1306

Generalization Properties of Modular Networks:
Implementing the Parity Function

Leonardo Franco and Sergio Alejandro Cannas

Abstract—The parity function is one of the most used Boolean where

function for testing learning algorithms because both of its simple O(x) 1if z > 0 and 0 otherwise;
definition and its great complexity. Being one of the hardest prob- - . .
lems, many different architectures have been constructed to com- Jij synaptic weights;

pute parity, essentially by adding neurons in the hidden layer in S;=1{0,1} activities of neurons in a previous layer;
order to re(_juce the_ number of local minima where gradient_—de- T; activation threshold of the neuran.
scent learning algorithms could get stuck. We construct a family of . . .
modular architectures that implement the parity function in which, Different complexity measures as order of predicate, entropy
every member of the family can be characterized by the fan-in max decreasing criteria, size of the network, etc., (see [2], [5], and

of the network, i.e., the maximum number of connections that a [13]) together with the fact that every change of a single input bit
neuron can receive. We analyze the generalization ability of the produces a change in the output make the parity function a hard

modular networks first by computing analytically the minimum bl Bool functi Th ity function is th
number of examples needed for perfect generalization and second probiem among boolean tunctions. The parity function Is thus

by numerical simulations. Both results show that the generaliza- One of the most used functions for testing learning algorithms,
tion ability of these networks is systematically improved by the de- because of its simple definition but great complexity.
gree of modularity of the network. We also analyze the influence of From the vast literature where the parity function is analyzed

the selection of examples in the emergence of generalization ability, and compared to another functions we could cite [5], [9], [10]
by comparing the learning curves obtained through a random se- [12], [16], and [18] B ’

lection of examples to those obtained through examples selected

accordingly to a general algorithm we recently proposed. The question about what is the minimal size network needed
- . N . to compute parity has been addressed from the point of view of
Index Terms—Circuit complexity, generalization, learning from Lo . .
examples, modular neural networks, parity function. circuit complexity, see [13]. Impagliazzi al. [11] have found

that the/V bit parity function with a single hidden layer needs at
leastN'/2 hidden neurons, while the best known construction
. INTRODUCTION hasO(N) neurons. Recently in [8], it was demonstrated up to

NE central theme in neural networks is the design of opY = 4. that the minimum size of the hidden layer required to
timal architectures to solve specific problems. The inolve theN-bit parity is V.
plementation of an optimal feedforward network for a given This network, that we shall refer to as the basic structure, is
problem involves several aspects, such as complexity of tHie simplestand most studied architecture to compute the parity
problem, depth of the network (i.e., number of hidden layerdjinction (see [10], and [12], [16]). It ha¥’ input bits, NV fully
number of neurons in the hidden layers, convergence of tfgnnected neurons in a single hidden layer, and a single output
learning algorithms, ability to generalize, etc. that has to beNwhenever an odd number of input bit ameand
In this work we consider networks that solve the parit@FFotherwise. Gradient-descent learning algorithms face prob-
function using feedforward neural networks composed of linet@Mms with this architecture as they get trapped in local minima,
threshold units: neurons whose activity is determined by SO other solutions have been designed by adding neurons in the
computing a linear threshold function of the form hidden layer to obtain an improvement in the performance of
the learning procedure [17].
In this work we construct a family of modular architectures
that implement the parity function. Every member of the family
0; =0 Z Ji;S; = 1; (1) can be characterized by the fan-in mak.{,) of the network,
J i.e., the maximum number of connections that a neuron can
receive. This parameter controls the degree of modularity, the

_ _ , _number of hidden layers, which increases logarithmically with
Manuscript received December 3, 1999; revised March 21, 2001. This wol

was supported by SeCyTUNC, CONICOR and CONICET. max and the total number of synaptic weighs. An inter-
L. Franco was with the Condensed Matter Group, Facultad de Matematiesgting fact is thatV, diminishes ag,,. increases.

