
ARTICLE IN PRESS

Journal of Theoretical Biology 256 (2009) 65–75
Contents lists available at ScienceDirect
Journal of Theoretical Biology
0022-51

doi:10.1

� Corr

+54 351

E-m

cannas@

(M.A. M
journal homepage: www.elsevier.com/locate/yjtbi
Comparable ecological dynamics underlie early cancer invasion and species
dispersal, involving self-organizing processes
Diana E. Marco a,�, Sergio A. Cannas b, Marcelo A. Montemurro c, Bo Hu d, Shi-Yuan Cheng e
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Occupancy of new habitats through dispersion is a central process in nature. In particular, long-distance

dispersal is involved in the spread of species and epidemics, although it has not been previously related

with cancer invasion, a process that involves cell spreading to tissues far away from the primary tumour.

Using simulations and real data we show that the early spread of cancer cells is similar to the species

individuals spread and we suggest that both processes are represented by a common spatio-temporal

signature of long-distance dispersal and subsequent local proliferation. This signature is characterized

by a particular fractal geometry of the boundaries of patches generated, and a power-law scaled,

disrupted patch size distribution. In contrast, invasions involving only dispersal but not subsequent

proliferation (‘‘physiological invasions’’) like trophoblast cells invasion during normal human

placentation did not show the patch size power-law pattern. Our results are consistent under different

temporal and spatial scales, and under different resolution levels of analysis.

We conclude that the scaling properties are a hallmark and a direct result of long-distance dispersal

and proliferation, and that they could reflect homologous ecological processes of population self-

organization during cancer and species spread. Our results are significant for the detection of processes

involving long-range dispersal and proliferation like cancer local invasion and metastasis, biological

invasions and epidemics, and for the formulation of new cancer therapeutical approaches.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Long-distance dispersal (LDD) (Kot et al., 1996), even if
represented by rare events, is one of the main factors explaining
the fast spread of different organisms in new habitats, for example
in paleocolonization events (Petit et al., 1997), plant pathogens
(Brown and Hovmoller, 2002), and invasive species (Gilbert et al.,
2004). In addition, considering cancer as an ecological process
(Merlo et al., 2006) spread from primary tumours can be thought
as a biological invasion from cancer cells spreading and invading
new tissues. Colonization begins with a single or few cells
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previously dispersed from the primary tumour (Talmadge et al.,
1982), originating different clone lines that evolve independently
across the new tissues and organs invaded (Nowell, 1976) in a
process we can consider as LDD. In spite of its remarkable
similarity with species spread, at present no detailed mechanism
has been proposed for an ecological interpretation of cancer
spread. Both cancer and species invasion can be viewed as being
basically the same process of dispersion followed by local
proliferation of dispersed propagules (either cells or species
individuals) into new environments, despite the different me-
chanisms acting in each case.

Previous works by several authors have shown that simulated
spatial patterns of spread of species with LDD differed from the
case when short-distance dispersal (SDD) alone was involved
(Shaw, 1995; Xu and Ridout, 1998; Higgins et al., 1996; Clark et al.,
2001; Filipe and Maule, 2004; Gilbert et al., 2004). Still,
translating the properties of a given pattern into ecologically
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meaning processes and mechanisms can be intricate. However,
Ecology and other related disciplines like Epidemiology have
benefited from pattern interpretation using different tools both
for forecasting and understanding. In this paper we pursue a step
further to characterize in detail the spatial and temporal spread
generated by LDD by simulations, corroborating results with
patterns from real data, and analysing the simulated and real
spatial patterns obtained together in view of the particular model
dynamical rules. Since the modelling approach followed is
mechanistic, looking closely into the model structure allows for
an ecological and biological meaning interpretation of the
simulation generated patterns and a more confident under-
standing of real spatial patterns.

