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Abstract. The one-dimensional-state Potts model with ferromagnetic pair interactions
which decay with the distance as J/r“ is considered. We calculate, through a real-space
renormalization group technique using Kadanoff blocks of lengtithe critical temperature

T (b, ¢, a) and the correlation length critical exponertb, ¢, «) as a function ot for different
values ofg. Some of the very few known rigorous results for gengralre reproduced by our
approach. Several asymptotic behaviours are derived analytically for2, 3 in theb — oo

limit. We also obtain extrapolated critical temperaturks=(oo) for arbitrary values ofx > 1

and forg = 2, 3, 4, which we believe approximate the exact ones well, except in the region near
« = 2. Furthermore, the use of another extrapolation procedure suitable only in the vicinity of
o = 2 led us to conjecture that thexact critical temperaturélz(q, @ = 2) is the same foany
value ofg. We also verify thaff.(q, « — 1)  (« — 1)~ Vg, which is consistent with a recent
conjecture of Tsallis.

1. Introduction

It is well known that one-dimensional spin models can present an ordered state at low
temperatures if the microscopic interactions fall off slowly enough with the distance [1-
6]. For example, in the case of the spgrising ferromagnet with long-range interactions
proportional tor;;* (wherer;; is the distance between the spins at siteand j), the
existence of a phase transition at a non-zero critical temperature was proven by Dyson [1]
for 1 < ¢ < 2 and by Félich and Spencer [5] fox = 2. Moreover, the thermodynamic
properties of the systems (the kind described above) near the critical point frequently present
new behaviours, which are absent in short-range (SR) models. Hence, the study of such
properties is needed in order to gain a deeper comprehension of the general theory of critical
phenomena.

Besides their fundamental theoretical interest in physics, microscopic models with long-
range (LR) interactions are of interest nowadays in view of their relationship with neural
systems modelling [7], where far away localized neurons interact through an action potential
which decays slowly along the axon. Other related problems are spin systems with RKKY-
like interactions (1r{; cosar;;)) which are present in spin glasses [8], critical phenomena
in highly ionic systems [9], Casimir forces between inert uncharged particles immersed in a
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fluid near the critical point [10], the kinetic Ising model with random spin exchangesy(L
flights) [11], phase segregation in model alloys [12] and pattern recognition [13].

In this paper we address thestate Potts model [14] with LR interactions, i.e. we
consider the Hamiltonian:

H=—Jzia5(aio,) (0;=1,2,...,q,¥i;J >0, 0 > 0) (1)
wp i

where to each sitej, we associate a Potts variable,, which can assume integer
values ¢; = 1,2,...,¢q), r;; is the distance (in crystal units) between siteand j (i.e.
rij=1li —jll=1273--.), J > 0 is the ferromagnetic coupling constant between nearest
neighbours$(o;, o;) is the Kronecker delta function, and the s@gw runs over all distinct
pairs of sites of a one-dimensional lattice @fsites. Thew — oo limit corresponds to the
first-neighbour model, while the = 0 limit corresponds to the infinite-range ferromagnet
which, after a rescaling — J/N, yields basically the mean-field approach.

This model, in its plain formulationo — oo of equation (1)) or in a more general
one with many-body interactions, is at the heart of a complex network of relations
between geometrical and/or thermal statistical models, such as for example various types of
percolation, vertex models, generalized resistor and diode network problems, classical spin
models, etc (see [15] and references therein).

On the other hand, the one-dimensional Potts model with LR interactions has definitely
not been studied so much. In particular, very few rigorous results for gepena known.

Let us summarize some of the most relevant results to date: (i) this model exhibits LR
order atfinite temperatures [16] < Tc(q,«) for 1 < a < 2; for « — 1 the critical
temperature diverges and far< 1 the thermodynamic limit is not defined and the system
becomes non-extensive; (ii) far > 2 (SR interactions) it has no phase transitiorfimite
temperatures [16] for aly > 1, more preciselyl; = O; (iii) it has been proved that for

o = 2 the order parameter is discontinuousTat T, # O for anyq [16]; (iv) for ¢ = 1

the percolation threshold satisfiegpl < 2¢(«) for 1 < o < 2, where¢ (@) is the Riemann
Zeta function [17].

