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Theq-state Potts model with long-range interactions that decay as 1/r a subjected to a uniform magnetic field
on d-dimensional lattices is analyzed for different values ofq in the nonextensive regime 0<a<d. We
calculate the mean-field solution of the model for allq and performed, for some values ofq, Monte Carlo
simulations for the spontaneous magnetization in the one-dimensional case. We show that, using a derived
scaling which properly describes the nonextensive thermodynamic behavior, both types of calculations present
an excellent agreement for 0<a,d. We also consider the two-dimensional antiferromagnetic Ising model
with competing antiferromagnetic long-range interactions and ferromagnetic first neighbor ones in the presence
of a uniform magnetic field. We calculate the mean-field magnetization for this case and compare it with
Monte Carlo numerical data from Sampaioet al. They also show a very good agreement fora,d. These
results, together with some previous ones, led us to conjecture that the mean-field theory is exact for nonex-
tensive classical spin models with 0<a,d.
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I. INTRODUCTION

Microscopic pair interactions that decay slowly with th
distancer between particles appear in different physical s
tems. Typical examples are gravitational and Coulomb in
actions, where the potential decays as 1/r . Several other im-
portant examples can be found in condensed matter, suc
dipolar ~both electric and magnetic! and Ruderman-Kittel-
Kasuya-Yosida~RKKY ! interactions, both proportional to
1/r 3. Effective interactions with a power-law decay 1/r a,
with some exponenta>0, appear also in other related pro
lems such as critical phenomena in highly ionic system1

Casimir forces between inert uncharged particles immer
in a fluid near the critical point,2 and phase segregation
model alloys.3

It is known that some of these systems can exhibit n
extensive thermodynamic behavior~see Refs. 4 and 5 an
references therein!. In other words, for small enough value
of the ratio a/d the free energyF52 lnZ/b, with Z
[Tr exp(2b H) (H being the Hamiltonian of the system,d
the dimensionality, andb[1/kBT), grows faster than the
number N of microscopic elements whenN→`, and the
thermodynamic limit is not well defined.

In a recent paper5 two of us analyzed the thermodynami
associated with the long-range~LR! ferromagnetic Ising
Hamiltonian

H52(
( i , j )

J~r i j !SiSj ~Si561; i !, ~1!

with
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J~r i j !5
J

r i j
a

~J.0;a>0!, ~2!

~wherer i j is the distance in crystal units! between sitesi and
j, and where the sum( ( i , j ) runs over all distinct pairs of site
on ad-dimensional hypercubic lattice. It was shown5 that the
quantities per particle~free energyf, internal energyu, en-
tropy s, and magnetizationm of a finite model ofN spins!
behave according to Tsallis conjecture6 for N@1. These
quantities present, in the presence of an external magn
field h, the following asymptotic scaling behaviors:

u~N,T,h!;N* u8~T/N* ,h/N* !, ~3!

f ~N,T,h!;N* f 8~T/N* ,h/N* !, ~4!

s~N,T,h!;s8~T/N* ,h/N* !, ~5!

m~N,T,h!;m8~T/N* ,h/N* ! ~6!

for all a>0, where the functionsu8, f 8, s8, andm8 are the
corresponding quantities associated with the same mode
with rescaled couplingJ8(r i j )5J(r i j )/N* ~these functions
are independent of the system sizeN) and the function
N* (a) is defined as

N* ~a!5
1

12a/d
~N12a/d21! ~7!

which behaves, forN→`, as
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N* ~a!;5
1

a/d21
for a/d.1

lnN for a/d51

1

12a/d
N12a/d for 0<a/d,1.

~8!

For a.d the thermodynamic functions per site do not d
pend onN and the system is extensive~i.e., the thermody-
namic limit exists!. When 0<a<d, N* (a) diverges for
N→` and the system is nonextensive. Also presented
numerical evidence5,7 that for d51 the mean-field~MF!
theory becomesexactwhen 0<a,d. This led two of us5 to
conjecture that the mean-field theory might be exact for
nonextensive Ising model.

