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Theg-state Potts model with long-range interactions that decayrésstibjected to a uniform magnetic field
on d-dimensional lattices is analyzed for different valuesgoin the nonextensive regimeOao<d. We
calculate the mean-field solution of the model for @land performed, for some values gf Monte Carlo
simulations for the spontaneous magnetization in the one-dimensional case. We show that, using a derived
scaling which properly describes the nonextensive thermodynamic behavior, both types of calculations present
an excellent agreement forsGe<<d. We also consider the two-dimensional antiferromagnetic Ising model
with competing antiferromagnetic long-range interactions and ferromagnetic first neighbor ones in the presence
of a uniform magnetic field. We calculate the mean-field magnetization for this case and compare it with
Monte Carlo numerical data from Sampabal. They also show a very good agreement ford. These
results, together with some previous ones, led us to conjecture that the mean-field theory is exact for nonex-
tensive classical spin models with<Qv<<d.

I. INTRODUCTION J
J(r”):_a (J>0;a=0), (2)
Microscopic pair interactions that decay slowly with the Fij

distancer between patrticles appear in different physical sys- ) . . o

tems. Typical examples are gravitational and Coulomb inter{Wherer; is the distance in crystal unjtbetween sitesand
actions, where the potential decays as Beveral other im- ), @1d where the sul; ;, runs over all distinct pairs of sites
portant examples can be found in condensed matter, such 98 @d-dimensional hypercubic lattice. It was showhat the
dipolar (both electric and magneliand Ruderman-Kittel- duantities per particléfree energyf, internal energy, en-

Kasuya-Yosida(RKKY) interactions, both proportional to OPY S and magnetizatiom of a finite model ofN sping
1/r3. ‘Effective interactions with a power-law decayr 1/ behave according to Tsallis conjectifer N>1. These

with some exponenk=0, appear also in other related prob- quantities present, in the pre_sence_of an ext_ernal magnetic
lems such as critical phenomena in highly ionic systéms, fi€ld h, the following asymptotic scaling behaviors:
Casimir forces between inert uncharged particles immersed

in a fluid near the critical poirt,and phase segregation in U(N,T,h)~N*u'(T/N*,h/N*), ©)
model alloys’

It is known that some of these systems can exhibit non- f(N,T,h)~N*f'(T/N*,h/N*), (4
extensive thermodynamic behaviee Refs. 4 and 5 and
references therejnin other words, for small enough values S(N,T,h)~s’(T/N* ,h/N*), (5)

of the ratio o/d the free energyF=-—InzZ/B, with Z
=Trexp(— BH) (H being the Hamiltonian of the systerah,
the dimensionality, angB=1/kgT), grows faster than the
numberN of microscopic elements wheN—«, and the
thermodynamic limit is not well defined.

In a recent papértwo of us analyzed the thermodynamics
associated with the long-rangé.R) ferromagnetic Ising

m(N,T,h)~m’(T/N* ,h/N*) (6)

for all «=0, where the functiong’, f’, s’, andm’ are the
corresponding quantities associated with the same model but
with rescaled coupling)’(ri;)=J(r;;)/N* (these functions
are independent of the system sikg and the function

Hamiltonian N* () is defined as
HZ_UZj) J(r|J)SiSJ (Szi—lVI), (1) N*(a)zl_a/d(lea/d_l) (7)
with which behaves, foN—o, as
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1 Carlo results of Sampaio, de Albuquerque, and MeneZes.
=1 for a/d>1 Some comments and conclusions are presented in Sec. IV.
N*(a)~4 InN for afd=1 ®) Il. POTTS MODEL WITH LONG-RANGE

1 B FERROMAGNETIC INTERACTIONS
1=ald Ni-a/d for O<a/d<l.
—

In this section we address the LR ferromagnetistate
Potts model, i.e., we consider the Hamiltonian

For a>d the thermodynamic functions per site do not de- 1

pend onN and the system is extensivee., the thermody- H=—> 2> J(rj)é(oi,0)—h> 8oy,
namic limit exist3. When O<a<d, N*(«) diverges for 277 i

