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In this work we study the distribution of time intervals between avalanches in a rice pile
model. This model has shown that the crossover from power law to stretched exponential
behaviors observed experimentally in the granular dynamics of rice piles can be well
described as a long-range effect resulting from a change in the transport properties of
individual grains. In this work we show that the change in the transport properties is

also reflected in the behavior of the distribution of time intervals between avalanches.
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1. Introduction

In 1996 Frette et al.1,2 performed a series of experiments where rice grains were
slowly added in a narrow gap between two glass plates. They found that the
avalanche size distribution for grains with a large aspect ratio presents a power law
behavior, while a stretched exponential behavior is observed for rounder grains.
The rice pile experiments showed that self-organized criticality (SOC)3 is not a
universal phenomenon and depends on the microscopic structure of the grains. The
dynamics for elongated grains is dominated by local mechanisms and displays SOC,
while for rounder grains the effects of inertia leads to a nonlocal process, and the
system does not display SOC.
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In a recent work we have presented a new microscopic model for granular flow4

where both stretched exponential and power law avalanche size distributions are
observed. In this model a single parameter ρ controls the average rolling distance of
individual grains, which is expected to depend on its aspect ratio. The ability of an
individual grain to roll a distance r is described by a long-range rolling probability
of the form

P (r) =


A

rρ
if 1 ≤ r ≤ L ,

0 otherwise ,
(1)

where A is a normalization constant, L is the system size, r = 1, 2, . . . , L and
0 ≤ ρ ≤ ∞. The ρ → ∞ limit corresponds to a deterministic nearest neighbors
movement (P (r) = δr,1), thus describing the case where the grains do not roll,
and recovering the Oslo model.5 In the opposite limit, ρ = 0, the mean rolling
distance is 〈r〉 ≈ (1/2)L, and the grains propagate typically halfway through the
system, independently of the system size L. This behavior is consistent with the
one observed in the experiments with round rice.1 Within this scenario two distinct
regimes appear regarding the qualitative behavior of the avalanche distribution: a
short-range sliding regime4 characterized by a power law avalanche size distribution
for large avalanches, and a long-range rolling regime4 characterized by a stretched
exponential avalanche size distribution.

Given two consecutive time steps the energy difference between the profiles
was used in the rice pile experiments1 to measure the energy dissipated after an
avalanche. However, we have observed, in the numerical simulations of our model,
that the change in energy after an avalanche may be either positive or negative.
After a big avalanche the potential energy clearly decreases. However, if a single
grain is dropped into the system and rolls a distance r without affecting any other
grains, the potential energy of the new profile will be higher than the profile before
adding the grain. Thus it is important to distinguish between these two possible kind
of events. One kind increases the potential energy of the system after the addition
of a grain, while the other decreases the potential energy. In the following section
we will define the model and characterize these different kind of events.

2. The Model

Our model4 is defined as follows. We consider a one-dimensional lattice of size
L (1 ≤ i ≤ L), each site i having associated an integer variable h(i) representing the
local height of the pile. The local slope is then given by σ(i) = h(i) − h(i + 1). The
grains enter into the system from the left (i = 1) and may drop off at the rightmost
site i = L+ 1, imposing h(L+ 1) = 0 for all times. Every time the local slope σ(i)
of a site i exceeds a local critical value σ(i) > σc(i), the topmost grain at site i rolls
r sites to the right with probability P (r) given by Eq. (1). Then, the heights of
sites i and i+ r are recalculated as h(i)→ h(i)− 1 and h(i+ r)→ h(i+ r) + 1 and
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the corresponding local slopes are modified accordingly. Each time a grain leaves a
column i we assign it a new critical slope, which may take the values σc(i) = 1 or
σc(i) = 2 with equal probability. This process is repeated until all the local slopes
satisfy σ(i) ≤ σc(i). An avalanche starts when σ(1) > σc(1) and when it stops (i.e.,
σ(i) ≤ σc(i) ∀ i) new grains are added until a new avalanche is initiated.

3. Results

Once the system reaches the stationary state an avalanche may be defined as the
total energy dissipated between two consecutive profiles. As we mentioned in the
introduction the energy difference between these profiles may be either positive or
negative. To characterize these different kinds of events we have studied the dis-
tribution of time intervals ∆t between avalanches of the same kind. That is, the
distribution of time intervals between avalanches where the potential energy of
the system either increases or decreases.