Fat-tailed functions like the power law seem to adequately
describe LDD (Kot et al., 1996), and evidence for this is coming
from crop pathogens distributions determined experimentally
(Gibson, 1997) and from model simulations (Cannas et al., 2006;
Shaw 1995). Power-law functions and fractal geometry character-
ize species dispersal by LDD (Cannas et al., 2006; Wingen et al.,
2007), and they reflect the invariance of some property over a
range of temporal and spatial scales. There is increasing consensus
in that they can be a byproduct of self-organizing processes of
populations and communities (Sutherland and Jacobs, 1994;
Pascual et al., 2002; Scanlon et al., 2007). The capacity of a
system to evolve to an organized state due to intrinsic mechan-
isms, i.e., self-organization, often characterized by a scale-free
geometry, has been attributed to diverse natural phenomena
(Mandelbrot, 1982). However, the fundamental dynamics
that determine self-organization scaling properties have
remained obscure in most cases. Performing independent
simulations we show that the pattern properties we found
in real data from cancer invasion and species spread are
consistent with long-range dispersal mediated by a fat-tailed
distribution function such as power-law and subsequent local
proliferation.

We performed simulations using a spatially explicit, indivi-
dual-based model based on a cellular automaton originally
developed for the study of biological invasions (Marco et al.,
2002; Cannas et al., 2003). We simulated long-range dispersal
mechanisms using a power-law dispersal function (Cannas et al.,
2006). The main difference between our distribution function and
other approaches to model LDD using two normal combined
functions (Ibrahim et al., 1996; Le Corre et al., 1997; Bullock and
Clarke, 2000) is that the power law, depending on the alpha value,
has at least one infinite momentum allowing for unlimited range
dispersal over the entire field, i.e., there can be no characteristic
dispersal distance. This is drastically different with respect to the
use of distribution functions allowing only SDD, where dispersion
can reach just close areas to the initial focus (Cannas et al., 2003,
2006). The power-law function also allows for the inclusion of
local and LDD events in the same dispersal function, depending on
the value of the a exponent (Cannas et al., 2006). The main
biological significance of the inclusion of the power law in the
model is that dispersion is allowed to reach the whole area
considered without distance limits from the very beginning of the
simulations, since the first individual becomes reproductive. To
characterize the spatial pattern of spread produced by the
simulations, we calculated the mean fractal dimension of patches
using a box-counting algorithm (Halley et al., 2004), and
determined the patch size distribution. We explored the pattern
of spread produced by the model to understand the observed
patterns of spread of cells from invasive human glioma and of a
tree species (Ulmus minor Mill.). From previously published
experiments, we analysed the in vivo spread of human glioma
cells established by intracranial cross-species transplantations in
the brain of mice (Hu et al., 2003) and the in vitro spread of human
glioma cells on Matrigel coat (Johnston et al., 2007). We recorded
the spread of U. minor into a native forest from an initial small
focus using aerial photographs in Central Argentina, where it is a
common invasive species. Fruits of U. minor are dispersed by wind
(usually assumed to be a LDD mechanism) in high numbers but
many seeds remain near the parent providing also local recruit-
ment.

We also tested a result previously predicted from our
simulations (Cannas et al., 2006), when LDD dispersal is not
followed by local proliferation of dispersed individuals but only
the founder parent is allowed to reproduce. This case produces a
fractal patch border but not the typical two-scale power-law
pattern of patch size distribution found when local recruitment is
present (Cannas et al., 2006). A typical biological example of this
process of migration but not subsequent proliferation is the
normal process of embryonic trophoblast cells invasion of
maternal uterine tissues during human placentation. This process
has been called ‘‘physiological’’ or ‘‘pseudo-malignant’’ invasion
(Even-Ram et al., 1998; Ferretti et al., 2007), since although it
shares many properties of cancer processes, it is tightly regulated
by endogenous cell programmes and by the maternal environ-
ment not allowing for further proliferation after dispersal. Further
trophoblast proliferation after migration results in trophoblastic
diseases like choriocarcinoma, a placental cancer (Ferretti et al.,
2007). We analysed the invasion of trophoblasts in normal human
placentation (Goffin et al., 2003; Ferretti et al., 2007) and on
Matrigel coat (Pollheimer and Knöfler, 2005).