Astronomia y Fisica, Universidad Nacional de Cordoba, (5000), Cordoba, Ar- Besides several computational advantages (see for example
gentina. He is now with the Cognitive Neuroscience Sector at Scuola Inti

nazionale Superiore di Studi Avanzati (SISSA), Trieste 34014, Italy (e—maT[{.}’L [9] "_’md references ther?'”) r_nOdUIa_r arCh|t_eCtureS are Of_ par-
lfranco@sissa.it). ticular interest from the biological point of view. Modularity

S. A. Cannas is with the Condensed Matter Group, Facultad de Matematiggems to be an important principle in the architecture of ver-
Astronomia y Fisica, Universidad Nacional de Cérdoba, Cérdoba 5000, Ar-

gentina (e-mail: cannas@famat.unc.edu.ar). tebrate nervous systems, while fully connected networks are
rarely found in nature. Moreover, modular networks have been

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1307

Input Input
]1 [2 -[3]4

Output S

Fig. 2. Modular network structure to compute the parity function of four input
OUtPUt S bits with af,.x = 2. The parity of pairs of input bits is computed and later the
parity of the results is calculated using the same procedure.

Fig. 1. Neural-network structure that computes the parity function of four
input bits using the simplest architecture with only one fully connected hidden
layer with four neurons. The threshold values are indicated inside the neurgr@urons to the output have alternate values 1-ahcnly when

while the synapsis values are 1 for the solid lines atfidfor dash lines. an odd number of inputs neurons aneis the sum of the acti-
vated weights onto the output unit able to exceed its threshold

used succesfully in several tasks as speaker recognition, f8d/2 so as to activate the output neuron. An even number of

recognition, prediction of time series, etc. [1], [4], [15]. active input neurons results in an even number of active hidden
The family of networks and its general properties are préhits, the sum of the activated weights onto the output unit is
sented in Section II. zero and the output unit remains inactive.

In Section Ill, we analyze the generalization ability of the We now introduce a family of architectures that generalize
modular networks introduced in Section II, first by computin§is previous basic architecture and exactly solves the parity
analytically the minimum number of examples needed for fulinction.
generalization and second by numerical simulations. Both ana-The architectures are constructed from a very simple and
lytical and numerical results show that the generalization abiliye!l-known property: the addition of two odd or even numbers
of these networks is systematically improved by the degree @¥€s an even number, while the addition of one odd and
modularity of the network. We also detect the existence ofofle even number is odd. The parity of an arbitrary number
phase transition from memorization to perfect learning (gendit bits can thus be computed by dividing them into groups
alization) as the number of input bits is increased whileffpe. @nd computing the parity of every group independently. This
is reduced, as first suggested by Patarnello and Carnevali [LB[Ocedure can be repeated recursively until we obtain a single

Some conclusions and remarks are presented in Section [QUtput result. The parity computation at every step can be
performed by a neural network with the basic architecture.

There are several options for grouping the bits at every step,
each one of them associated with a particular architecture.
One particular way is to build (when possible) all groups with

The simplest known solution (see [16]) for thé-bit parity the same number. of bits. This choice generates a modular
function using linear threshold units has one hidden layer wigttructure where the basic architecture that solves the parity of
a number of neurons equal to the number of inpditsThe m bits is repeated recursively.
network is fully connected and the value of the weights that Let us illustrate the idea with a simple = 2 example. Con-
solve the problem is very simple: all the weights connectirgjder for simplicity thatV is 2* (¢ > 0); we then divide the
the input to the hidden layer are set to 1, the thresholds of timput into N/2 pairs and compute the parity of every pair (an
hidden neurons are the semi-integers numbers ranginglff@m exclusivexor function) with the well-known basic architecture
to N — 1/2, the connections from the hidden neurons to th&ee Fig. 2). We obtai®v/2 binary outputs that we group in
output are alternatively set to 1 ard. and the threshold output V/4 pairs and so on. This architecture computes the parity of
is set tol/2. From now on we will refer to this architecture aghe N-bitinputink = log, N steps and involves a total number
the “basic architecture.” In Fig. 1, we show an example of thigf 2k — 1 hidden layers. An example fa¥ = 4 is shown in
architecture fotvV = 4. Fig. 2.