N—o and the system is nonextensive. Also presented was (0i=1.2 Vi) )
numerical evidence that for d=1 the mean-field(MF) gi=Lhe . AV,

theory becomesxactwhen O<a<d. This led two of uSto  where to each sité we associate a spin variabte, which
conjecture that the mean-field theory might be exact for th@an assume integer values; the sum; ; runs over all pairs
nonextensive Ising model. of sites of ad-dimensional lattice oN sites (#j); & is the
Mean-field theory aCCUrately describes the thermody‘Kronecker delta functiorﬂ(rij) is given by Eq(Z), andhis
namic behavior of sufficiently high dimensional spin sys-an external magnetic field in the=1 direction. Thea
for low dimensional systems, where fluctuations play an im-— 3 the o =0 limit corresponds, after a rescalidg-J/N, to
portant role, significant departures from MF theory are exthe Curie-Weiss model.
pected, at least for short-range models. Hence the accurate This model, in its plain formulatiopa— of Eq. (9)] or

agreement between numerical and MF solutions for the, 3 more general one with many-body interactions, is at the
whole magnetic equation of statend for the correlation heart of a complex network of relations between geometrical
function” in the aboved=1 model is remarkable, suggesting and/or thermal statistical models, like, for example, various
that MF theory may be “universal” for nonextensive classi- types of percolation, vertex models, generalized resistor and
cal spin models, in the sense that it describes exactly it§igde network problems, classical spin models, @tee Ref.
thermodynamical behavior independently of the dimensionq and references thergin
Therefore it is interesting to check this hypothesis in differ-  on the other hand, the Potts model with LR interactions
ent low dimensional systems. _ has been much less studied. In the extensive regitnd it

In this work we extend the previous analysid present presents a very rich thermodynamic behavior, even in the
other evidence of the exactness of the MF theory fetdd  gne-dimensional cagé-'°To the best of our knowledge, no
<d for the one-dimensional ferromagnetiestate LR Potts  stydy has been carried out for the nonextensive regime 0
model for different values ofj (including the first-order < ,<(g.

phase transition predicted by MF theory fpr-2) and also Let us introduce the sumi(a)22j¢i1/rﬁ- A sufficient

for the two—di_mensional antife(romagnetic .LR Ising model in condition(and believed to be necessEry) for the existence
an external field. Our mean-field calculation for thstate s the thermodynamic limit of this system is that

Potts model presented here also agrees ingthel limit

with Monte Carlo calculations for the long-range percolation 1

problem ind=1 obtained by other authofsOur results, ¢(a)= lim N 2 di(a)<oo. (10
together with some previous ones, led us to conjecture that N—ee !

the MF theory might be exact for any nonextensive classical ) ] ] ]
spin model excluding the borderline cage-d, where there Let us now consider @-dimensional hypercube of side

_ d C_ :
are probably corrections to the MF resufmme previous L+1andN=(L+1)% and leti=0 be the central site of the
experimental resulfson dipolar ferromagnetic materials do hypercube. We have that
not exclude this possibilijy

The outline of this paper is the following. In Sec. Il we ¢(a)=hlliqub0(a). (11
analyze the ferromagnetigstate LR Potts model subjected -
to a uniform magnetic fieldh. First, we show that the previ- When L>1 (N>1) ¢o(a) shows the following

ous analysisfor the Ising model ¢=2) in the nonextensive
region is straightforwardly extended to the genegic2
case. Then, in Seg. Il A we derive the mean-.field splution of bo@)~Cyla)2°N* (@), (12)
this model for arbitrary values daf, «, andh, in particular

the MF predictions for the LR bond percolation which cor- whereN* («) is given by Eq.(7) andCg4(«) is a continuous
respond to thg—1 andh—0" limit. In Sec. IIB we com-  functior? of « independent oN, with C4(0)=1 Vd. It can
pare the MF solution with our Monte Carlo simulation of the be proved that

one-dimensional model fan=0, g=2, 3, and 5 and dif-

ferent values ofa. In Sec. Il we calculate the mean-field 1 for Osa=<1

solution of the two-dimensional Ising model with competing c _ 1 13
LR antiferromagnetic and short-range ferromagnetic interac- a)=) {a) for a>1 (3
tions in an external field and compare them with the Monte 2071

asymptotic behaviot:
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where{(x) is the Riemann zeta function. From E¢8) and
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The mean-field solution for this model can be easily