Mean-field theory accurately describes the thermo
namic behavior of sufficiently high dimensional spin sy
tems. In fact, it becomes exact in the limitd→`. However,
for low dimensional systems, where fluctuations play an
portant role, significant departures from MF theory are
pected, at least for short-range models. Hence the accu
agreement between numerical and MF solutions for
whole magnetic equation of state5 and for the correlation
function7 in the aboved51 model is remarkable, suggestin
that MF theory may be ‘‘universal’’ for nonextensive class
cal spin models, in the sense that it describes exactly
thermodynamical behavior independently of the dimensi
Therefore it is interesting to check this hypothesis in diff
ent low dimensional systems.

In this work we extend the previous analysis5 and present
other evidence of the exactness of the MF theory for 0<a
,d for the one-dimensional ferromagneticq-state LR Potts
model for different values ofq ~including the first-order
phase transition predicted by MF theory forq.2) and also
for the two-dimensional antiferromagnetic LR Ising model
an external field. Our mean-field calculation for theq-state
Potts model presented here also agrees in theq→1 limit
with Monte Carlo calculations for the long-range percolati
problem in d51 obtained by other authors.8 Our results,
together with some previous ones, led us to conjecture
the MF theory might be exact for any nonextensive class
spin model excluding the borderline casea5d, where there
are probably corrections to the MF results~some previous
experimental results9 on dipolar ferromagnetic materials d
not exclude this possibility!.

The outline of this paper is the following. In Sec. II w
analyze the ferromagneticq-state LR Potts model subjecte
to a uniform magnetic fieldh. First, we show that the previ
ous analysis5 for the Ising model (q52) in the nonextensive
region is straightforwardly extended to the genericq.2
case. Then, in Sec. II A we derive the mean-field solution
this model for arbitrary values ofq, a, andh, in particular
the MF predictions for the LR bond percolation which co
respond to theq→1 andh→01 limit. In Sec. II B we com-
pare the MF solution with our Monte Carlo simulation of th
one-dimensional model forh50, q52, 3, and 5 and dif-
ferent values ofa. In Sec. III we calculate the mean-fiel
solution of the two-dimensional Ising model with competi
LR antiferromagnetic and short-range ferromagnetic inter
tions in an external field and compare them with the Mo
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Carlo results of Sampaio, de Albuquerque, and Menezes10

Some comments and conclusions are presented in Sec.

II. POTTS MODEL WITH LONG-RANGE
FERROMAGNETIC INTERACTIONS

In this section we address the LR ferromagneticq state
Potts model, i.e., we consider the Hamiltonian

H52
1

2 (
i , j

J~r i j !d~s i ,s j !2h(
i

d~s i ,1!

~s i51,2, . . . ,q,; i !, ~9!

where to each sitei we associate a spin variables i , which
can assumeq integer values; the sum( i , j runs over all pairs
of sites of ad-dimensional lattice ofN sites (iÞ j ); d is the
Kronecker delta function,J(r i j ) is given by Eq.~2!, andh is
an external magnetic field in thes51 direction. Thea
→` limit corresponds to the first neighbor model. Forq
52 thea50 limit corresponds, after a rescalingJ→J/N, to
the Curie-Weiss model.

This model, in its plain formulation@a→` of Eq. ~9!# or
in a more general one with many-body interactions, is at
heart of a complex network of relations between geometr
and/or thermal statistical models, like, for example, vario
types of percolation, vertex models, generalized resistor
diode network problems, classical spin models, etc.~see Ref.
11 and references therein!.

On the other hand, the Potts model with LR interactio
has been much less studied. In the extensive regimea.d it
presents a very rich thermodynamic behavior, even in
one-dimensional case.12–15To the best of our knowledge, n
study has been carried out for the nonextensive regim
<a<d.

Let us introduce the sumsf i(a)5( j Þ i1/r i j
a . A sufficient

condition~and believed to be necessary16,17! for the existence
of the thermodynamic limit of this system is that

f~a!5 lim
N→`

1

N (
i

f i~a!,`. ~10!