The network functions is as follows: whéerof the N input The generalization to the cagé # 2* is straightforward:
neurons ar®N, ¢ of the hidden neurons, those with thresholdsvery time we need to compute the parity of an odd number of
less thari, areoN. Since the synaptic weights connecting hiddehits, either at the input or in one of the intermediate steps, we

Il. A FAMILY OF ARCHITECTURESTHAT SOLVE THE PARITY
PROBLEM

1308

leave one bit out compute the parity of the remaining bits witie size of such subsets determines the minimum number of ex-

the previous procedure and include the remaining bit in a furth@mples that ensures perfect generalization.

computation. If we writeV = 2¥ —[(with < 2*—1), the corre- We now consider the case of “clipped” or “restricted” weights

sponding parity problem can thus been solved by an architectuie = {+1} and suppose that we use some appropriate learning

with 2k — 1 hidden layers. The structure will involve synapsisilgorithm that guarantees the zero error learning of the training

between neurons separated by more than one layer which eaamples (for instance, simulated annealing) starting from a

be visualized as mediated by subsequent neutral hidden neunamslom assignment of the weights.

that just propagate their activity to the next layer without alter- We first analyze the basic architectu’e = m. Let us con-

ation. This structure has a fan-in maxsmaf= 2. sider the particular example with = m = 4 showed in Fig. 1,
This scenario can be easily generalized to the ease 2 wherel; = {0,1} (i = 1,2, 3,4) are the input bits

using the basic structure with bits. We now analyze the case

whereN = m*; the N # m* case can be solved by the ap- 4

proach discussed in the preceding paragraph. In theEase hi=© | Jil; =T, i=1,234 4)

m* we obtain a modular structure that solves paritykin= J=1

log,,, N steps, witrek — 1 hidden layers, a total number of N€Ugetermine the activity of the hidden neurofisare real thresh-
rons olds and/;; = £1 are the input-to-hidden weights. The output

N -1
N, =1+2m @) S follows from
m—1 4
and a total number of synaptic weights 5=06 Z wihy =T (®)
k=1
N, = Mm DIV -1) (3) whereT is also real andy, = =+1 are the hidden-to-output

m—1 weights.

These architectures havefa.. = m. This parameter mea- Different choices of the threshold4’, 7"} allow for different
sures the degree of modularity of the networks; the ease ;N solutions of the parity problem, every one associated with a
corresponds to the basic architecture with no modularity at eifferent internal representation, i.e., a set of hidden unit ac-
while the minimum numbem = 2 corresponds to maximum tivities {A;} for every input (see [16] and [6]). We choose the
modularity. thresholds, as described in the previous sectior: 0.5 and

Note that bothV,, and N, increase linearly with the numberZi: = 0.5,1.5,...,N — 0.5, for< = 1,..., N. With this choice
of inputs V. For large values ofn, N,, becomes almost inde- and clipped synaptic weights it can be seen (as it will become
pendent ofn while N, increases linearly with»: in networks clear in our analysis) that there is only one possible internal rep-
with a large number of inputs the number of synaptic weightgsentation except for trivial permutations of the hidden units.
can be reduced through smallwith only small increase in the This property also holds for the more general dase 7" < 1

total number of neurons. These considerations are important®di —1/2 < T; < i+1/2. Inorder to simplify the analysis we
hardware design. will keep the thresholds to that values in all our calculations. We

expect our results for the minimum number of examples needed

. GENERALIZATION ABILITY for full generalization (MNEFG) to be independent of that con-
straint. Fixing the thresholds is equivalent to choose a particular
internal representation for the solution of the target problem and

To analyze the generalization ability of the networks préhe MNEFG is expected to scale in the same way utHor
sented in Section Il we first calculate an upper bound fany possible internal representation, as we verified for the parity
the minimum number of example® needed to obtain full problem in a fully connected network with continuous weights
generalization in learning the parity function. This numbdi7]. In the present problem we verified this assumptigooste-
depends both on the target function (in this work we just studipri by means of numerical simulations.
the parity function) and on the chosen architecture and it can beMe will denote the examples by writing between square
obtained analytically by analyzing directly the linear thresholdrackets the input values and the correct output separated
equations derived by imposing the perfect learning of a setlo§ a colon. With our choice of threshold values the example
examples. We introduced this method in a previous work [f{9000:0] is automatically solved by the network. Now con-
to analyze the influence of the selection of examples in tiséder the example [1000:1]. Since all thresholds are positive,
emergence of generalization ability for several networks with, = hz = hs = 0 and (5) withS = 1 requiresw; = h; = 1.
linear threshold units. In particular, we showed that perfeEtom (4) we, then obtain thak; = 1. Perfect learning of all
generalization can not be achieved with the basic architectiine examples with only one hbitn: [1000:1], [0100:1], [0010:1]
with continuous weights for the parity problem. and [0001:1] thus implies the following necessary conditions:

The idea of the method is as follows: the perfect learning ef, = Ji; =1, j = 1,2,3,4.
every one of the” possible examples imposes a set of con- We now consider the examples with two kits, for instance
straints on the synaptic weights. In the general cas&theon- [1100:0]. From the previous conditions we have that= 1
straints will not be independent, but independent subsets exastd from (5) thatis ws 4+ 0.5 < 0, which impliesws; = —1 and
Since every constraint is associated with one particular examgle,= 1. Then from (4) we obtain thak; = J;2 = 1. Repeating

A. Minimum Number of Examples for Full Generalization

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1309

this procedure with the rest of the examples with two bitave examples is enough to learn the parity problem. This number
obtain thatJ,; = 1, j = 1,2, 3,4, but notice that just two of has to be compared with! = 29 derived from (6) for a basic
the six possible examples are needed to ensure the fulfillmentothitecture withV = m = 9.
the above conditions, provided that the active input bits do notThe generalization of the argument to the general dase
overlap (for instance: [1100:0] and [0011:0]). mP is straightforward. The number of examples needed to learn
We now consider examples that contain three inputdiits the parity in then*~! input modules is
and two of the four available examples suffice to determine
w3 = Ja; = 1, j = 1,2,3,4. Finally the single example with R m R m
all the input bitson, [1111:0] impliesw, = —1 andJy; = 1, mtt Yy inty (7) = Nmtt Y inty (7)
j=1,234. =t =2
Hence, we see that faV = 4 it is enough to learn niné pnce this learning task is performed, the input modules act as
selected examples (slight above half of the total nun#er= single units for the next layer of*~2 modules. For this layer,

16 of examples) to obtain full generalization. ~all the examples with only one input kiiN have already been
The generalization of this result to the casé\oinput bits i |earned. We only needed another set of

straightforward: we analyze the complete se2¥fexamples in

groups formed by the examples that have arthyts on and we m m
take from every group the minimum number needed to ensure m*? Z Inty. (7)
that every input bit appears at least once in ¢hestate. The i=2

total number of examples needed to obtain full generalization is :) .
thus given by appropriately chosen examples to fix the rest of the synaptic

weights of this layer. Repeating this procedure for the remaining
k — 2 layers of modules leads to

N
M =Y "Ity <¥) (6)
7=1

where Int, () equalse if z is an integer and it equals the closest
integer greater thanm if z is real. For large valued >> 1, this

M(N) =N + kz_:lmf [ilnu (?)]
§=0 i=2

number scales a&/ x N log(N), quite smaller than both the _ny Nt > Int, (ﬂ) @)
total number of examplez" and the total number of synapsis m—1— t
NZ 4+ N.

We now analyze the case < N. for N = m”*. Notice that for large values df >> 1 and strong

Let us start with a particular case with = 9, m = 3. modularitym <« N, M(N) scales linearly withV instead of
This network has a modular structure derived from the baste N log(V) scaling form ~ N.
architecture withV = m = 3. The thresholds in every module The analysis is more complex f&f = m* — [, with [<
are fixed as before. m¥*~1. This case can be solved by constructing a modular net-
As we explained in the previous section, the three input moakork with m* input units and training it with examples where
ules have to compute independently the parity of the corrite extral input bits are always set to zero. An upper bound to
sponding input bits, while the output module has to computke number of examples needed to train this network is given by
the parity of the previous results. Hence, a natural choice isié(m* —) < M(m*), whereM (m*) is given by (7) and the
start with all the examples needed to learn the parity in evepguality holds fol = 0.
one of the three input modules, that is, examples containing dif-Consider now the case obntinuous weightd;;. Again, the
ferent combinations of zeros and ones in the input of one partivodular structure of the networks allows us to carry out the anal-
ular module and zero in the rest of them (for instance, [xxx 00Gis recursively from the properties of the constituting modules.
000:y], where [xxx:y] is one of the examples needed for a basicFor continuous weights the restrictions imposed by the
architecture withV = m = 3). In this case the outputs of thelearning of K examples appear in the form of a set &f
input modules will have at most one laiv. Therefore, this set simultaneous inequalities. In a previous work [7] we showed
of 3Zf’=1 Int, (3/¢) = 18 examples will fix all the synaptic that, for a basic architecture ef input bits with the choice of
weights associated with the first hidden neuron of the outptiite thresholds adopted here, full generalization implies the ful-
module (that is, the neuron with threshdld2) together with fillment of 2 — 1 independeninequalities: only the learning
all the internal synaptic weights of the input modules. of the whole set of possible examples (except for the trivial
Once this learning task is performed, every input modutene with all the input bits set to zero, which is automatically
acts as a single unit, as far as the output module is concerniedfilled) ensures full generalization with this architecture.
Hence, we need another set@‘f=2 Inty (3/¢) = 3 appropri- We now repeat the procedure used in the case of clipped
ated chosen examples in order to fix the rest of the synapsignaptic weights fotV = m* andm < N. In a first step we
weights of the basic output architecture. These examples héwach the network all th&/ examples with only one bit . This
to contain two of them giving different combinations of moduléead to a set of independent inequalities for all the weights
outputs with two bitsoN (for instance [111 111 000:0] andassociated with hidden neurons with threshold equal /ta
[111 000 111:0]) and the example with all the input kits. To obtain the inequalities related to the rest of the weights of
Then, we see that a numbf = 21 over2® = 512 possible the input modules, we have to teach in a second step all the