(12) we see that the thermodynamic limit is well defined forfound from the variational method in Ref. 21 by using a

a>d (where the system presents extensive behgwdrile

for a=<d the system becomes nonextensive. Following the
same procedure as in Ref. 5 it can be shown that the scaling

behaviors(3)-(6) of the thermodynamic functions hoMq

=2 andVa=0. Forq=2 the system undergoes a second-
order phase transition at finite temperature foralt d when
d=2'% and for I=a<2 whend=1.'° For a—d", the
critical temperature of the Ising model shows the following

asymptotic behaviot®

kgTc~Jé(a). (14

Ford=2 anda>d (short-range cas® there exists a critical
valueq. such that the phase transition is a second-order one
wheng=q.(d) (q.=4 for d=2) and a first-order one for
Carlo
simulation$**°show that, forg>2, there is anx-dependent
threshold value).(«) such that the transition is of first order

g>qc(d). For d=1 and I<a<2 Monte

wheng>q.(«) and of second order fay=<q.(«).

A. Mean-field theory

noninteracting trial Hamiltoniai, given by

N g-1

Ho=—7>, > \|, (21)

i=11=1

where » is the variational parameter to be found as a func-
tion of temperature. The variational free eneFjis given by

F=Fo+(H—Ho) (22
h) <« %
“Fot[ 0] 3 3 e
1 al
24 2} i) 2 (A ho-CEh), (23

where the free energly, associated withH is

N
Fo=— Eln{exr[Bn(q—l)]Hq— 1)exp(—Bn)}
(29

In order to develop a mean-field version of Hamiltonian and(- - -)o denotes the canonical average using the Boltz-
(9) we use Mittag and StepheR®spin representation for the mann measure proportional to expéH,).

Potts model, i.e., we associate to eachjsétespin variable\
which can take the values;=1,0,0% ... 09!, wherew
=274 js aqth root of unity. In other words, if the siteis
in the stateo then\; =w? L. Then, using the property

q
q*lgl AN A7K=S(\,\) (15)

we can rewrite the Hamiltonia(®) as

1 q-1 h q-1
H=— 2= 2 3(rp 2 MAT == 20 ) M=C(3,h),
29 73 =1 ! g5 =1
(16)
where the constant ter@(J,h) is
1 hN
C(I,h)==— >, Ir)+—. 1
Q=54 2 I+ (17)

The fraction of sites in the state, n,=(1/N)Z;(5(o;
— o)), in this representation is given by

q-1
ny=—|1+ >, 97D\, (18
q =1
and the order parameter for a symmetry breaking ind¢he
=1 direction is
qn;—1
T g1 (19
which can be written, using Eq418), as
1 O
m=—— > (\"). (20)

g—1=

Using equality(15) one gets that

(A)o=(A\Do==(\"Ho=mg

where the variational order parametey, [defined by an
equation similar to Eq(20)] is related toz through

. exp(Bnq)—1
° expBna)+(q—1)
and from the propertyw9~'=(\")* it follows that

(Yi), (25

(26)

(NN o=m5. (27)

The minimization condition leads to

1
7= a[J¢(a)mo+ h] (28)

which, combined with Eq(26), gives the following mean-
field equation for the order parametag:

 explBlI¢(@)my+h} -1 9
o= expB[Id(a)mo+ h]+(q—1)

In the a— limit (short-range interactionswe have
¢(a)— z, zbeing the coordination number of the lattice, and
we recover, foh=0, Mittag and Stepher?S result. Forq
=2 the Hamiltonian(9) is equivalent to the Ising one with
long-range interactions, providing thaf°!s=2J3's"9 and
hPots=2h!sing | this case Eq(29) reduces to

mo=tanH B/2[J¢(a)my+h]} (30

and we recover the result from Ref. 5, i.e., the long-range
version of the Curie-Weiss equation which describes a
second-order phase transition for=0 atkgT/J'S""9¢(a)

=1.
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The variational free energ§ calculated at the minimum . JN*
[cond_iti(f)n (28)] gives the following mean-field free energy p*=1—expg — KeT (37
per sitef:

andP_, is the probability percolation associated with the long
1 5 range bond percolation whose bond probability occupancies
ph+ E(q—l)ﬁJ¢(a)m0 are p*/rfj. Using this rescaled variablg*, the MF order
parameter equation becomes, fb¥-1 [see Eq(12)],

BIp(a)
2q

+(q=1)Bhmy—[1+(q—1)me]In[1+(q—1)mo]

—Bf=Ing+

1
+_
q

P.(p*;a)=1—(1—p*)Cd@2"P=(p™i0) (3g)

—(q—1)(1—mo)ln(1—mo)], GV \hich leads, for different values of [0d], to monoto-

nously increasing distinct order parameterpasvaries from
the critical probabilitesp? («,d)=1—exp{—1[Cqy(a)2°]}

to p*=1. However, if one introduces a more convenient
variable, namely,

where we have used Eq3)—(29).