All the following additional results correspond to the= 2 case, which is, up to now,
the best one studied: (v) for £ o« < 1.5 the critical exponents are classical [18]; (Vi)
the region 15 < o < 2 shows non-trivial critical exponents, which are not known exactly.
Approximate results in the latter region were obtained by different methods such as (among
others): series expansions [19], finite-range scaling approximations [20], coherent anomaly
method [21], real-space renormalization group [22fexpansions [3, 6], around = 2
where the critical behaviour is of an essential singularity type [23],a@ard1.5.

Some approximate results for the critical temperature and the correlation length critical
exponentv were obtained for a wide range of values @fusing finite-range-scaling
calculations [24].

Thea = 2 (i.e. the ¥r? potential) case is of particular interest becausegfer 2 it can
be mapped onto the spi%ﬂ(ondo problem [25] (which is related to recent developments in
high temperature superconductivity [26]) and for a general valugef2 it may be related
to higher spin generalizations of the Kondo problem [23].

In order to calculate the critical temperature and the critical exponaritthe g-state
LR Potts model in the extensive regiond o < 2 we use a real-space renormalization
group (RG) method, the cumulant method of Niemeijer and van Leeuwen [27], based on
a construction of Kadanoff blocks using the majority rule. Although the convergence of
the cumulant method for a fixed block size can become questionable in some cases (for a
discussion on the advantages and disadvantages of the method see, for example [28,29]), a
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Figure 1. Renormalization group transformation using Kadanoff blocks of leiagth3 in the
one dimensional lattice;; ; is the distance between the blocksand J.

great improvement has been obtained instie cumulant result for the critical temperature

of simple ferromagnets as one increases the cell size. In a recent work [22], one of us adapted
the Niemeijer—van Leeuwen RG method [27] to the one-dimensional LR Ising model (in this
case it can be shown that the cumulant expansion becomes a series expansion in powers of
[22] 1/b%). In the case of; = 2 states the tie-breaking problem in the majority rule can be
easily avoided by considering only blocks with an odd humber of siteg; for3 this ansatz

does not work. Hence, in this paper we generalize the above technique by introducing an
equally probable tie-breaking majority ruléNe expect that this method applied to blocks

of increasing length$, together with our proposed extrapolation for> oo, gives good

results for the Potts model, provided the phase transition is a second-order one [15]. The
paper is organized as follows. In section 2 the general RG formalism is described. In
section 3 we present our results which recover those of [22]¢fee 2. Finally, the
conclusions are given in section 4.

2. The RG formalism

We start by constructing Kadanoff blocks of length> 1, as shown in figure 1 for the
particular caseb = 3; we will consider, for simplicity, only odd values &f herein. The
parametetb characterizes theescaling lengthof the RG transformation. The blocks will
be numbered by capital letters. We will assign a block-spin variable- 1,2,...,4 to
every block/. Let us denote by/ =1,2,...,q (i=1,2,---,b; 1 =1,2,---, N/b) the
spin state at theth site of the block/. Then, defining the dimensionless Hamiltonian

N/b N/b 1 L, . .
HE—KZZZZW(S(@,UJ) (i #J) 2)

I1=1J=1iel jeJ "1

with K = 8J (8 = 1/kpT; hereafter we takép = 1), a renormalized (block) Hamiltonian
is determined by the following RG transformation:

e MO =Tr . (P(o/), {o;De ™). ®)
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The symbol T, , denotes a sum over all the configurations of site- -spihsC is a spin-
independent constant and

N/b

P({o/}. o) = [ P10/}, o)) @)
1=1

is a weight function which characterizes the majority rule veitjually probable tie-breaking

that means:

p 1/m if one of them major subgroups ofo/} is in the stater; 5)

"o otherwise.

For instance, in the cage= 5, ¢ = 4 with {al.'} ={1,1,4,4,3} ando; =4 thenP; = %
The Hamiltonian;H, can be divided into two part${ = Ho+ V, whereHo =), H(’)

andV =Y, ; Vis; Hg includes only the interactions between spinside the block 1,

whereasV;; includes the interactions between spins belongindiff@erentblocks 7 and J.