In this paper we show that the spread of cells in
cancer invasion and of invasive species generates a similar patchy
pattern characterized by fractal and power-law scaling. Further-
more, we suggest that this common pattern originates from self-
organized, homologous mechanisms driven by LDD and subse-
quent proliferation. We also show that this hallmark is not present
in normal, highly regulated ‘‘physiological’’ invasions (Even-Ram
et al., 1998) involving only dispersal but not subsequent
proliferation, like trophoblast cells invasion during human
placentation.
2. Methods

2.1. The model, numerical simulations and spatial pattern analysis

We give a brief account of the model and simulation methods.
The simulation software was implemented using standard Fortran
90 language. The model was originally built to study biological
invasions, and more details are given in Cannas et al. (2003) and
Cannas et al. (2006). The model is embedded on a square grid
containing Lx� Ly square cells (to avoid confusion with cancer
cells, hereafter, sites), representing the field. For a single species
the model associates to every site i in the grid a discrete variable
ai(t) which encodes the age of an individual located at it at time t;
ai ¼ 0 corresponds to an empty site (Cannas et al., 2003). The
index i encodes a pair of discrete coordinates (x; y), with
x ¼ 1, 2,y, Lx, y ¼ 1, 2,y, Ly. The grid parameter (i.e., the distance
between neighbouring sites) equals one. The spatial length scale is
chosen so that each site contains at most one adult individual. The
dynamical variables are updated according to a parallel dynamics,
that is, the value of all variables at a given (discrete) time t

depends on the value of the variables at time t�1. The time scale is
chosen to coincide with the minimal reproductive interval in the
life history of the invader. Life history traits included are: q,
reproductive survival probability, tm, age of reproductive maturity,
m, mean propagule production (propagules/individual), and Ps,
prereproductive survival probability.
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An occupied site ai(t)a0 is updated according to the following
rule:

aiðt þ 1Þ ¼
aiðtÞ þ 1 with probability q

0 with probability 1� q

(

where q is the reproductive survival probability. Now consider an
empty site i at time t�1, that is, ai(t�1) ¼ 0. The site will be
colonized at time t, that is, ai(t) ¼ 1 with a probability pi(t) given
by

piðtÞ ¼ 1� ð1� PsÞ
siðtÞ (1)

where si(t) is the number of propagules received by site i at time t;
pi(t) the probability that at least one propagule survives to the
reproductive stage. si is obtained by counting the propagules
received by site i coming from the rest of the sites. Propagule
dispersion of an individual is assumed isotropic and it is described
by some density function f(r), where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance

to the parental individual. The function f(r) describes the fraction
of the total number of propagules produced by a single individual
that is dispersed per area unit to a distance r; f(r) is assumed to be
normalized in the whole plane. The number of propagules
received by a site j coming from an individual located at a site i

is then given by mf(rij) where rij is the distance between the centre
of sites i and j. Then si is obtained by summing mf(rij) over all sites
j containing a reproductive individual.

Let us now analyse the dispersal distribution function f(r). The
difference between short and long-range dispersal is related to
whether the distribution f(r) has an exponentially bounded tail or
not (Kot et al., 1996). In a very general sense this means that the
distribution is short ranged if the moments