For g>2 and h=0 the transition is of first ordefin
agreement with Ref. 25and it is easy to verify that at the
transition temperature the order paramatejumps to the
value @—2)/(q—1). The first-order transition temperature Jo(a)
for g>2 is given by r*zl—exr{ -

)=1—<1—p*>¢<“>’N*<“> (39)

kgT
KT./J= q_z) ¢(a) _ (32) then all these MF probability percolation curves for different
¢ q—1/2In(g—1) values ofa andd coalesce into a single curve described by

Equation(31) for h=0 and Eq.(32) recover, in thea— the equation

limit, Mittag and Stephen’s result§.

In the g—1 limit, which corresponds to a bond percola-
tion where the bond probability occupancy between any two
sitesi andj is p/r{j, the order parameterobability perco-
lation P,, (defined as the probability that a randomly chosen
bond of an infinite lattice belongs to a cluster of infinite $ize
can be derived froAt

P.(r*)=1—(1—r*)P="), (40)

The critical valuer? where P.(r*) vanishes isry =1
—exp(=1)=0.6322..., which leads to the MF critical
probability

-1
=l—exp ———|. 41
J g 1 Pele) p(qﬁ(a)) 4D
P.(p)=1+ lim —={ lim—Ilim —In(2)}, (33
hootd q—19An_ N Combining Egs.(41), (12), and (8) one verifies that
p.(a—d™) vanishes asymptotically as

whereh= Bh, Z is the partition function of the Potts model

with coupling constants/rf;, andp is the first neighbor 1 a
bond probability given byp=1—exp(—JkgT). P(a—d™)~ 3 (a - 1) (42)
One can easily show, from Eq9), (31), and(33), that Cq(d)2
the probability percolatioP..(p) is, as expectelf, exactly which, in the particular case afi=1, gives
the g—1 and h—0" limit of the order parametem,,
namely, 1
pc(a—>1+,d=l)~§(a—l). (43

P.=my(q—1h—0")
Notice that the asymptotic behavifEq. (43)] coincides

- 1—exp{ _ Mmdq—»lﬁ—ﬁ*) (34)  with the lower bound fop (1<a=<2d=1)*. Very recent
kgT Monte Carlo calculations in the one-dimensional long-range
or, in terms ofp percolation problefhhave also shown a very good agree-
' ’ ment with Eq.(40).
P..(p; ) =1 (1 p)H@P=(Fie) (35)

L . . B. Monte Carlo results
from which it follows that, due to the divergence éf«) in

the nonextensive regimeR..(0<p<1;0sa<d)=1 and
hence the critical probabilitp.(0<a<d) =0 in agreement
with the exact resuft’

One can easily prove, from E@5), that the percolation
probability P, of a finite system withN bonds presents an
asymptotic scaling behavior similar to E@), namely,

We performed a Monte Carlo simulation using the heat
bath algorithm on the one-dimensional Hamilton{@hwith
h=0 and periodic boundary conditions fdf=300, 600,
and 1200, forq=2, 3, and 5, and different values of 0
<a<1. We calculated the magnetization per sfif) as a
function of T*=T/N* for different system sizes and per-
formed a numerical extrapolation forN~0.

P.(N,p)~PL(p*) (N>1), (36) In Fig. 1 we compare the numerical results of tye 2
case form(T*) vs 2kgT*/2*J for different values ofx with
wherep* is the variablep calculated af* = T/N*, namely, the mean-field solutiofEg. (30)]. We see that all the nu-
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FIG. 1. Monte Carlo extrapolated resulsymbols of m(T*) vs 0.8 |- ! -
2kgT*/(2%J) compared with the mean-field soluti¢solid line) for L :
g=2. The error bars are smaller than or equal to the symbol sizes. 06 : |
—KA | .
merical curvegwhich recover those obtained in Ref. fall =l Mean Field :
into a single one in excellent agreement with the MF predic- E 04 o a":“o ;‘; : ]
tion. , [ O e=050
In Fig. 2 we make_ th_e same comparison for lheS_ and_ 02 A g=075 —
g=>5 cases. The solid lines represent the MF solution given i : o
by Eq.(29) for h=0. The dotted lines in this figure indicate oob—m—1 1 . b8

the mean-field prediction for the first-order transition tem- 0.0 0.1 0.2 0.3 0.4 0.5
perature jump$32). Again we observe, in both cases, a very T A
good agreement between our simulations and MF results for kpT*/(J2%)