Let us now consider ad-dimensional hypercube of sid
L11 andN5(L11)d, and leti 50 be the central site of the
hypercube. We have that

f~a!5 lim
N→`

f0~a!. ~11!

When L@1 (N@1) f0(a) shows the following
asymptotic behavior:5

f0~a!;Cd~a!2aN* ~a!, ~12!

whereN* (a) is given by Eq.~7! andCd(a) is a continuous
function5 of a independent ofN, with Cd(0)51 ;d. It can
be proved that5

C1~a!5H 1 for 0<a<1

a21

2a21
z~a! for a.1

, ~13!
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wherez(x) is the Riemann zeta function. From Eqs.~7! and
~12! we see that the thermodynamic limit is well defined f
a.d ~where the system presents extensive behavior!, while
for a<d the system becomes nonextensive. Following
same procedure as in Ref. 5 it can be shown that the sca
behaviors~3!-~6! of the thermodynamic functions hold;q
>2 and;a>0. For q52 the system undergoes a secon
order phase transition at finite temperature for alla.d when
d>218, and for 1<a<2 when d51.19 For a→d1, the
critical temperature of the Ising model shows the followi
asymptotic behavior:18

kBTc;Jf~a!. ~14!

For d>2 anda@d ~short-range case11! there exists a critica
valueqc such that the phase transition is a second-order
whenq<qc(d) (qc54 for d52) and a first-order one fo
q.qc(d). For d51 and 1,a<2 Monte Carlo
simulations14,15show that, forq.2, there is ana-dependent
threshold valueqc(a) such that the transition is of first orde
whenq.qc(a) and of second order forq<qc(a).

A. Mean-field theory

In order to develop a mean-field version of Hamiltoni
~9! we use Mittag and Stephen’s20 spin representation for th
Potts model, i.e., we associate to each sitej a spin variablel j
which can take the valuesl j51,v,v2, . . . ,vq21, wherev
5e2p i /q is a qth root of unity. In other words, if the sitej is
in the states thenl j5vs21. Then, using the property

q21(
k51

q

lkl8q2k5d~l,l8! ~15!

we can rewrite the Hamiltonian~9! as

H52
1

2q (
i , j

J~r i j ! (
l 51

q21

l i
ll j

q2 l2
h

q (
i

(
l 51

q21

l i
l2C~J,h!,

~16!

where the constant termC(J,h) is

C~J,h!5
1

2q (
i , j

J~r i j !1
hN

q
. ~17!

The fraction of sites in the states, ns5(1/N)( i^d(s i
2s)&, in this representation is given by

ns5
1

q F11 (
l 51

q21

vq2 l (s21)^l l&G , ~18!

and the order parameter for a symmetry breaking in thes
51 direction is

m5
qn121

q21
, ~19!

which can be written, using Eq.~18!, as

m5
1

q21 (
l 51

q21

^l l&. ~20!
e
ng

-

e

The mean-field solution for this model can be eas
found from the variational method in Ref. 21 by using
noninteracting trial HamiltonianH0 given by

H052h(
i 51

N

(
l 51

q21

l i
l , ~21!

whereh is the variational parameter to be found as a fun
tion of temperature. The variational free energyF̄ is given by

F̄5F01^H2H0&0 ~22!

5F01S h2
h

qD(
i

(
l 51

q21

^l i
l&0

2
1

2q (
i , j

J~r i j ! (
l 51

q21

^l i
ll j

q2 l&02C~J,h!, ~23!

where the free energyF0 associated withH0 is

F052
N

b
ln$exp@bh~q21!#1~q21!exp~2bh!%

~24!

and ^•••&0 denotes the canonical average using the Bo
mann measure proportional to exp(2bH0).

Using equality~15! one gets that

^l i&05^l i
2&05•••5^l i

q21&05m0 ~; i !, ~25!

where the variational order parameterm0 @defined by an
equation similar to Eq.~20!# is related toh through

m05
exp~bhq!21

exp~bhq!1~q21!
~26!

and from the propertylq2 l5(l l)* it follows that

^l i
ll j

q2 l&05m0
2 . ~27!