Introducing the intra-block expectation values:

(O)o = Zio Tf{a/;{P({GiI}, {o7}) exp[~Ho({o/ D]O} (6)
with

Zo=]]% @

1

and

Zy = Trier Pi({o/'}, {o7}) exp[-Ho({o] D] (8)
we can rewrite equation (3) as:

e "0 = ZoeV)o. ©

Using a cumulant expansion ¢¢")o, a first-order approximation ofH’ can be obtained
through:

H ~ (V)olssp= Y _ (Vis)olsdp (10)

.

where sdp refers to the spin dependent parf{«n of the resulted average.
Let r;; be the distance between the centre sites of the blécknd J (see figure 1),
measuredn units of the rescaling length.ld~or r;; > 1 we can approximate [22]

rij %bl’]‘]. (11)
Then

ZZ (8(/, o))olsdp (12)

I’” iel jel

Since the expectation value (6) is carried out with a block-independent probability
distribution it follows that

(VIJ>O|sdp% -

q
(80 0o = (8. D30} . D)o (13)
=1
q
= (8(o/. D)o(8(a] . D)o. (14)

=1
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On the other hand, by symmetry, one has that:
(8(a/, D)o =ai(K,q,0)8(a7,1) + bi(K, ) (15)

whereq; andb; are block-independent functions &f, «, ¢ and the site. By combining
equation (15) with equations (10), (12) and (14), and by using the fac}ifiats(o;, 1) = 1
and) /_, 8(a;,1)8(c), 1) = (o}, o)) one obtains that:

1 ,
H =—-K,(K,q,a) Z —8(0y,07) (16)
I,7) rIJ
where
KT 2
K,(K,q,a)= ba[;ai(&q,a)} (17)

is our RG recurrence equation. By using equation (15) we can expressq, o) as:
1
ai(K5 q, a) = m[q(a(o—lla 1))0|U;=1 - l] (18)

Since thenth cumulant of(exp(—V)) is of the order of 1»"*, approximation (10) can

be seen as the leading term in a series expansion [22] of equation (3) in powefs*of 1
Therefore, it is expected that the results will be systematically improved for increasingly
high values ofp.

3. Results

3.1. Analysis of the recurrence equation

We now analyse the recurrence equation (17) and its fixed pdifits= K, (K*, g, «) as
a function of« for different values ofy > 2. The typical structure of equation (17) is as
follows. It always shows two trivial fixed pointsk = 0 (T = o0) and K = oo (T = 0).
From equation (18) we found that(K, ¢, a) ~ 1Vi,q,«a for K >> 1 (T — 0); hence,
from equation (17) we obtain the asymptotic behavié(i(K, g, o) ~ b*>*K Vq. For
low values of« the gradient ofK, (K, q,«) at K = 0 is greater than one and it does
not present a (non-trivial) fixed point for finite values &f In this case the fixed point
K = 0 is repulsive and thereforg = oco. For intermediate values af, K;(K, g, @)
possess a hon-trivial fixed point at finit€¢ = K.(b,q,a) = J/Tc(b,q, ). Fora > 2
the gradient ofK, (K, ¢, «) is less than one and there is again no fixed point at fiKite
In this case, however, the fixed poikt = O is attractive and therefor& = 0 for all
values ofb, recovering the exact result. Therefore, some valy@, ¢) exists such that
(i) Tc = oo for a < ay(b, q); (i) there is a phase transition at finite temperatig@, g, «)
for a1(b, q) < o < 2 and (iii) T = 0 for o > 2.

The borderline valueri (b, ¢) is determined by the conditionkd,/dK || x—o = 1. This
equation can be solved by noting that

1

m

1 Mmax Am b, )
ai(01 Q»a) = V(b, 6]) = (]—I:qz_b M —_ 1} (Vl) (19)

m=1

The coefficientA,, gives the number of configurations bfspins (where each one can
be in the states/ = 1,2,..., g) of a block where one of thes major subgroups ofo//}
is in a fixed state, say 1, ard = 1.
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From equation (17) we obtain thak¢/dK || x—o0 = >y (b, ¢)? and therefore

_ Iny®,q)
For g = 2 we have that [22]
b— 1!
2= -
2 (171)

which for b > 1 behaves ag/(b,2) ~ %b*/z and we recover the exact result
a1(b,2) — 1in the limith — cc.