O0=a<1, including the first order phase transition fqr FIG. 2. Monte Carlo extrapolated resulsymbol$ of m(T*)

>2. vs. kgT*/(2%J) compared with the mean-field solutigsolid line)
for g=3 andq=5. The error bars are smaller than or equal to the
Ill. ANTIFERROMAGNETIC ISING MODEL symbol sizes.
WITH LONG-RANGE INTERACTIONS
We now consider the square lattice Ising model with com- P 1
peting LR antiferromagnetic and short-range ferromagnetic eff__‘]j;i r?miJr‘]Fj%i m;+h, (46)
interactions in an external field, which is described by the !
Hamiltonian where the Sunk;,,; runs over all nearest-neighbor sitesi of
and
1
H=fJF<izj>SiSj+J(iEj)rfaSiijh2i S L
’ ! mj=>— Tr{sl}{sje*BHMF({S})}, 47)
X(S§==*1Vi), (44) ME
whereJ>0, Jz>0, and the sunk ;, runs over nearest- with
neighbor sites of the square lattice. The above Hamiltonian s
reduces, fode=1 andJ=0.5, to the model studied by Sam- Zye=Trsye™” mE(tSh), (48)
paio, de Albuquerque, and MeneZ:through Monte Carlo
simulations. Dividing the square lattice into two square interpenetrated

A mean-field version of this model can be obtained bygypjatticesA andB we can propose a solution of the form
considering the Hamiltonian

m* ifieA
HMF:*Z hetS: (45) M= me ifieB (49)

with Let us introduce the functions
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M)+ P (a)= ().
pD)=2 — (50 _
jeAT A It can be easily seen that
pM(a)=2""¢p(a), (52)
(2) = _
#ar=2 =l ¢2(@)=(1-2 ") ¢(a).
with Then, substituting Eq$49) and(50) into Eq.(46) we obtain

{ —J¢W(@)MP— 3D (a@)mB+4JemB+h  if icA
eff™

—3¢P(@)m* =3¢ (a)mP+4Jem’+h if 1B’

Combining Eqs(52), (45), and(47) we arrive, after some algebra, to the following set of MF equations for the magnetization
m=m"+m® and for the staggered magnetizatimg= m*—m&:

(52

. sinh(2B{h—[J$(a)—4I:Im})
coSH2BIN—[9(a)— 43, 1mh)+ cosH2AIJd(a) 20 1)+ 43 ]m)’

(53

o —sinh2B{[I( ) (21 P~ 1]+ 43)me})
® cost2p{h—[I(a) — 4JcImb)+cost2 B[ Ip( ) (21 2~ 1) + 43 Ime)

(54)

Forh#0 it is easy to verify that the only solution of Egs. evaluated numerically by performing calculations for differ-

(54) and (53) is mg=0 and ent values ofN and then extrapolating to N/~0. We ob-
tained, fora=1, C,(1)=0.8813+0.0001. The comparison
m=tanh(B{h—[J¢p(a) —4Ic]m}). (55  for other values ofv<2 gave similar results.

A similar comparison fora=2 is made in Fig. 4
In Fig. 3 we compare a numerical solution of H§5) C,(2)=0.746+0.001. The Monte Carlo data of Sampaio,
with the Monte Carlo data of Sampaio, de Albuquerque, angje Albuquerque, and Menez¥sdo not agree very well with
Meneze$’ for a=1, Jp=1, J=1/2, BN*(a)=(0.3)"',  the MF magnetization, suggesting that corrections to the
and different values ol. The functionCqy(«a) for d=2 was  mean-field result should be taken into consideration in this

L5

1.5

1.0 4 1.0

0.5 0.5

€00 -

-0.5 1

-1.0 1

-1.0 1

-1.5 T T T T

-1.5 T T T T T

h/ (J 22 C4(e) N*(@)) h/ (2% Cy4(e) N*(e))