R
rnf ðrÞda are finite for

every value of nX0, where the integral extends over the infinite
plane; otherwise, it is long ranged (Kot et al., 1996). An example of
short ranged dispersal is given by the negative exponential
function

f ðrÞ ¼
2

pd2
e�2r=d

where d ¼
R

rf ðrÞda is the mean dispersal distance. This function
has been shown to appropriately describe the dynamics when the
species have short ranged dispersal strategies (Marco et al., 2002).
We simulated long-range dispersal mechanisms using a power-
law function:

f ðrÞ ¼

A

ra
if rX

1

2

0 if 0prp
1

2

8>><
>>:

where A is a normalization constant and a42 (otherwise the
density function f cannot be normalized). According to the values
of a, when 3oap4 the first moment (the mean) remains finite
but the second moment (the variance) becomes infinite. The mean
dispersal distance is given by d�oro ¼ (a�2)/2 (a�3). When
2oap3 both first and second moments are infinite, and thus the
mean dispersal distance is not defined. Finally, for a44 both the
first and the second moments of the distribution are finite. In this
case, even when the distribution is strictly long ranged, it can be
well approximated by a normal distribution on finite spatial
scales. Hence, no qualitative differences are expected in the global
spatial pattern of spread between this last case and the short
ranged one. Several results from other physical systems with long-
range interactions support this assumption (Cannas, 1998; Gleiser
et al., 2000, 2001).

The main biological significance of the inclusion of the power
law is that dispersion from a given focus is allowed to reach with
finite probability any point of the whole area considered, even
when the mean dispersal is finite (see Methods) and much smaller
than the area size. This is drastically different with respect to the
use of distribution functions allowing only SDD, where the
probability of dispersion far away (compared with the mean
dispersal distance) to the initial focus is completely negligible. In
this way, we avoid difficulties in defining LDD (Nathan, 2005) by
simply allowing for no limited dispersal, depending on the value
of the a exponent. Although the utilization of distribution
functions with infinite tails (such as the power law) has been
criticized, there is evidence from different air-borne organisms
supporting it (Kot et al., 1996).

Simulations began with a single mature individual located at
the centre of a square area. At a fixed time occupied sites are
assigned to patches by giving them a label, representing their
corresponding patch number. When an unlabelled occupied site is
found, the algorithm creates a new patch by assigning a new label
to the current site and to all the connected set of occupied sites
associated to it. For each site currently in the cluster all the
occupied sites in the set of eight closest sites are assigned to the
same patch. The algorithm continues recursively until no more
sites are added to the current patch. The procedure is repeated
until no unlabelled occupied sites are left. A patch is then defined
as a label that contains more than one site. The border set of a
given patch is defined as the list of all the occupied sites lying at
its border. Spatial pattern analysis of species spread is based on
the statistics of patches of occupied sites and their borders. For
calculating the fractal dimension, we plotted the number of boxes
N(l) of linear size l as a function of l; the fractal dimension is
defined as N(l)plD. We fitted the curve using the least square
method, and D is the slope value with changed sign. We calculated
the mean fractal dimension DP of patches (excluding the main
patch) as a function of time, where the averages were taken at
fixed times over several simulation runs, and the mean fractal
dimension DB of the patch borders. Patch size is defined by the
number of sites in each patch. We calculated the relative
frequency histogram P(s) of patches with size s (excluding the
main patch), in an area of 1024�1024 sites at a stationary stage
but at a time when less than 50% of the sites were occupied. We
determined this by tracking the density of occupied sites as a
function of the simulation time. After this time most of the
simulation area is very soon completely covered (Cannas et al.,
2006). We also calculated P(s) of patches with size s with
reproduction restricted to the founder parent (i.e., no local
proliferation after LDD outside the original patch). The results
for P(s) are averaged for every value of s and every time step in a
sample of M independent runs, M being between 100 and 200.
b values given are the slopes of the power laws.
2.2. Cancer invasion data

Invasion of cancer cells is an active process that involves the
attachment of invading tumour cells to the extracellular matrix
and its disruption, and subsequent invading cell penetration into
tissues surrounding the primary tumour. This process is mediated
by tumour-secreted enzymes called matrix metalloproteases
(MMPs) that degrade the extracellular matrix at tumour-invasive
borders and invasive areas (Hu et al., 2003, Kaufman et al., 2005).
The first moments of invasion are beginning to be described using
imaging techniques like confocal microscopic detection of marked
individual cells. In vivo, cancer cells can move at high speeds (up
to 15mm a minute), showing a complex process involving the
acquisition of motility by tumour cells, driven by cycles of actin
polymerization, cell adhesion to the collagen fibres of the
extracellular matrix and acto-myosin contraction (Sahai, 2007).