For higher values of the calculation of the quantities,, involves a lot of combinatorial
analysis. Foiy = 3 we found the following expression:

_1 - X b—1\ . Int(X/3) X—j bh—1 X+
y(b,3>—2{3 [Z( ! )“ 2 Z<X+j>< 1 )

=0 Jj=1 h=2j

Int(*32)
n Z ch—-1 X+i+1
— X+1+1 X -1

1/b-1\(2p/3
+§ ( 2b/3) ( b/3 ) 3(b, 3n)i| — 1} (20)
wheren =1,2,..., X = (b—1)/2 and Int(..) represents the integer part of its argument.
This form can be easily evaluated numerically for values up te 200. An analysis of
the log—log plot ofy versusbh shows that the asymptotic regime is attained for low values
of b ~ 7 and clearlyy (b, 3) ~ b~¥/? for b — oo. Therefore,a;(b, 3) also reproduces
the exact result in such a limit. For values ¢of> 4 the combinatorial problem becomes
very hard. However, we performed a numerical calculatiory @4, ¢) for ¢ = 4,5 and
b = 3,5,7,9, finding againy (b, ¢) ~ b=%2. All these results suggest thai(b, ¢) — 1
for b — oo for all values ofg > 2.
Closed forms of the functioX; (K, ¢, «) can be obtained analytically for low values
of ¢ andb with the aid of symbolic computer languages. With these expressions the critical
temperaturd(b, ¢, «) can be calculated numerically as a functiorxafor fixed values of
g andb. The correlation length critical exponent can also be calculated from the expression

Inb
- .
in (%% (K. q. @)k,

In figure 2 we show our results for different valuesqgondb = 3 fixed, while in figure 3
we keepg = 3 fixed and varyb. The corresponding curves for other valuesqgofre
qualitatively similar.

v(b.q.a) = (21)

3.2. @« — 2~ asymptotic results

Fora — 2= we see thatk. — oo (T, — 0). The asymptotic behaviour of the recurrence
equation (17) in such a limit can be obtained by adding an external fieidto the
Hamiltonian (2), i.eM) — Hy+hY ), 8(o!,1). Then, in theh — 0 limit, it is easy to
prove that

dInz{
ah h=0.

b
80/, D)o = (22)
-1

L
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Figure 2. Numerical calculations fob = 3 and different values of. (a) Critical temperature
Te(b, q, a)/J versusa; (b) correlation length critical exponenib, ¢, «) versusa.
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Figure 3. Numerical calculations fog = 3 and different values of the rescaling length(a)
Critical temperaturel;(b, ¢, «)/J versusa; (b) correlation length critical exponemt(b, ¢, o)
versusa.

For K — oo we can expand
Z(’)(K, h) ~ eBl(b,ot)K+bh[l + z(q _ 1)e—B(b,a)I(—h 4. ] (23)

where K B1(b, @) is the energy of the ground state akd3 (b, «) is the energy difference
between the ground state and the first excited statéofThese are given by

1 Eb-n
Buba)=3 =3 . (24)

(k,j) " ki n=1

b—1 1
B(b,a) = Z o (25)
n=1
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Then, from equations (22) and (23) we obtain in #tie> oo limit, that

b
Y (8(o/, Dyo~ b —2(q — e X (26)
i=1

which combined with equations (17) and (18) leads to
K
Ky(K.q.o)~ - [b~ 2qe B0k (K — o). 27)

The fixed-point equation derived from equation (27) leads to
—B(b, )

b—be2\
In ( 2% )
Fora — 2~ the asymptotic behaviour di.(b, ¢, «) is then given by the Cauchy function:
2—a~ D(q,b)e 502/ (29)

with D(g,b) = 4q/(bInb). In theb — oo limit we have B(b,2) — ¢(2) = 7?/6 and
D(q,b) — 0. D(gq, b) determines the region around= 2 in which the asymptotic regime
(29) holds. Since the present RG procedure is systematically improved [22] for higher
values ofb, the shrinking of such a region in the — oo limit suggests a non-uniform
convergence to aon-zerovalue Te(e = 2), consistently with the exact result fgr= 1, 2.

In other words, the convergence fif(b, ¢, «) towards zero appears to be a mathematical
artefact of the RG approximation, that disappears when oo; the leading behaviour of
Tc(b, g, @) in such a limit will therefore converge to a non-zero value, which is expected to
be a good estimate of the exact result. These facts suggest that the whole regiohere

the curveTc(b, g, «) versusa shows a negative curvature (and therefore a convergence
towards zero fow — 2) to be spurious. Hence, the inflection point of the curve appears
to be a good choice for estimating the leading behaviour of the curve in theblimitoo.