1310

TABLE |
SOME FEATURES OF THENETWORKS USED TO COMPUTE THE NV-BIT PARITY FUNCTION WITH A frax = m. SEE TEXT FOR THE
DEFINITION OF THE Int; («) FUNCTION

Number Number Examples needed for generalization
of of Depth Restricted Non-Restricted
neurons synapses weights weights

14 2mi=l | mdDWV=D H 910 N | N4 ENsm Ity m | N4 E=lem —;m - 1)

m=1 m~1

~QO(N)form<« N ~O(N) form <« N
~ O(NlogN) form ~N | ~O@2V) form~ N

mb-Ly ™ QL examples containing more than one bit 5

ON in every of the input modules and zero in the rest of them L.u*.

(; being the binomial coefficient). But, for the successive s

layers of modules, all the inequalities associated with just one }‘E

input bitoN in every module have already been set in the first =

step. Hence, to impose the rest of the synaptic weights of the &

layer j the appropriated inequalities we need only another set §

of mk=43y"", < ;) examples. Then, the total number of

examples is

00 01t 02 03 04 05 06 07 08 09
N1 /m Fraction of Examples
M(N) :N+—12<,)
m—1:= ¢ Fig. 3. Generalization error versus fraction of random selected examples for
N — three networks implementing the parity function of eight bits using different
=N+ —— (2’" —m — 1) (8) architectures. In dark the results correspond to the case of a single hidden

m — architecture withf,,,.. = 8, in dark gray those corresponding to an architecture

with three hidden layer with #,,.x = 4 and in light gray a five-hidden layer

for a modular network with continuous weights aNd= m*. architecture withfu.. = 2.
We note that it is the same result obtained for the clipped case,
(7) but changing the term Int(m/3) by (™). Form = Nthe Pe = Ne/2™, N being the number of examples used in the

] t]] training. The results were averaged over different sef$.afx-
resultd] = 2 — 1is recovered. As beforé/(IV) in (8) gives amples and over different initial realizations of random weights
an upper bound for the cagé = mk — I Note that form < {Ji; = +1}. Typical sample sizes run from 50 to 100. The
N andN >> 1, M(N) scales linearly withV for continuous yaining for every initial condition and set of examples was con-
weights. The features obtained for the modular architectures gfgeq until zero learning error was achieved. The generalization

summarized in Table I. error was then calculated over the whole se2Bfexamples.
. In Fig. 3, we compare the learning curves for the three net-
B. Numerical Results works. Forfoa. = 8, the generalization errar, decays very

We performed numerical simulations fof = & networks slowly and approaches = 0 asymptotically ag. approaches
with clipped weights, using simulated annealing as the learnitgy 1, showing a lack of generalization that it is sometimes
algorithm and parity as the target function. The parametersericountered in neural-network applications. A systematic
the simulated annealing algorithm (i.e., initial temperature, ratesprovement is observed as the modularity is increased. A
of temperature decay, etc.) were kept constant in all simulatiodsamatic change of behavior occurs .. = 2, wheree,

The threshold values were fixed to those mentioned in the premains almost constam} ~ 0.5 for N. < M and decays
vious section. We performed seveagdosteriorichecks without suddenly to zero with a few more examples, suggesting a phase
fixing the thresholds obtaining similar results; however, a slowaansition from memorization to perfect learning for large
convergence rate of the algorithms was obtained for the casdatfices. This effect has been pointed out before by Patarnello
variable thresholds. and Carnevali [14], for neural networks composed of Boolean