Human glioma invasion in the brain of animals were
determined as described previously (Hu et al., 2003), engineered
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to express an angiogenic regulator, angiopoietin-2 (Ang2)
(U87MG/Ang2 cells), capable of promoting glioma cell infiltration
into the brain parenchyma. Briefly, U87MG Ang2-expressing cell
clones (5�105) were stereotactically implanted into individual
nude mouse brains with 5 mice per group. When mice developed
neurological symptoms due to disturbance of their central
nervous system, mice were sacrificed and their brains were
removed, processed and analysed. The distance of invading glioma
cells from tumour masses were assessed by capturing serial
images of hematoxylin/eosin-stained brain sections using a
Olympus BX51 (Melville, NY) microscope equipped with a SPOT
digital camera (Diagnostic Instruments, Inc., Sterling height, MI)
and calculated by the fact that under a 100� magnification, one
frame is equal to 1 mm long. Photographs were digitized and
interpreted using image processor software, identifying cells at an
individual level. In all cases, using standard image processor
software we detected clusters by applying the adequate threshold
values to ensure a minimum of 95% individual cells detection.
Number and area covered for invasive cell clusters generated from
the primary tumour were calculated and the fractal dimension of
patch borders was calculated following the box-counting method
using square boxes of sides equivalent to 10mm spanning to
200mm. Images from human glioma cells cultivated on Matrigel
coats (Johnston et al., 2007) were analysed as above.

2.3. Trophoblast cells invasion

The process of normal human placentation begins when cells
derived of the morula’s trophodectoderm, the trophoblasts,
proliferate and then differentiate and migrate to invade the
uterine wall. Trophoblast proliferation is restricted to an early
stage in the cell columns attached to the uterine wall, and as cells
migrate further into the maternal tissues differentiate and lose the
ability to divide (Ferretti et al., 2007). In trophoblast invasion, like
in cancer invasion, cell migration is not passive but rather an
active process mediated by extracellular matrix proteases (Ferretti
et al., 2007). Images of normal invasive trophoblasts during early
human placentation (cells stained with 40,6-diamidino-2-pheny-
lindole (DAPI) and examined with a fluorescence microscope
(Goffin et al., 2003), and using immunohistochemical staining
with antibody to cytokeratin 07 (Ferretti et al. 2007) were
interpreted using image processor software, identifying cells at
an individual level. Also, images from trophoblasts cultivated on
Matrigel coats immunohistochemically stained with specific
antibodies and photographed under the fluorescence microscope
(Pollheimer and Knöfler, 2005) were used. In all cases, using
standard image processor software we detected clusters by
applying the adequate threshold values to ensure a minimum of
95% individual cells detection. Number and area covered for
invasive cell clusters generated from the trophoblast invasion
were calculated and the fractal dimension of patches (excluding
the primary tumour) and the fractal dimension of patch borders
were calculated following the box-counting method using square
boxes of side equivalent to 10mm spanning to 200mm.

