigue effects (see [3] for details). By plottting the Hamming distanceH versus the
number of times (steps) the picture has been shown, alearning curveis obtained for every
individual.

Figure 1. Mean Hamming distance between the pattern presented
to and the pattern reproduced by the individuals versus the
number of times the picture has been shown.

The experiment was performed on a ‘human sample’ of 92 individuals composed of
students of humanistic disciplines at the Federal University of Rio de Janeiro (Brazil). The
mean learning curve (i.e. the mean value ofH computed over the sample at every step)
versus the number of stepst is shown in figure 1.

3. The learning dynamics

In order to mimic the human behaviour in the memorization experiment, with learning
in a neural network, we consider a simple perceptron [4], composed of an input layer of
N binary neuronsSi = ±1, and an output layer ofN analogueneurons (real variables)
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Figure 2. Simple perceptron with equal numberN of input and output neurons. Every output
neuron can, in principle, be connected to all the input neurons.

σiε[−1, 1] (see figure 2). The activation law for the output neurons is given by

σi

[{
Sj

}] = tanh

[
g√
N

N∑
j=1

JijSj

]
(1)

where thegain g > 0 is an arbitrary real number and{Jij } are real-valuedsynaptic efficacies,
whose values are restricted by the normalization [5]

N∑
i=1

J 2
ij = N . (2)

Let us start by considering the simplest case of learning a single binary pattern{ξj }, with
j = 1, 2, . . . , N , whereξj = ±1 are independent random variables with〈ξj 〉 = 0. Starting
from a random initial configuration of the synaptic couplings (subject to the constraint (2))
we look for a stochastic dynamics, such that these couplings evolve to a final configuration
in which the network stores the input pattern associatively. In other words, it maps the
pattern{ξj }, as well as any other state that is sufficiently close, into an analogue pattern
{σj ≈ ξj }, j = 1, 2, . . . , N , which is as similar as possible to{ξj } within the present
constraints. This task can be carried out by different dynamics, the most widely used being
the gradient descentmethod, ruled by the following set of Langevin equations:

dJij

dt
= − ∂V

∂Jij

+ ηij (t) (3)

whereηij is white noise with〈ηij (t)〉 = 0 and 〈ηij (t)ηi ′j ′(t ′)〉 = 2T δii ′δjj ′δ(t − t ′). The
cost functionV is some measure of the deviation of the output of the networkσj ({ξj }) from
the desired output{ξj }. The cost function should be minimal whenever the two agree. The
usual choices ofV areextensivefunctions of the typeV = ∑

j Vj (Jij ) where the sum runs
over the output neurons, andVj depends only on the synapses associated with the output
neuronj .

This kind of dynamics generates alocal learning rule, i.e. the updating of the coupling
Jij depends only on the local field at the output neuronj :

dJij

dt
= − ∂Vj

∂Jij

+ ηij (t) . (4)

Hence one can work with one single output neuron.
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In this work we propose a generalization of this method in which the cost functionV

in (3) is replaced by anon-extensivefunction V defined by the map [2]

V = 1

β(q − 1)
ln

[
1 + β(q − 1)V

]
(5)

whereβ ≡ 1/T and the indexq is an arbitrary real number such thatq > 1. Consequently,
equation (3) is replaced by

dJij

dt
= − 1

1 + β(q − 1)V

∂V

∂Jij

+ ηij (t) . (6)

Note that this new dynamics inducesnon-local learning rules (compare equations (4)
and (6)). Consequently, one has to consider the full set of output neurons in the updating
of every coupling, as can be infered from the non-linear structure of (6).

This dynamics leads, for long times, to a generalized equilibrium probability distribution
for the couplingsJij of the form [2]:

p({Jij }) =
[
1 − β(1 − q)V

]1/(1−q)

Zq

(7)

with

Zq =
∫

dµ({Jij })
[
1 − β(1 − q)V

]1/(1−q)
(8)

where dµ({Jij }) is a normalized measure in the coupling space that takes into account the
constraint (2). The probability distribution (7) can be derived by optimizing the Tsallis
entropy [6]:

Sq

[
p({Jij })

] = 1

q − 1

{
1 −

∫
dµ({Jij })

[
p({Jij })

]q

}
(9)

with the constraint [7]

〈V 〉q ≡
∫

dµ({Jij })
[
p({Jij })

]q
V ({Jij }) = constant. (10)

Probability distributions derived from this entropy have been applied recently to generate
very efficient optimization algorithms [8]. Physical applications of this entropy formalism
can be found in [9, 10].