In order to investigate the effect of the modularity we congates withf,,,. of two. This transition seems to be an effect
pared three different networks witfy,.x = 2 (m = 2, max- associated to the extreme modularity. Far.x = 4 thee,
imum modularity), fnax = 8 (m = N = 8, basic archi- decays smoothly to zero.
tecture) and the intermediate cagg.. = 4. The last case To gain an insight about the relationship between the above
consists of a mixed architecture with twe = 4 input mod- mentioned transition and the modularity we analyzed how the
ules and ann = 2 output module. We calculated the learnindearning procedure affects the different modules as we increase
curves: the average generalization emprversusthe fraction p. for fiax = 2. For N = 8 the resulting network has three

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1311

1e+8 - | I Random Examples
1.0 1 | —e— Input module E=7) Selected Examples
0.9 -| | —®— Hidden module y
0.8 - ©- Qutput module

1e+7

1e+6

1e+5

1e+4 -

CPU Time [ms]

1e+3

1e+2 -
T T T T T T T T 2 4
000 002 004 006 008 010 012 0.14

Fraction of examples

Probability of Generalization

fmax

Fig. 5. Learning CPU time for the parity function using three different
Fig. 4. Probability of generalization versus fraction of examples calculatédchitectures withf..... = 2,4 and eight using random and selected training
for the different modules (input, hidden, and output) of a modular network witets.
N = 8 and frnax = 2.

—@— Random Set
O - Selected Set

layers of modules: input, intermediate and output. We calcu-
late the probability of learning correct synaptic weights in a
given module which implement the target function (remember
that, since the thresholds are fixed there is just one correct set
of weights). The numerical calculations were carried out over 0.0 4 o

samples of size 1000. We first verified that these probabilities . » ' T r r r
are the same for all modules in the same layer, as expected
from the symmetry of the network. In Fig. 4, we compare such
probabilities versug, for modules in different layers. We see
that learning occurs from bottom to top: as we increasthe
learning probabilities for the input and hidden modules remain
at very low values+ 10%) while the probability for the output
module steadily increases. When reaches the valug, ~

0.06 ~ M /2N, where the output probability is around 40%,
the input and hidden probabilities experience a sudden growth,
they become very similar and converge rapidly to one.

In order to establish the practical advantage of modular net-
works, we measure the average CPU time needed to learn a
numberV, of examples needed to achieyg < 0.05. More
precisely, we run simulations with fixety, up to a predeter-
mined maximum number of simulated annealing iterations. We o
repeat this procedure starting from different initial conditions oo 1 2 3 4 5 6 7 8
and for different sets of examples of sia&. In many runs the Pe
learning is not successful: the algorithm does not converge to
zero learning error. We compute the total CPU time (in mg)g. 6. Generalization error versus fraction of examples in the training set for
needed to obtaik successful learning sessions (including thendom and selected examples for networks solving the parity funcion with
CPU time wasted in the cases where the network does not lediny & 31 fmex = 2,4 and eight.
and divide it byK (K = 50 was enough to stabilize the av-
erage). training set over all the possible examples and a random selec-

In Fig. 5 we compare the average CPU time for the thre®n only over the subset that ensures full generalization (see
modular networks considered here fér= 8, for both selected the preceding section). Results fi.. = 2,4 and eight are
and random training sets. While for the former the improvemesthown in Fig. 6(a)—(c), respectively. We see thatfgr,. = 2
is very impressive and monotonic s, decreases, for the the influence of modularity is so strong that little is gained from
latter we see that the high generalization ability far.. = 2 example selection. On the other hand, we observe that example
is obtained with very poor efficiency (note the logarithmic scalgelection can lead to a remarkable improvement in the general-
in the ordinates of the plot), but the CPU time does not increaigation ability of nonmodular networkg(.... = N = 8) but, at
monotonically agf,.... increases and is optimg},.. = 4. the cost of poor efficiency (see Fig. 5).