In figure 4 we show the asymptotic behaviour (28)Teb, g, o) for g = 3 (similar curves

are obtained for other values g} neara = 2 asb increases. We see that the inflection
points (full circles) converge to a non-zero valuexat 2 for b — oo, while the region of
negative curvature tends to disappear (notice that at these fggjhts< 1 Vb). Hence, we
propose the following ansatz: a good estimat&g@bo, ¢, 2) can be obtained by calculating

the value ofT(b, ¢, «) at the inflection point of the Cauchy function (29) for finiteand

then taking theb — oo limit (it can be verified that for values df > 100 the inflection
point of equation (28) coincides with that of equation (29)). This procedure gives the value

To(g,a = 2)/J = B(c0,2)/2 =n?/12 (30)

Tc/J ~ (28)

for all values ofg > 2. This result can be tested fqr= 2, since for this case several
results, obtained by different approximated methods, are available. Actually, the present
procedure is almost the same as the one introduced in [22] for the Ising ngogel), the

only difference being the criterion of extrapolation. A careful comparison of (30) with the
corresponding values obtained by other methods shows that the choice of the inflection point
is better than the previous oheln particular, for the Ising mode} = 2 (remember that
(Te/J)S"9 = 2(Tc/ I, —o) we haveTe(2, @ = 2)/J = 72/6 ~ 1.64, which compares

well with other results (renormalization group [25]: 1.57; series expansions [19]: 1.63;
finite range scaling [24]: 1.63; function [30]: 1.69).

1 The value ofT/J = 0.79 for Anderson and Yuval's result cited in [22] is incorrect, due to a fact@} of the
definition of the Hamiltonian in [25].
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Figure 4. Asymptotic behaviour of the critical temperatui® (b, g, «)/J wheno — 2
(equation (28)) forg = 3. The numbers beneath the curves indicate the valugs ofhe

full circles are the inflection points of the corresponding curves. We see a convergence of the
inflection points to a constant valug?/12 for b — oo, that results independent of

From equations (21), (27) and (28) one obtains the following asymptotic value for
v(ib,qg, a0 — 27):

-1
vib,g,a > 27) = {_(2 —a)ln [(DZ(;,(Z;“

which combined with equation (29) leads to
v(b,q, @ — 27) = {(2— ) B(b, 2)Kc} .
Using our ansatz equation (30) one, finally, obtains inthe oo limit that:
g e = 27) =22~ )] (31)

for all values ofg > 2 provided that the transition is continuous when— 2~. Notice
that expression (31) is in contrast with the renormalization group result of Kosterlitz [3]
(vg ~ [2(2 — «)]7Y/?) for the Ising caseq = 2).

3.3. High temperature asymptotic results

Fora — af (b, ¢) we see thak; — 0. The fixed point equation assumes then the form

b
b= "ai(Ke. q. ) (32)
i=1

with
b

/2 = Zai(o, q,o1).

i=1
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From equation (18) it can be verified that
a
a i Ka ) = O'
o T

Then, expanding equation (32) arouRd = 0 anda = «; up to first order inK. and in
(¢ — a1), and using thab®/? = by (b, ¢) we find that:

d
1
by (b, q)INb(a — 1) = KCM{[Zai(K’ q. al)Lzo

SinceZ{ = Z'/q (Z" being the partition function of the block) and Z’ = ¢” for K = 0,
we obtain from equations (18) and (24) that

8 [Z (K >} e T A, 9)
— a; , g, = , o N _— .
aK i q ! K=0 (q - 1)61h_1 ! ! q qb aK K=0,a=0a; q
(33)
where
b
G(b. q) = Tr Pr({o/}. Dé(o) . o)) Z 50!, 1) (34)
i=1
b
Ab, q) = Tr,n Pr(fol}, 1) Za(a}, 1)
’ i=1 (35)
=bq"?’[1+ (¢ — Dy (b. 9)]
and
0z! I ;
— = B1(b, 1) Triy1,8(0y . 0}) Vk,jel (36)
oK K=0,0=a1 '
= q" 'Bi(b, ay). (37)
Therefore, we have the asymptotic behaviour
a—oay~C(b,q)Kc
where
2By (b, G, 9)g*" = 2[1+ (¢ — Dy b, 9)]
Clb.g) = 2210 ‘ (38)
bInb (g —Dy(®.9)

Sincea; — 1 for b — oo, this result suggests that the asymptotic behaviour.as
proportional to (« — 1)71, i.e.