The minimization condition leads to

h5
1

q
@Jf~a!m01h# ~28!

which, combined with Eq.~26!, gives the following mean-
field equation for the order parameterm0:

m05
exp$b@Jf~a!m01h#%21

expb@Jf~a!m01h#1~q21!
. ~29!

In the a→` limit ~short-range interactions! we have
f(a)→z, z being the coordination number of the lattice, a
we recover, forh50, Mittag and Stephen’s20 result. Forq
52 the Hamiltonian~9! is equivalent to the Ising one with
long-range interactions, providing thatJPotts52JIsing and
hPotts52hIsing. In this case Eq.~29! reduces to

m05tanh$b/2@Jf~a!m01h#% ~30!

and we recover the result from Ref. 5, i.e., the long-ran
version of the Curie-Weiss equation which describes
second-order phase transition forh50 at kBTC /JIsingf(a)
51.
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The variational free energyF̄ calculated at the minimum
@condition ~28!# gives the following mean-field free energ
per sitef:

2b f 5 lnq1
bJf~a!

2q
1

1

q H bh1
1

2
~q21!bJf~a!m0

2

1~q21!bhm02@11~q21!m0# ln@11~q21!m0#

2~q21!~12m0!ln~12m0!J , ~31!

where we have used Eqs.~23!–~29!.
For q.2 and h50 the transition is of first order~in

agreement with Ref. 15! and it is easy to verify that at th
transition temperature the order parameterm jumps to the
value (q22)/(q21). The first-order transition temperatu
for q.2 is given by

kTc /J5S q22

q21D f~a!

2ln~q21!
. ~32!

Equation~31! for h50 and Eq.~32! recover, in thea→`
limit, Mittag and Stephen’s results.20

In the q→1 limit, which corresponds to a bond percol
tion where the bond probability occupancy between any
sitesi and j is p/r i j

a , the order parameterprobability perco-
lation P` ~defined as the probability that a randomly chos
bond of an infinite lattice belongs to a cluster of infinite siz!
can be derived from22

P`~p!511 lim
h̄→01

]

]h̄ H lim
q→1

]

]q
lim

N→`

1

N
ln~Z!J , ~33!

whereh̄5bh, Z is the partition function of the Potts mode
with coupling constantsJ/r i j

a , and p is the first neighbor
bond probability given byp512exp(2J/kBT).

One can easily show, from Eqs.~29!, ~31!, and~33!, that
the probability percolationP`(p) is, as expected,17 exactly
the q→1 and h̄→01 limit of the order parameterm0,
namely,

P`5m0~q→1,h̄→01!

512expF2
Jf~a!

kBT
m0~q→1,h̄→01!G ~34!

or, in terms ofp,

P`~p;a!512~12p!f(a)P`(p;a) ~35!

from which it follows that, due to the divergence off(a) in
the nonextensive regime,P`(0,p<1;0<a<d)51 and
hence the critical probabilitypc(0<a<d)50 in agreement
with the exact result.17

One can easily prove, from Eq.~35!, that the percolation
probability P` of a finite system withN bonds presents a
asymptotic scaling behavior similar to Eq.~6!, namely,

P`~N,p!;P8̀ ~p* ! ~N@1!, ~36!

wherep* is the variablep calculated atT* 5T/N* , namely,
o

n

p* 512expS 2
JN*

kBT D ~37!

andP8̀ is the probability percolation associated with the lo
range bond percolation whose bond probability occupan
are p* /r i j

a . Using this rescaled variablep* , the MF order
parameter equation becomes, forN@1 @see Eq.~12!#,

P`~p* ;a!512~12p* !Cd(a)2aP`(p* ;a) ~38!

which leads, for different values ofaP@0,d#, to monoto-
nously increasing distinct order parameters asp* varies from
the critical probabilitespc* (a,d)512exp$21/@Cd(a)2a#%
to p* 51. However, if one introduces a more convenie
variable, namely,

r * [12expS 2
Jf~a!

kBT D512~12p* !f(a)/N* (a) ~39!

then all these MF probability percolation curves for differe
values ofa andd coalesce into a single curve described
the equation

P`~r * !512~12r * !P`(r* ). ~40!