2.4. Field species data

We studied the spatial pattern of spread of U. minor using
aerial photographs from a forest area of 7 ha located in a low
mountain region of central Argentina. Native forest has been
invaded by non-native, competing trees like U. minor, Glossy
privet (Ligustrum lucidum) and Honeylocust (Gleditsia triacanthos)
(Marco et al., 2002). U. minor is a European tree introduced as
ornamental species in the region around the mid-20th century.
Reproduction is by seeds, beginning when the individual is
between 7 and 10 years old. We found no evidence of vegetative
reproduction in the field. Individuals bear hermaphrodite flowers.
The winged fruits are released in high numbers and dispersed by
wind. Many seeds are dispersed by wind but there is a
considerable amount that remains near the parent. After dispersal,
they are carried by rain water and tend to accumulate in lower
sites. Black and white photographs were taken in 1970 (1:5000),
1987 (1:20 000), and 1996 (1:5000). The 7 ha surveyed comprise a
whole hillside of low slope. Photographs allowed us to identify
trees at an individual level. Trees distribution was checked using a
stereoscope to screen the aerial photographs, detected trees
checked in the field, and patches finally drawn on scanned
photographs using standard processor images. Photographs edges
were not used in the interpretation to avoid image distortion. An
estimation of error in the photograph interpretation was made by
identifying individual trees in the photograph and then checking if
they were correctly assigned to the species. In 97% of cases
assignments were correct. In 1970 there were only two near
patches of few trees planted, considered as the first dispersal
focus in the studied area. Number and area covered of patches
generated from the first focus were calculated for 1987 and 1996,
and the fractal patch dimension (excluding the main patch) and
the fractal dimension of patch borders were calculated following
the box-counting method using square boxes of side equivalent to
5 m spanning to 150 m.
3. Results

3.1. Patterns of spread of cancer cells and species individuals

The analysis of pattern generation process with LDD during the
simulations allows understanding its mechanism (Fig. 1a, Movie
S1 in Supplementary Material), which is essentially different from
SDD mechanism. In the SDD case the spatial spread produces a
circular compact patch with a defined invasion front of rough
border, surrounded by a few isolated individuals and very small
patches (Movie S2, Cannas et al., 2003, 2006). A numerical
calculation of the average radius of the main patch (and hence the
invasion front) shows that it increases at constant velocity
(Cannas et al., 2003, 2006).

In LDD, beginning with an initially reproductive individual, a
single patch appears surrounded by isolated, immature indivi-
duals (green dots, Movie S1) scattered all over the field. At times
longer than the time of first reproduction, some of the scattered
individuals begin reproduction (black dots, Movie S1), and
secondary foci initiate growth into patches showing the same
structure as the initial patch. While patches of higher order
generation continue arising and growing, the first patch itself
continues growing by local recruitment and absorbing the nearest
patches. At later invasion times, this coalescence of similar
patches originates a fractal border in the initial patch and
importantly, it accounts for sudden increments in patch area.
The same process of patch growth and coalescence occurs in other
patches distant from the main patch. There is no clearly defined
invasion front (Movie S1; Fig. 1a), and the spatial extent of the
population grows exponentially (Movie S1). To address the effects
of interaction on the LDD pattern generation, we performed
simulations beginning with the field occupied to 20% by a long-
lived resident species dispersing by a SDD exponential function.
The invader spread by LDD with a ¼ 2.5 and tm ¼ 3. The pattern
generated (Fig. S1 in Supplementary Material) was qualitatively
similar to the case without interaction.

In agreement with the simulations results, spread of the
invasive, Ang2-expressing gliomas displayed irregular borders
with spike-like structures that invaded into the normal brain
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Fig. 1. (a) Spatial patterns of spread with long-distance dispersal from simulations

and cancer and species spread. Simulation spread from an individual in an area

with 320�320 sites after 9 years from first reproductive time. Reproductive (black

dots) and immature (grey dots) individuals are shown. Power-law LDD with

a ¼ 3.11. (b) Spatial spread of human invasive glioma in (black areas) in mouse

brain (white ground) (from Hu et al. 2003). (c) Spatial spread of U. minor (black

areas) surrounded by a mixed forest of other invasive and native species (white

ground).