Te(g, @)/ J b (39)
a—1

for « — 1 holdsfor all values ofg, provided that the phase transition is a second-order
one.
In view of the proportionality constant (b, g), equation (38) reduces, fgr= 2, to

b—2
Bi(b,ar) \ %5°

binb  y(b, 2202

Cb,2) =
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Since B1(b, a1) ~ bInb for b — oo, we obtain that lirp, o, C(b, 2) = 1. Therefore, we
find in the limit b — oo that

Te(2, )/ J ~ i (40)
o

-1
which reproduces known results (see [22] and references therein). It is worth stressing that
expression (40) recovers asymptotically the mean-field one [31].

For g = 3 a closed form of5 (b, ¢) (and therefore ofC (b, ¢)) can also be analytically
obtained. The detailed form of it can be seen in the appendix. We found numerically
that C(b,3) — constant~ 0.67 ~ % for b - oo. These results are consistent with
C(oo,q) = 2/q¥q > 2, provided that the phase transition is a second-order one.
Eventually it might hold also foy = 1, which would be consistent with Schulman’s
bound [17] ¥p. < 2¢(a) (¢(a) ~ 1/(x — 1) for « — 1). It is interesting to compare this
result with the mean-field one, which predicts a first-order phase transitiop fo8. We
calculated the corresponding critical temperature following along the lines of Mittag and
Stephen [32], namely

ME (-2 1
T = -t

which forg > 1 (where mean field becomes exact [33]) and> 1 behaves as

MF /1 1 1
Iy In(g) a — 1

Notice that thisexact asymptotic behaviour ofc/J for a first-order transition differs
from our result(2/¢)(« — 1)~ which is expected to hold only for continuous transitions.

It is worth stressing that the asymptotic functional form (39) agrees with Tsallis’ proposal
[34] for unifying in a single picture both SR and LR interaction systems. This proposal has
recently been verified for Lennard-Jones-like potential systems [35, 36] as well as for LR
ferromagnetic Ising models [31, 37].

Finally, using the same expansion &t = K, (K¢, ¢, ) aroundK; = 0 anda = a1,
and combining it with equation (21) we find that

v(b,q,a) ~ (Vb,q = 2)

o — 07
which, together with the resut; (b = oo, ¢) = 1, leads, in theh — oo limit to

1
v(g, a) ~ m (Vg = 2). (41)

Forg = 2 the mean-field behaviowr= 1/(a —1) holds for 1< o < 1.5 exactly [6, 18].
Our results suggest that such a behaviour holds, at least asymptoticadty-fod, for all
values ofg > 2. The results of Glumac and Uzelac [24] also suggest such a behaviour for
allg <land 1< o < g. So, eventually this asymptotic behaviour ter— 1 might be
true for allg, provided the phase transition is a continuous one.

3.4. b — oo extrapolations for an arbitraryx

Now, we can use the asymptotic behaviours obtained in the preceding section to extrapolate
the full curvesT;(b, g, @) versusx for b — oo as follows [22]. First, we define the rescaled
variablesx, = 2—a)/(2—a1(b, q)) andy, = Tc(b, g, @) (2—a1(b, q))/JC (b, q), so that

yq(x4) ~ 1/(1—x,) for x, = 1 Vb, q. In figure 5 we plot, forg = 3, y,(x,) versusx, for
different values ofb. This figure clearly shows a data collapse for 5 (represented by
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Figure 5. Rescaled critical temperaturg, = Tc(b,q, @)(2 — a1(b, q))/JC(b,q) versus
X = 2—a)/(2— ai(b,q)) for ¢ = 3. All curves withh > 5 coincide, within the used
scale, with the full curve.

a full curve in figure 5). This also appears for other valueg .oHence, such curves are
expected to be good estimates of the- co ones. Using the resultS(co, ¢) = 2/q and
a1(00, g) = 1 (which we know holds at least fgr = 2, 3), we revert such curves into the
(T;, @) variables. The results, which are expected to be good estimates of the exact critical
temperatured.(q, @) for values ofa near one, are shown in figureg§( In table 1 we
compare our results with those obtained by Glumac and Uzelac [24] through finite-range
scaling (FRS) (as far as we know, these are the only published resuljs=fa?), and by
Luijten and Bbte [39] (in the casg = 2) using Monte Carlo simulations, for some typical
values ofa andg. We see that our results show a good agreement with the others for
values ofa ~ 1 (the percentual discrepancy is below 11% dok 1.4), but the difference
increases fow — 2. However, it is not expected that our extrapolation gives reliable results
nearo = 2. First, because the procedure was constructed using the asymptotic behaviours
obtained forb — oo neara = 1 and therefore we expect these results to be accurate only in
such regions. Second, we saw in section 3.2 that for finibeir curves present a spurious
convergence to zero far — 2, which can be in principle associated with a region of
negative curvature of¢(b, ¢, «) that disappears fas — oo. However, for the (relatively)
small values ob used in this section (the exponential growth witbf the number of terms
in the RG equations rapidly exceeds our computational capabilities) such a region extends
for a wide range of values af. Therefore, the extrapolated curves obtained in this section
also presents the spurious behaviour, even far away &rem2 (o 2> 1.7)