The critical valuer c* where P`(r * ) vanishes isr c* 51
2exp(21)50.632 12 . . . , which leads to the MF critical
probability

pc~a!512expS 21

f~a! D . ~41!

Combining Eqs.~41!, ~12!, and ~8! one verifies that
pc(a→d1) vanishes asymptotically as

pc~a→d1!;
1

Cd~d!2d S a

d
21D ~42!

which, in the particular case ofd51, gives

pc~a→11,d51!;
1

2
~a21!. ~43!

Notice that the asymptotic behavior@Eq. ~43!# coincides
with the lower bound forpc(1,a<2,d51)23. Very recent
Monte Carlo calculations in the one-dimensional long-ran
percolation problem8 have also shown a very good agre
ment with Eq.~40!.

B. Monte Carlo results

We performed a Monte Carlo simulation using the he
bath algorithm on the one-dimensional Hamiltonian~9! with
h50 and periodic boundary conditions forN5300, 600,
and 1200, forq52, 3, and 5, and different values of
<a,1. We calculated the magnetization per spin~19! as a
function of T* 5T/N* for different system sizes and pe
formed a numerical extrapolation for 1/N→0.

In Fig. 1 we compare the numerical results of theq52
case form(T* ) vs 2kBT* /2aJ for different values ofa with
the mean-field solution@Eq. ~30!#. We see that all the nu
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merical curves~which recover those obtained in Ref. 5! fall
into a single one in excellent agreement with the MF pred
tion.

In Fig. 2 we make the same comparison for theq53 and
q55 cases. The solid lines represent the MF solution gi
by Eq. ~29! for h50. The dotted lines in this figure indicat
the mean-field prediction for the first-order transition te
perature jumps~32!. Again we observe, in both cases, a ve
good agreement between our simulations and MF results
0<a,1, including the first order phase transition forq
.2.

III. ANTIFERROMAGNETIC ISING MODEL
WITH LONG-RANGE INTERACTIONS

We now consider the square lattice Ising model with co
peting LR antiferromagnetic and short-range ferromagn
interactions in an external field, which is described by
Hamiltonian

H52JF(
^ i , j &

SiSj1J(
( i , j )

1

r i j
a

SiSj2h(
i

Si

3~Si561 ; i !, ~44!

whereJ.0, JF.0, and the sum(^ i , j & runs over nearest
neighbor sites of the square lattice. The above Hamilton
reduces, forJF51 andJ50.5, to the model studied by Sam
paio, de Albuquerque, and Menezes10 through Monte Carlo
simulations.

A mean-field version of this model can be obtained
considering the Hamiltonian

HMF52(
i

he f f
i Si ~45!

with

FIG. 1. Monte Carlo extrapolated results~symbols! of m(T* ) vs
2kBT* /(2aJ) compared with the mean-field solution~solid line! for
q52. The error bars are smaller than or equal to the symbol si
-

n

-

or

-
ic
e

n

he f f
i 52J(

j Þ i

1

r i j
a

mj1JF(
jnni

mj1h, ~46!

where the sum( jnni runs over all nearest-neighbor sites oi
and

mj[
1

ZMF
Tr$Si %

$Sje
2bHMF($Si %)%, ~47!

with

ZMF5Tr$Si %
e2bHMF($Si %). ~48!

Dividing the square lattice into two square interpenetra
sublatticesA andB we can propose a solution of the form

mi5H mA if i PA

mB if i PB
. ~49!

Let us introduce the functions

s.