In the limit q = 1 the standard gradient descent equation (3) is recovered from (6) and
the equilibrium distribution is the canonical Boltzmann–Gibbs one [5].

We now introduce thequadratic error function

ε ≡ 1

4N

N∑
j=1

(
σj (ξ) − ξj

)2
(11)

= 1

4N

N∑
j=1

[
1 + tanh2

(
g√
N

Jj · ξ

)
− 2 tanh

(
g√
N

Jj · ξ ξj

)]
(12)

with

Jj ≡


J1j

J2j

...

JNj

 ξ ≡


ξ1

ξ2
...

ξN

 . (13)
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In the limit g → ∞, equation (1) reduces to

σj (ξ) = sgn

[
g√
N

Jj · ξ

]
and equation (12) gives the Hamming distance between the input and output patterns,ξ and
σ(ξ), respectively.

In this paper we consider two different choices for the cost functionV :

(a) V = Nε [5]

(b) V =
∑

j

(
κ − λj

)2
2

(
κ − λj

)
whereκ is a positive constant, thestability parametersλj are defined asλj ≡ ξjJj · ξ/

√
N

[11] and2(x) is the Heaviside function. The error function (12) can be expressed as

ε = 1

4N

N∑
j=1

[
1 + tanh2

(
gλj

) − 2 tanh
(
gλj

)]
. (14)

Our aim is to calculate the time evolution of〈〈ε〉〉, where 〈〈· · ·〉〉 denotes a double
average over the initial conditions and the realizations of the noise. Note that, for both
definitions, the cost function depends on theJij through the parametersλj , whose time
evolution is obtained from (6) as follows:

dλj

dt
= − 1

1 + β(q − 1)V

∂Vj

∂λj

+
√

T η′
j (t) (15)

with

(a) Vj (λj ) = 1

4N

[
1 + tanh2

(
gλj

) − 2 tanh
(
gλj

)]
(b) Vj (λj ) = (

κ − λj

)2
2

(
κ − λj

)
where

η′
j (t) ≡ 1√

T N

∑
i

ξiηij (t)

is white noise with〈η′
j (t)〉 = 0 and〈η′

j (t)η
′
j ′(t ′)〉 = 2δjj ′δ(t − t ′).

Starting from different initial configurations forλj we calculate〈〈ε〉〉 by solving
equation (15) numerically. Since the initial values of theJj are chosen from a uniform
distribution in theN -dimensional hypersphere of radius

√
N , it is easy to see that the initial

values of theλj ’s follow a Gaussian distribution, with mean value 0 and variance 1.
Before we present our results, let us briefly discuss the problem of learning one single

pattern, once the network has already learntp previous ones. In this case, for any
patternµ one must introduce a set of stability parameters{λµ

j }, with j = 1, . . . , N and
µ = 1, . . . , p + 1. Instead of the set ofN equations given by (15) we will have a set
of (p + 1) N coupled Langevin equations. However, for uncorrelated patterns, it can be
shown that forN � p these equations decouple and the stability parameter for each pattern
evolves independently of the others. So, in such a limit we recover equation (15).
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4. Results

In this section we present the numerical calculations of〈〈ε〉〉 for different values of the
parametersq, T and g (we verified that varyingκ does not introduce qualitative new
effects, so we kept it fixed atκ = 1) and for both definitions of the cost function introduced
in the previous section. The Langevin equations are solved by standard methods [12] for
N = 25 (the number of bits corresponding to the 5×5 checkerboard referred to previously).

Figure 3. Mean error〈〈ε〉〉 versus timet (arbitrary units), for typical values ofq and T ,
(g = 0.69 andN = 25). (a) Cost functionV = Nε. (b) Cost functionV = (κ − λ)2 2(κ − λ)

with κ = 1.