The same extrapolation procedure can be applied to the critical exponesing the
asymptotic behaviour (41). The numerical results are depicted in fighydd(g = 2, 3, 4;
our asymptotic result equation (31) is also represented by a dotted curve. We also include,
for comparison, the exact value [18] for= 2 and 1< o < 1.5 (v, = 1/(«¢ — 1)) and the
asymptotic result from Kosterlitz [3}x for « — 2 andg = 2 (shown by a broken curve).
The discrepancy between our results in the vicinitywof 2 and our previous prediction
(equation (31)) is not surprising since the present extrapolation methed $amilar to that
for T, was constructed for reproducing the expected behaviour in the other extreme region
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Figure 6. b — oo extrapolations for different values gf (a) Critical temperaturd;/J versus

«; (b) critical exponentv versusa. The dotted curve represents our asymptotic behaviour
equation (31), while the broken curves correspond to the exact nesfdt 1 < « < 1.5 and to

the Kosterlitz's asymptotic resulty for o« — 2, both forg = 2.

Table 1. Comparison of our RGI)— o) extrapolated values, Luijten and@é [39] Monte
Carlo calculations and Glumac and Uzelac [24] FRS calculations of the critical temperature
Tc/J for different values of; anda.

q=2 q=3 qg=4

o RG MC FRS RG FRS RG FRS

11 10.40 1050019 10.787 6.72 7.353 5.16 4.926
13 3.48 3.67361 3.680 233 2589 1.89 2045

15 2.00 2179 141 1663 1.14 1.402
1.7 1.28 1463 095 1.194 0.78 1.048
1.9 0.77 1.003 0.61 0.874 0.51 0.797

(¢ — 1). Forg > 2 all numerical curves are quite indistinguishable within the resolution
of the plot and with a little departure from the= 2 case. This fact, together with the
obtainedg-independence for the asymptotic behaviours @f both the region neax = 1
(equation (41)) and the region near= 2 (equation (31)), suggests that the critical exponent
may be independent @f for all 1 < o < 2. In table 2 we compare our results fomwith

the exact onesg(= 2 and 1< « < 1.5) and the corresponding ones obtained by FRS [24]
for ¢ = 2 (our results fory > 2 show a little difference with ours fay = 2). Notice that
although our results fog = 2 are worse than those of FRS wherclry < 1.5, we obtain

a divergence fox — 2~ (as expected) in contrast with their finite value for The main
difference between our results and those of FRS occurg fer2, where the FRS values
for v show a strong dependency gn

4. Conclusions

The approach adopted here gives an estimate of some critical properties of the LR Potts
model as a function of for different values ofg > 2, based on an extrapolation of a
systematic series of RG calculations. This method allows us to obtain analytically several
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Table 2. Comparison of our R@ — oo extrapolation, exact results and Glumac and Uzelac
FRS calculations of the critical exponentfor ¢ = 2 and some typical values of

o RG Exact FRS

11 1048 10 9.901
1.3 3.90 333 3322
15 2.81 2 2.325
17 266 — 1.930
1.9 390 — 2.469
20 oo 00 3.236

important quantities as functions of the rescaling paramietefhis fact, in turn, permits
us to take theb — oo limit, where the results are expected to be highly accurate and
perhaps reproduce the exact ones. This last assumption is supported by the recovery of
several known results fof = 2 and some of the very few rigorous results available for
generalg, giving confidence to the validity of the method. It is worth stressing that two
different extrapolation methods have been used, each one corresponding to different regions
of validity. The first method (section 3.2) applies only to the vicinityoot= 2. In this
case our method predicts a remarkable new result, namely that the critical temperature
at « = 2 is discontinuous with thesame valuefor all ¢ > 2. On the other hand, the
second method (section 3.4) is based on s@dme oo asymptotic results obtained for
a — 1, and therefore we believe that the extrapolated critical cufves «) approximate
with high precision the exact ones far near one We also believe that the asymptotic
functional form Te(¢g, «)/J « (¢ — 1)~! for « — 1 might beexact Notice that this
is consistent with the recent conjectured scalings for generalized thermodynamics which
allow an unification of extensivex( > 1) and non-extensive (&< « < 1) regimes
[34].