In Fig. 1 we present the distribution of time intervals Pg(∆t) between avalanches
when the system gains potential energy after a grain is added. Two different values
of the rolling parameter are presented, ρ = 1.6, which corresponds to the rolling
regime,4 and ρ = 10.0, which corresponds to the sliding regime.4 The system size for
both curves is L = 800. The distribution of time intervals presents an exponential
decay Pg(∆t) ∼ exp(−∆t/tg) both in the sliding and the rolling regime. For ρ = 1.6,
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Fig. 1. Distribution of time intervals Pg(∆t) for two different values of the rolling parameter,
ρ = 1.6 and ρ = 10.0 and system size L = 800. Both distributions present an exponential decay
exp(∆t/tg). The straight lines indicate the best fits.
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Fig. 2. Normal–log plot of the distribution Pl(∆t) for six different values of ρ and system size
L = 1600. A clear exponential decay is observed for ρ = 1.6. As ρ increases Pl deviates from this
behavior.

the characteristic time tg = 0.93. As ρ grows tg decreases almost linearly until it
reaches the saturation value tg = 0.54, as in the ρ = 10.0 fit, also presented in
Fig. 1.

A stronger dependency on ρ is observed in the distribution of time intervals
Pl(∆t) between avalanches when the system looses potential energy after the addi-
tion of a grain. In Fig. 2 we present the behavior of Pl(∆t) for six different values
of the rolling parameter: ρ = 1.6, 1.8, 2.0, 2.5, 3.0, and 10.0 for a system with size
L = 1600. When ρ = 1.6 a clear exponential decay is observed. However as ρ grows
the distribution Pl deviates from this behavior. We will focus our interest in the
behavior of the system in the rolling regime, that is for round grains (ρ = 1.6), and
also in the sliding regime, which corresponds to elongated grains (ρ = 10.0).

As we said in the rolling regime (ρ = 1.6) a clear exponential decay Pl(∆) ∼
exp(−∆t/tl) is observed. In Fig. 3(a) we present the behavior of Pl(∆t) when
ρ = 1.6 for three different system sizes, L = 400, 800 and 1600. The data collapse
presented in Fig. 3(b) shows that when ρ = 1.6, the distribution Pl(∆t) obeys the
following finite size scaling behavior

Pl(∆t) ∼ L−βlrf
(

∆t
Lνlr

)
, (2)

where βlr = 0.31 and νlr = 0.28 with

f(x) = B0 exp
(
−x
tl

)
, (3)

where B0 = 0.96 and tl = 1.52.
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Fig. 3. (a) Distribution of time intervals between avalanches Pl(∆t) when ρ = 1.6 for three
different system sizes L = 400, 800 and 1600. In (b) a data collapse of the same data is presented.
The dashed lines indicates the best fit given by the exponential function (3).
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Fig. 4. (a) Log–log plot of the distribution Pl(∆t) when ρ = 10.0 for three different system sizes
L = 400, 800 and 1600. In (b) a data collapse of the same data is presented. The dashed line
indicates the best fit given by function (5).
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To analyze the behavior of the distribution Pl in the sliding regime we will
consider the rolling parameter value ρ = 10.0. In Fig. 4(a) we present a log–log plot
of the distribution Pl(∆t) for three different system sizes L = 400, 800 and 1600
when ρ = 10.0. The data collapse presented in Fig. 4(b) shows that when ρ = 10.0,
the distribution Pl(∆t) obeys the following finite size scaling behavior

Pl(∆t) ∼ Lβlsf
(

∆t
Lνls

)
, (4)

where βls = 0.61 and νls = 0.55 with

f(x) = A0x
A1 exp

(
−
(
x

tl

)A2
)
, (5)

with A0 = 0.76, A1 = 0.13, A2 = 1.87 and tl = 2.38. Note that the power law
exponent A1 is very small, nevertheless it plays an important role in the fit for
small ∆t.

4. Conclusion

In this work we have studied the intertemporal structure between avalanches in a
rice pile model.4 We observed that if the addition of a single grain, which increases
the potential energy of the pile, is considered as an avalanche, the distribution
Pg(∆t) of time intervals ∆t between these kind of avalanches presents an expo-
nential decay Pg(∆t) = exp(∆t/tg) for all ρ. The characteristic time tg presents
a linear dependence with ρ. We have also studied the distribution Pl(∆t) of time
intervals ∆t between avalanches when the system looses potential energy after the
addition of a single grain. We observed that in the rolling regime the distribution
Pl(∆t) presents a clear exponential decay, while in the sliding regime Pl(∆t) can
be well described by a stretched exponential, weighted by a power law, that cor-
rects the distribution for small ∆t. It would be interesting to test experimentally if
these different behaviors can be observed in real rice piles and display a behavior
accordingly to the results presented in this work.
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