FIG. 3. Monte Carlo simulations of Sampaio, de Albuquerque, FIG. 4. Monte Carlo simulations of Sampaio, de Albuquerque,
and MenezesgRef. 10 for the magnetizatiom vs. a rescaled mag- and Meneze$Ref. 10 for the magnetizatiomn vs a rescaled mag-
netic field for square lattice sizes of 832 (circles, 48x48 netic field for square lattice sizes of 332 (circles, 48x48
(squares and 64X 64 (triangles for =1, Jg=1, J=1/2, and (squarel and 64<64 (triangles for =2, Jz=1, J=1/2, and
T*=T/N*=0.3. The solid line represents the MF solution given T* =T/N* =0.3. The solid line represents the MF solution given
by Eq.(55) for N=64X 64. The error bars are smaller than or equal by Eq.(55) for N=64X 64. The error bars are smaller than or equal
to the symbol sizes. to the symbol sizes.
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borderline caséwhere«=d). Notice that theoretic&t pre-  order transition forq>2 and O<a<1, which matches
dictions and experimental resfitebtained for the critical nicely with previous resulté'® exhibiting first-order transi-
behavior ofd=3 uniaxial ferromagnets with exchange andtion for g>q.(«). A good agreement between MF and
strong dipolar interactions show that corrections to the MRMonte Carlo calculations has also been found in other works
behavior are needed in this=d=3 case. concerningd=1 nonextensive classical LR spin and related
Summarizing this section, we verify that the Monte Carlomodels, namely, the order parameter of the LR bond perco-
simulations for the equation of state of the=2 LR Ising lation problenf the magnetization of the classicaY
antiferromagnet are in very good agreement with the MFmodel?® the correlation fucntion of the Ising modesnd the

prediction when 8= a<<2. frozen-active transition line of the Domany-Kinzel LR cellu-
lar automatorf’ Furthermore, the MF theory is exact far
IV. CONCLUSIONS =0 in many classical LR spin modei8,as well as fora

S ~—d™, at least in the Isin§ and spheric&® LR models.
We have analyzed, in this paper, two long-range spifrhese facts together with our results lead us to conjecture
models with power-law decaying interactions () under  hatthe mean-field theory might be exact fodiensional
an uniform magnetic fielth in low spatial dimensiondi) the | R nonextensive classical spin models viita a<d.

g-state LR Potts ferromagnet ahdimfnsional hypercubic  The above results show that mean-field behavior is robust
lattices (including theq—1 andh—0" case of LR bond against the range of interactiomswithin the nonextensive

percolation and (i) the LR square Ising antiferromagnet region, for a large class of classical magnetic and related
with first neighbor ferromagnetic interactions. Both m0d9|ssystems. If our conjecture were true, this would have impor-

present nonextensive thermodynamic behaviors whem 0 {ant practical implications: if you are considering systems

=d, but their thermodynamic functions become finite whenyith siow enough decaying interactions then you do not need
convenient scaled variables are uSafe have derived this sophisticated approximations.

scaling forq=2 and have shown that the mean-field prob-  \we hope that our conjecture is proved, at least for some
ability percolation(i.e., the percolation order parametsat-  particular spin model. It would also be interesting to extend

isfies a similar scaling. The derived MF solution for the frgethe previous analysis to more general systems of interacting
energy of the LR Potts model led to spontaneous magnetizgsarticles with long-range interactions, such as a gas of clas-

tion curves which agree very well with our Monte Carlo sjca| particles interacting through a Newtonian potential.
simulations ford=1 andg=2, 3, and 5 states for different

values of GKa<1. Concerning thea=0 case, the MF
theory is exact for any value @f (see, for example, Ref. 25
and references therginAn excellent agreement occurred  Fruitful discussions with Z. Glumac, C. Tsallis, and E. M.
also between the derived MF equation of state for the abovE. Curado are acknowledged. We are grateful to Sampaio
d=2 antiferromagnetic LR model and the Monte Carloand collaborators for sending us their Monte Carlo data. This
simulations of Sampaio, de Albuquerque, and Mené2ésr  work was partially supported by grants from Consejo Nacio-
distinct values of 8=a<2. Since fluctuations play a negli- nal de Investigaciones Ciéfitias y Tenicas CONICETAI-
gible role for increasingly higher dimensiorig fact, MF  genting, Consejo Provincial de Investigaciones Ciéioas y
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