In figure 3 we present the learning curves〈〈ε〉〉 versus timet for typical values ofq
at low T (g andκ fixed), for both choices of the cost function. For long times they both
display for all values ofq an exponential decay. For short times, the qualitative behaviour
changes drastically in both cases whenq departs from 1, showing a slow decay forq > 1.
Moreover, forq = 1, the learning curves are convex functions (positive curvature) for all
t while, for q > 1, they are concave at shortt , changing their curvature at intermediate
times. The last behaviour can be observed in figure 1. We finally observe that learning is
slower whenq increases above unity. These effects can be easily understood by looking
at equation (6). For short times the mean value of the cost functionV is relatively high,
and the non-local factor

[
1 + β(q − 1)V

]−1
diminishes (forq 6= 1) the driven effect of

the gradient term. As the system evolvesV → 0 and 1+ β(q − 1)V → 1; therefore, for
long times, the dynamics becomes the gradient descent one and〈〈ε〉〉 presents theq = 1
exponential decay. Note that this property is quite general for this kind of dynamics and
will also be present in multilayer neural networks.

We now try to fit the experimental results with the learning curves obtained with our
model. Since the microscopic time scale of the experiment is not accesible, we have to
rescale the time appropriately both for the experimental and perceptron data, in order to
make them comparable. We define, for every learning curve, a characteristic timetm, as the
time for which the mean error decays to half of its maximum value, i.e.

〈〈ε〉〉(tm) = 1
2〈〈ε〉〉(0)

and we usetm as the time unit. The value of〈〈ε〉〉(0) for the experimental curve is estimated
by a quadratic extrapolation of the first data points.
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Next, we note that the value of〈〈ε〉〉(0) for the theoretical curves is independent of
the choice of the cost function and ofq, since it is always a Gaussian average of (14).
Hence, it only depends on the gain parameterg, which can be fitted in order to reproduce
the experimental result. A numerical calculation yields the valueg = 0.69 (to reproduce
〈〈ε〉〉(0) = 0.316).

Finally, the values ofT can be bounded by noting that the learning curves decay
monotonically witht . Hence, the minimum value of the experimental curve can be taken as
an upper bound for the asymptotic value of〈〈ε〉〉 at t → ∞. This value can be calculated
numerically as a function ofT , from the equilibrium distribution (7). Since the equlibrium
value of 〈〈ε〉〉 is an increasing function ofT , we obtain the upper boundT < 0.01 (to
guarantee〈〈ε〉〉(∞) < 0.04).

Figure 4. Mean error (normalized Hamming distance) versus rescaled timetm. Full circles
correspond to the learning experiment with human beings (see figure 1); full curves correspond
to the perceptron model (g = 0.69). (a) Cost function V = Nε. (b) Cost function
V = (κ − λ)2 2(κ − λ) with κ = 1.

In figure 4 we compare the rescaled experimental data with the theoretical learning
curves〈〈ε〉〉 versust/tm for different values ofq andT , for both choices of the cost function.
The best fitting is obtained for the cost function (b) withT = 0.001 andq = 1.0005 (κ = 1).
It is worth noting that, while for the cost function (a) the rescaled learning functions vary
appreciably withq (at least forq near to one), for the cost function (b) the rescaled curves
vary very little with q, for 1.005< q < 1.01.

5. Conclusions

We have analysed the time evolution of the mean error in the supervised learning dynamics
of a perceptron, for the particular task of memorizing a single pattern uncorrelated withp

previously learnt ones (withp � N ). Our results suggest that, at short times, the dynamics
induced by an extensive cost function (local learning rules) can be very different from that
induced by a non-extensive cost function (non-local learning rules).