In view of the critical exponent(q, «), we obtained, through the first extrapolation
method, an asymptotic behaviour f@r— 2~ which isthe same for aly > 2. Although its
explicit form may not be the exact one (as it differs from the RG prediction of Kosterlitz [3]
for theg = 2 case), it suggests thatg > 2, « — 27) might be independent af provided
that the transition is continuous when— 2-. Some other predictions for arbitragyand
continuous phase transitions, such as the asymptotic behaviouy of) for « — 1 and
its possibleg-independence for all k « < 2, are also of interest. It would be worth
testing our conjectures and predictions with other techniques, such as the recent Monte
Carlo method for LR spin models [38, 39].

Finally, one point which requires some discussion is the possible appearance of a first-
order transition for some finitg¢ > ¢, (for the two-dimensional SR case it is known exactly
[40] that g = 4). For the LR (as well as for the SR) case it was proved [33] that the
mean-field theory becomes exact (and therefore the transition is of first order) in the limit
g — oo. We have not found any evidence of a first-order transition, but it is also known
that the present kind of RG approach does not detect this type of transition in the two-
dimensional SR Potts model [41]. As far as we know, this question remains open since
the FRS results [24] are also inconclusive in this respect. However, this problem could be
solved by introducing appropriately some dilution in the RG formalism [41] and it would
be interesting to apply this ansatz to the present case. Other possible extensions of the
present paper concern higher-dimensional systems, where the crossover between short- and
long-range regimes could be of interest for some real problems [9]. It could also be used



The one-dimensional Potts model with long-range interactions 3359

to treat more complex interactions such as the RKKY one. Some calculations along these
lines are in progress and will be published elsewhere.
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Appendix. Derivation of G (b, 3)

Since expression (34) is independent of the pair of ditgsit can be written as:

G(b,q) = 2G*(b, q) + (b — 2G?*(b, q) (A1)
where
GY(b, q) = Tr,n Pr(fof}, 1)3(0], 03), 8(0f, 1) (A2a)
G*(b, q) = Triy Pr({o]}, 1)8(05., 05)8(01 . 1) (A2b)
which can be written as:
; & Gl (b, q) .
G'(b,q) = e =12 A3
(b, 9) ; p” (i ) (A3)
where
e Gl = number of configurations of spins ¢/ = 1,2, ..., ¢) of a block where one
of the m major subgroups ofc/'} is in the state 1, and the sping = o = 1.
e G2 = number of configurations df spins ¢/ = 1,2, ..., ¢) of a block where one

of the m major subgroups ofc;'} is in the state 1, and the spiag = 1 ando; = 0.
We found that

X Int(X/3) X—j .
G%(b,3)=2(b?2)2’+ > Z(;:j)(xzf) (Ada)

=0 =1 j=2j
. "D b2 \ (X141
Galb,3) =2 X+1+1 X -1 (A4D)
=0

Gi(b,3) = (gg/;) (2;’//;’> 5(b, 3n) (A4c)
X b—3 Int(X/3) X—j b—3 X+J

() EE D)
= J= J1=4]

X Int(X/3) X—j .
b—3\ o h—3 X+j—2
+2;(1—2>2 +2 ) Z<X+j_2)( i ) (A4d)

=1 h=2j
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Int(¥5%) nt(*5%)
X+l+1 X+1-1
G5(b,3) =2 Z <X+l+1)( X — > 2(; <X+l—1><X—l—2>
Int(¥32

X412
+2 Z <X+l—2)<X—l—1> (Ade)

G3(b,3) = [(gb_/g) (iﬁf) +2(2bb/;_32> (2;//33_—22)] 5(b, 3n) (A4)

wh

eren=1,2,...andX = (b —1)/2. A combination of expressions (A1), (A3) and (A4)

leads toG (b, 3).
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