Next, we analyzed the influence of example selection on theFinally, we analyze how the minimum number of examples
learning ability of the modular networks. In Fig. 6 we comneeded for full generalizatiofd scales with the number of
paree, versusN./2™ (N = 8) for a random choice of the synapsesV,. From Table | we see that for modular networks

5 —e— Random Set

@ Selected Set

4

3
2
1A

o
=)

Generalization Error

—&— Random Set
4 @ Selected Set

1312

(m <« N) M scales linearly withV,, M ~ «(m)N,, both of training examples by the different architectures. Our results
for restricted and continuous weights. In the first cage:) show thatthe very good performance for the generalization error
decreases slowly witl:. This linear behavior has been obinthe casen = 2is obtained at the cost of a very poor efficiency
served in the number aindomexamples needed for gener{see Fig. 5). Moreover, the minimum observed in the CPU time
alization in fully connected networks [9]. On the other hand fdor m = 4 suggests that an adequate tradeoff between general-
nonmodular networksnf ~ N) very different scaling behav- ization and efficiency can be obtained by using modular struc-

iors are observed. For restricted weights we seeMialV, = tures with intermediate values ¢f,.x.
ln(Ns/2Nsl/2) while for continuous weights we obtaity ~ We have also shown that for structures with a high degree of
oNJ/? modularity n < N) the ratio betweed/ and the number of

synapsesV /N, is constant both for restricted and continuous
weights. This linear scaling a¥/ with /V, is always of interest
to hardware design. On the other hand, for networks with a low

We have constructed a family of architectures capable of ilegree of modularityr¢ ~ N) very different scaling behaviors
plement the parity function in a simple way, either with reare observed, depending on the type of weights. For continuous
stricted (discrete) or continuous synaptic weights. We show@gights the ratid/ /N, increases exponentialtyith N, while
that several properties of these networks, like depth, numberfef restricted weights such ratecreasesvith V;. Although
synapses, generalization ability, etc., are controlled by a sindflés result seems to indicate the general convenience of using
parameter, namely, the fan-in max.{.). We analyzed, both restricted instead of continuous weights, care must be taken con-
analytically and numerically, several of these propertiegas Ccerning the computability (that is, the number of different target
is varied, comparing the different behaviors observed in néunctions that the architecture is capable of implement) of every
works with restricted and continuous weights. type of network. This result may be very particular of the parity;

The study of learning properties of the parity function in difin general itis expected a much more lower computability using
ferent architectures is of importance by several reasons. Firsgiiicrete instead of continuous weights. Of course the question of
all, being it a standard for testing learning algorithms, it is aFomputability arises for all the results here presented. However,
ways of interest to know general properties of different typ&4e believe that, though more restricted than fully connected net-
of implementations. Conversely, knowing how well a given atvorks, the modular structures here presented are capable to im-
chitecture deals with the parity may serve as a benchmark fdgment a great variety of target functions, at least those sharing
the learning capability of the network. In other words, beingith the parity what we can call the “self-similarity” property:
the parity one of the most difficult learning tasks, we may thinttat is, problems which can be divided into subproblems similar
its learning properties as “bounds” for the learning propertié@ the original one. Examples of these kind of problems are the
of “easier” functions. Hence, it may also serve for Comparir@'ithmetic ones: addition, subtraction, multiplication, etc.
learning performances of different architectures. In this sense,
the present study indicates that generalization can be highly im-
proved as the degree of modularity of the network increases.
Moreover, we found that a high degree of modularity can lead The authors acknowledge S. Solla for fruitful discussions and
to a phase transition from memorization to perfect learning. THisr a critical reading of the manuscript.
transition occurs when the fraction of training examples reaches
the minimum number of examples needed for full generaliza-
tion M. This result supports our previous proposal (see [7]) of
M as a combined measure of target function and architecturg1] Y. Bennani, “Multiexpert and hybrid connectionist approach for pattern
complexities. One standard measure (function independent) of '2%070_92”;20?93293"9' identification taskrit. J. Neural Systvol. 5, pp.
the learning capacity of an architecture is the Vapnik—Chervo-[2 P. Carne\’/ali ana S. Patarnello, “Exhaustive thermodynamical analysis
nenkis (VC) dimension (see, for example, [9], for its definition). of Boolean learning networks,Europhys. Lett.vol. 4, no. 10, pp.
Generalization starts at the VC dimension, that is, no generalizais] &18%;%]2849;237)-(Yu, and H. Chi,"A selr-generating modular neural
tion atallis possible if the number of training examples is below network architecture for supérviséd learnindléurocomput.vol. 16,
it, for any target function. Now, for a particular target function, pp. 33-48, 1997.
perfect generalization is only possible is the number of training[4] M. N. Dailey and G. W. Cottrell, “Organization of face and object recog-