FIG. 2. Monte Carlo extrapolated results~symbols! of m(T* )
vs. kBT* /(2aJ) compared with the mean-field solution~solid line!
for q53 andq55. The error bars are smaller than or equal to t
symbol sizes.
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f (1)~a![ (
j PA

1

r i j
aU

i PA

, ~50!

f (2)~a![ (
j PB

1

r i j
a U

i PA

with
s.

n

ue
-

en
a

f (1)~a!1f (2)~a!5f~a!.

It can be easily seen that

f (1)~a!522a/2f~a!, ~51!

f (2)~a!5~1222a/2!f~a!.

Then, substituting Eqs.~49! and~50! into Eq.~46! we obtain
ation
he f f
i 5H 2Jf (1)~a!mA2Jf (2)~a!mB14JFmB1h if i PA

2Jf (2)~a!mA2Jf (1)~a!mB14JFmA1h if i PB
. ~52!

Combining Eqs.~52!, ~45!, and~47! we arrive, after some algebra, to the following set of MF equations for the magnetiz
m5mA1mB and for the staggered magnetizationms5mA2mB:

m5
sinh„2b$h2@Jf~a!24JF#m%…

cosh„2b$h2@Jf~a!24JF#m%…1cosh„2b$@Jf~a!~212a/221!14JF#ms%…
, ~53!

ms5
2sinh„2b$@Jf~a!~212a/221#14JF!ms%…

cosh„2b$h2@Jf~a!24JF#m%…1cosh„2b$@Jf~a!~212a/221!14JF#ms%…
. ~54!
r-

,

the
his

ue,
-

en
al
For hÞ0 it is easy to verify that the only solution of Eq
~54! and ~53! is ms50 and

m5tanh„b$h2@Jf~a!24JF#m%…. ~55!

In Fig. 3 we compare a numerical solution of Eq.~55!
with the Monte Carlo data of Sampaio, de Albuquerque, a
Menezes10 for a51, JF51, J51/2, bN* (a)5(0.3)21,
and different values ofN. The functionCd(a) for d52 was

FIG. 3. Monte Carlo simulations of Sampaio, de Albuquerq
and Menezes~Ref. 10! for the magnetizationm vs. a rescaled mag
netic field for square lattice sizes of 32332 ~circles!, 48348
~squares!, and 64364 ~triangles! for a51, JF51, J51/2, and
T* 5T/N* 50.3. The solid line represents the MF solution giv
by Eq.~55! for N564364. The error bars are smaller than or equ
to the symbol sizes.
d

evaluated numerically by performing calculations for diffe
ent values ofN and then extrapolating to 1/N→0. We ob-
tained, fora51, C2(1)50.881360.0001. The comparison
for other values ofa,2 gave similar results.

A similar comparison fora52 is made in Fig. 4
@C2(2)50.74660.001#. The Monte Carlo data of Sampaio
de Albuquerque, and Menezes10 do not agree very well with
the MF magnetization, suggesting that corrections to
mean-field result should be taken into consideration in t

,

l

FIG. 4. Monte Carlo simulations of Sampaio, de Albuquerq
and Menezes~Ref. 10! for the magnetizationm vs a rescaled mag
netic field for square lattice sizes of 32332 ~circles!, 48348
~squares!, and 64364 ~triangles! for a52, JF51, J51/2, and
T* 5T/N* 50.3. The solid line represents the MF solution giv
by Eq.~55! for N564364. The error bars are smaller than or equ
to the symbol sizes.
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borderline case~wherea5d). Notice that theoretical24 pre-
dictions and experimental results9 obtained for the critical
behavior ofd53 uniaxial ferromagnets with exchange an
strong dipolar interactions show that corrections to the M
behavior are needed in thisa5d53 case.

Summarizing this section, we verify that the Monte Car
simulations for the equation of state of thed52 LR Ising
antiferromagnet are in very good agreement with the M
prediction when 0<a,2.