The agreement with the experimental results is quite impressive (at least at a
phenomenological level), especially if we consider that they are reproduced with an
extremely simplified model (a simple perceptron with one single pattern), far removed from
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a complex system such as the human brain. This fact suggests that some aspects of the
learning dynamics in biological systems could be independent of the detailed microscopic
structure of the neural network, depending only on some overall characteristics. In this
sense, some kind of universality could exist in these processes, like that appearing in critical
phenomena, where the asymptotic behaviour of most relevant variables can essentially be
determined by a few macroscopic parameters [13]. Moreover, our results suggest that the
non-locality of the learning rules (and therefore equilibrium statisticsother than the usual
Boltzmann–Gibbs one) could be one such universal aspect, and perhaps a very important
one in understanding learning processing in real biological systems. By the way, let us note
that the influence of the holistic (i.e. context-dependent [7]) nature of the dynamics used
herein in the learning process is consistent with the information interpretation of the entropy
(9) in the context of statistical inference [14]. This is, of course, only one possible non-
local learning model of many, such as multilayer perceptrons. However, using a non-local
dynamics in a simple perceptron has the computational advantage that we have to solve only
N coupled stochastic differential equations (equations (15)) for the stability parameters{λj },
instead of the set ofN2 equations for the synapses{Jij } (equations (6)). On the other hand,
using a noisy local dynamics in a multilayer perceptron with only one hidden layer for the
present problem implies solving a set of O(N4) coupled stochastic differential equations for
the synapses{Jij }, since they cannot be reduced as before.

We believe the results obtained with this simple non-local model are sufficiently
encouraging in this direction for it to be interesting to try studying the much more difficult
problem of a multilayer perceptron with a noisy local dynamics and see whether it can lead
to similar learning curves. Moreover, it would also be interesting to compare these results
with those due to other effects, such as the superposition of different learning rates.

It is worth noting that the experimental learning curves are best fitted by aq > 1
model instead of the more efficientq = 1 one (see figure 3). Note, however, that after a
transient period the learning curves decay exponentially, even forq > 1. In other words,
the biological solution to the memorization problem seems not to be the best one, compared
with the solutions that can be obtained by an artificial (externally designed) mechanism. It
is a known fact that, owing to its evolutionary origin, a biological brain does not necessarily
find the best solution, but only a good one, for a given problem (very interesting discussions
about the consequences of the evolutionary nature of biological brains can be found in [15]).
In fact, a similar phenomenon has been observed in a comparison between an experiment
of human learning, an algorithm of symbolic learning (ID3) and neural network learning
(perceptron) (see [16] and references therein).
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de Ćordoba (Argentina).



Simple perceptrons with non-extensive cost functions 149

References

[1] Watkin T L H, Rau A andBiehl M 1993Rev. Mod. Phys.65 499–556
[2] Stariolo D A 1994Phys. Lett.185A 262–4
[3] Tsallis A C, Lima A B, Tsallis C, Magalh̃aes A C N and Tamarit F A 1996 to be published
[4] Müller B and Reinhardt J 1991Neural Networks: An Introduction(Berlin: Springer)
[5] Seung H S, Sompolinsky H and Tishby N 1992Phys. Rev.A 45 6056–90
[6] Tsallis C 1988J. Stat. Phys.52 479
[7] Curado E M F and Tsallis C, J. Phys. A: Math. Gen.24 L69 (Corrigenda 1991J. Phys. A: Math. Gen.24

3187; 1992J. Phys. A: Math. Gen.25 1019)
[8] Tsallis C and Stariolo D APreprint Generalized simulated annealing
[9] Plastino A R and Plastino A 1993Phys. Lett.174A 384

Aly J J 1993Proc. Meeting (Aussois, France, 21–25 March 1993)ed F Combes and E Athanassoula (Paris:
Publications de l’Observatoire de Paris) pp 19–23

[10] Alemany P A and Zanette D H 1994Phys. Rev.E 49 956
[11] Horner H 1992Z. Phys.B 86 291–308
[12] Risken H 1984The Fokker–Planck Equation(Berlin: Springer)
[13] Binney J J, Dowrick N J, Fisher A J and Newman M E J 1993The Theory of Critical Phenomena(Oxford:

Oxford Science)
[14] Tsallis C, Deutscher G and Maynard R 1994Preprint

de Souza A M C and Tsallis C 1994Preprint
[15] Barlow H 1994Biology and Computation: A Physicist’s Choice(Advance Series in Neuroscience 3) ed

H Guttfreund and G Toulouse (Singapore: World Scientific) pp 5–14
Jacob F 1994Biology and Computation: A Physicist’s Choice(Advance Series in Neuroscience 3) ed

H Guttfreund and G Touluse (Singapore: World Scientific) pp 72–7
[16] Bernasconi J and Gustafson K 1994Network 5 203–27