. . nition in modular neural-network modeldyfeural Networksvol. 12, pp.
examples exceedd, which of course is always greaterthanthe 1053 1074 1999
VC dimension. Numerical evidence have shown that the gen{5] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and

eralization properties seem to be directly related to the scaling J: Hopfield, “Large automatic learning, rule extraction and generaliza-
tion,” Complex Systvol. 1, pp. 877-922, 1987.

properties ofd/ with the number O_f inPUt neurons ([7]) The_ [6] L. Franco and S. A. Cannas, “Solving arithmetic problems using feed-
present work shows that generalization becomes optimal in the forward neural networks Keurocomput.vol. 18, pp. 61-79, 1998.

|eaming ofthe parity using arandom sampling of examples with[1l — “GeTeraIization and selection of examples in feedforward neural
| dular network = 2 (at least as far as the gen- networks,”Neural Compuf.vol. 12, pp. 2405-2426, 2000.
an extremely modula - g [8] H. Fung and L. K. Li, “Minimal feedforward parity networks using

eralization error is concerned), singes 0 whenp, = M /2%, threshold gates Neural Comput.vol. 13, pp. 319-326, 2001.

This result should be compared with the efficiency in terms of [9] S. Haykin, Neural Networks: A Comprehensive Foundatiomew
York: McMillan, 1994.

the average CPU time wasted by the learning algorithm 10 fing; g1 ; Hertz, A. Krogh, and R. Palmentroduction to the Theory of Neural
a solution with a given generalization error and fixed number ~ Computation Reading, MA: Addison-Wesley, 1991.

IV. CONCLUSION AND DISCUSSION

ACKNOWLEDGMENT

REFERENCES

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1313

(11]
(12]

[13]

(14]
[15]
[16]

(17]

(18]

R. Impagliazzo, R. Paturi, and M. E. Saks, “Size-depth tradeoffs fdreonardo Francoreceived the M.Sc. degree in physics in 1995 and the Ph.D.
threshold circuits,'SIAM J. Compuf.vol. 26, no. 3, pp. 693-707, 1997. degree in 2000 with a dissertation on generalization properties of feedforward
M. L. Minsky and S. A. PapertPerceptrons Cambridge, MA: MIT neural networks, both from Cérdoba National University, Cérdoba, Argentina.
Press, 1969. In September 2000, he joined the Cognitive Neuroscience Sector at SISSA,
I. Parberry, “Circuit complexity and feedforward neural networks,ltaly, as a Postdoctoral Fellow, where he is working on computational neuro-
in Mathematical Perspectives on Neural NetworRs Smolensky, M. science. His research interests include generalization properties and complexity
Mozer, and D. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaumaf neural networks, information theory, face recognition, and modeling of the
1996, pp. 85-111. visual system.

S. Patarnello and P. Carnevali, “Learning networks of neutrons with

boolean logic,"Europhys. Lett.vol. 4, pp. 503-508, 1987.

V. Petridis and A. Kehagia®redictive Modular Neural Networks: Ap-

plications to Time Series Boston, MA: Kluwer, 1998. Sergio Alejandro Cannaswas born in Cérdoba, Argentina, on November 21,
D. E. Rumelhart and J. L. McClellancRarallel Distributed Pro- 1961. He received the M.Sc. degree from the National University of Cérdoba
cessing Cambridge, MA: MIT Press, 1986, vol. 1. in 1984 and the Ph.D. degree from the Centro Brasileiro de Pesquisas Fisicas,

G. Tesauro and R. Janssens, “Scaling relationships in backpropagaf8yazil, in 1992, both with a thesis and dissertation on statistical physics.
learning: Dependence on predicate order,” Center Complex Syst. Res.Since 1994, he has been an Assistant Professor of the National University of
Urbana-Champaign, IL, Tech. Rep. CCSR-88-1, 1988. Cérdoba. In 1995, he became a Researcher of the National Research Council
C. V. den Broeck and R. Kawali, “Learning in feedforward Boolean ne{CONICET) of Argentina. His research interests include neural networks and
works,” Phys. Rev. Avol. 42, no. 10, pp. 6210-6218, 1990. statistical physics of complex systems.