Fig. 2. Fractal dimension DP of patches vs. time from simulations. Simulations

performed in a 1024�1024 area, with tm ¼ 7, a ¼ 3.33. The main simulation patch

was excluded from the calculation.
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structures (Fig. 1b), in contrast with the non-invasive control
tumours showing smooth, clean borders (Hu et al., 2003) that
clearly resemble the SDD process (Cannas et al., 2006, Movie S2).
Glioma cells migrated far away from the initial tumour and
formed groups of individual tumour clusters that localized at
2.5–4.3 mm from the tumour mass in various invasive tumours,
resembling the simulated patterns. Although it is not possible to
image cell spreading in the brain tissue of mice in the in vivo

model at sequential times, in vitro assays assessing the invasive-
ness of various glioma cells through membranes coated with
Matrigel showed that U87MG/Ang2 cells had a 4-fold exponential
increase in invaded area compared with the parental U87MG non-
invasive cells in the same period (Hu et al., 2003). In another
example, in vitro glioma cells showed the same spatial pattern of
invasion with about eight-fold increase of covered areas after 24 h
(Kaufman et al., 2005).
The spatial pattern of spread of U. minor from aerial photo-
graphs (Fig. 1c) resembled closely the pattern obtained by
simulations and glioma spread (Fig. 1a, b). The temporal and
spatial patterns of patch generation from the initial focus
composed by a small patch present in 1970 explain the resulting
similarities (Fig. S2). The number of patches initially grew
exponentially and then slowed down. In 1987, about 74 new
patches covered a small fraction of the area and were mainly
represented by individual trees scattered through the 7 ha forest
area. The increase in covered area was also exponential although
faster and continued, with 189 patches present 10 years later. The
faster and sudden increments in the area growth rate (9-fold
between 1987 and 1970, and 5-fold between 1996 and 1987)
reveals that after a certain time, few new patches are generated
but the increase in area is mainly due to patch growth and
coalescence, as occurred in the simulations (Movie S1).

Comparing the pattern generation in simulations, cancer and
U. minor invasion, we see that the three processes share common
features, namely the fast and early occupancy of an extended area
around the primary focus of dispersion, and the subsequent
generation of similar patches far away by local proliferation.

3.2. Scale-free geometry of cancer and species spread

The fractal dimension of patches, DP, from simulations showed
a continuous increase over time (Fig. 2). This is due to the fast
habitat occupation in general but mainly of the area close to the
main patch where secondary patches coalesce at early times. The
curve is characterized by periodic leaps matching the age of
reproductive maturity. The reproductive waves every 7 years
produce the periodic increments, when young individuals begin
producing offspring. DP values for the xenografted human glioma
invasion from Hu et al. (2003) and of U. minor field cover from the
digitized aerial images taken in 1996 were 1.20 (R2

¼ 0.99, n ¼ 8)
and 1.30 (R2

¼ 0.93, n ¼ 9), respectively (Fig. 3a, b). These values
should be taken with caution since they represent a DP value in a
particular time.

We had previously found that the fractal dimension DB of patch
borders from simulations as a function of a varied between 1.6
and 1.8 for 2oap3 (mean and variance not defined), and it
decreased monotonically for 3oap4 (mean defined but variance
not defined) (Cannas et al., 2006). Here we show two representa-
tive DB fits from simulations with tm ¼ 3 and a ¼ 2.5, and a ¼ 3,
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Fig. 3. Fractal dimension DP of patches: (a) glioma spreading in brain tissue

(primary tumour excluded, spatial scale in mm) and (b) invasive tree Ulmus minor

spreading in native forest (main patch excluded, spatial scale in m).

Fig. 4. Fractal dimension DB of patch borders. Main simulation patch for tm ¼ 3,

a ¼ 2.5 (circles) and a ¼ 3.33 (squares) (a), glioma primary tumour spreading in

brain tissue (spatial scale in mm) (b), and main patch of invasive tree Ulmus minor

in native forest (spatial scale in m) (c).
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with DB ¼ 1.86 (R2
¼ 0.93, n ¼ 8) and DB ¼ 1.61 (R2

¼ 0.98, n ¼ 8),
respectively (Fig. 4a). These DB values are consistent with power
law 2oap3.