IV. CONCLUSIONS

We have analyzed, in this paper, two long-range sp
models with power-law decaying interactions (r 2a) under
an uniform magnetic fieldh in low spatial dimensions:~i! the
q-state LR Potts ferromagnet ond-dimensional hypercubic
lattices ~including theq→1 and h→01 case of LR bond
percolation! and ~ii ! the LR square Ising antiferromagne
with first neighbor ferromagnetic interactions. Both mode
present nonextensive thermodynamic behaviors when 0<a
<d, but their thermodynamic functions become finite wh
convenient scaled variables are used.6 We have derived this
scaling forq>2 and have shown that the mean-field pro
ability percolation~i.e., the percolation order parameter! sat-
isfies a similar scaling. The derived MF solution for the fre
energy of the LR Potts model led to spontaneous magnet
tion curves which agree very well with our Monte Carl
simulations ford51 andq52, 3, and 5 states for differen
values of 0,a,1. Concerning thea50 case, the MF
theory is exact for any value ofq ~see, for example, Ref. 25
and references therein!. An excellent agreement occurre
also between the derived MF equation of state for the ab
d52 antiferromagnetic LR model and the Monte Car
simulations of Sampaio, de Albuquerque, and Menezes10 for
distinct values of 0<a,2. Since fluctuations play a negli
gible role for increasingly higher dimensions~in fact, MF
theory becomes exact in the limitd→`, even for models
with short-range interactions!, our results strongly sugges
that the mean-field theory is exact for these two LR none
tensive models with 0<a,d, ;d>1. Accordingly, this
would predict, for thed51 LR Potts ferromagnet, a first
F

F

n

s

-

a-

e

-

order transition forq.2 and 0<a,1, which matches
nicely with previous results14,15 exhibiting first-order transi-
tion for q.qc(a). A good agreement between MF a
Monte Carlo calculations has also been found in other wo
concerningd51 nonextensive classical LR spin and rela
models, namely, the order parameter of the LR bond pe
lation problem,8 the magnetization of the classicalXY
model,26 the correlation fucntion of the Ising model,7 and the
frozen-active transition line of the Domany-Kinzel LR cell
lar automaton.27 Furthermore, the MF theory is exact fora
50 in many classical LR spin models,16 as well as fora
→d1, at least in the Ising18 and spherical28 LR models.
These facts together with our results lead us to conjec
that the mean-field theory might be exact for d-dimensional
LR nonextensive classical spin models with0>a,d.

The above results show that mean-field behavior is ro
against the range of interactionsa within the nonextensive
region, for a large class of classical magnetic and rela
systems. If our conjecture were true, this would have imp
tant practical implications: if you are considering syste
with slow enough decaying interactions then you do not n
sophisticated approximations.

We hope that our conjecture is proved, at least for so
particular spin model. It would also be interesting to exte
the previous analysis to more general systems of interac
particles with long-range interactions, such as a gas of c
sical particles interacting through a Newtonian potential.
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J. Frölich and T. Spencer,ibid. 84, 87 ~1982!; Z. Glumac and K.
Uzelac, J. Phys. A22, 4439~1989!; S. A. Cannas, Phys. Rev. B
52, 3034~1995!.

20L. Mittag and M. J. Stephen, J. Phys. A9, L109 ~1974!.
21K. Huang,Statistical Mechanics~Wiley, New York, 1963!, Chap.

X, Sec. 10.3.
22P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn.26, 11
~1969!; F. Y. Wu, J. Stat. Phys.18, 115 ~1978!.
23L. S. Schulman, J. Phys. A16, L639 ~1983!.
24A. I. Larkin, and D. E. Khmel’nitskii, Zh. E´ksp. Teor. Fiz.56,

2087 ~1969! @Sov. Phys. JETP29, 1123 ~1969!#; A. Aharony,
Phys. Rev. B8, 3363~1973!.

25P. A. Pearce and R. B. Griffiths, J. Phys. A13, 2143~1980!.
26F. A. Tamarit and C. Anteneodo, Phys. Rev. Lett.84, 208~2000!.
27S. A. Cannas, Physica A358, 32 ~1998!.
28G. S. Joyce, Phys. Rev.146, 349 ~1966!.