The fractal dimension of main tumour border calculated from
the xenografted human glioma invasion from Hu et al. (2003) was
DB ¼ 1.30 (R2

¼ 0.99, n ¼ 16) (Fig. 4b), in agreement with several
experimental examples from primary invasive and metastatic
tumours from Brú et al. (1998, 2003). This value is consistent
again with power law 3oap4 indicating LDD with mean
dispersal distance defined (Cannas et al., 2006). This is in
agreement with the mechanism of glioma cells dispersion,
requiring the action of MMPs disintegrating the surrounding
extracellular matrix to allow for cell migration through the
invaded tissue. This process would set some constraints to
the unrestricted LDD allowed by the power-law function. The DB

value for the invasion of glioma cells through Matrigel coat from
(Johnston et al., 2007) was lower, DB ¼ 1.20 (R2

¼ 0.99, n ¼ 9). In
contrast, and as we expected for a SDD growing process (Cannas
et al., 2006), a non-invasive tumour presents a smooth, non-
fractal border. We determined DB from the not invasive tumour
shown in Hu et al., (2003, Fig. 3). We determined DB ¼ 0.93,
indicating a not fractal object (for a fractal curve 1oDp2).

We calculated the fractal dimension DB of patch borders from
the digitized aerial images of U. minor field cover in 1996. For the
main field patch we found DB ¼ 1.88 (R2

¼ 0.93, n ¼ 9) (Fig. 4c).
Several of the remaining biggest patches showed DB values ranged
between 1.40 and 1.75 (R2 between 0.95 and 0.99, n ¼ 10 in all
cases). These values are consistent with predicted power-law a
exponents for LDD distribution functions (Cannas et al., 2006). In
particular, DB ¼ 1.88 would correspond to 2oap3, with not
defined mean dispersal distance (Cannas et al., 2006). An infinite
mean in the basic interactions has been observed in diverse
systems, and usually implies mean field like behaviour (Cannas,
1998; Gleiser et al., 2000, 2001). This indicates that the exponents
of the emergent scale-free properties (for instance, DB) of the
system are mainly determined by the interactions of each



ARTICLE IN PRESS

Fig. 5. Spatial spread of normal invasive trophoblasts during human placentation.

Spatial spread of invasive trophoblasts (black areas) through uterine tissue (white

ground) from Goffin et al. (2003). Trophoblast proliferation is restricted to an early

stage in the cell columns attached to the uterine wall, and as cells begin migration

into the maternal tissues differentiate and lose the ability to divide.
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individual with an average environment. Systems showing mean
field behaviour present a high degree of universality, that is, it is
expected that most of the global properties will not depend on
field details, such as habitat heterogeneity. This seems to be the
case for the U. minor spread, since wind dispersion ensures seeds
reaching the whole area available as an extreme case of LDD.

Trophoblast cells invasion also showed a not defined invasion
front with finger-like structures and patches invading the
maternal tissue (Fig. 5). For the in vivo example from Goffin
et al. (2003), DP was 1.14 (R2

¼ 0.97, n ¼ 12). The trofoblast cells
invasion also showed a fractal patch border, with DB ¼ 1.33 for
both patterns from Ferretti et al. (2007) (R2

¼ 0.97, n ¼ 8), and
Goffin et al. (2003) (R2

¼ 0.99, n ¼ 11). Both DB values correspond
to normally invaded uterine tissue. DB value for invasion through
Matrigel coat from Pollheimer and Knöfler (2005) was lower,
DB ¼ 1.15 (R2

¼ 0.98, n ¼ 8).
Thus, the fractal DB value of the patch borders generated by

LDD can provide information about the degree of constraint of
global dispersal (mean dispersal distance defined or not). The
lower DB values found for the glioma and trophoblast invasion
through the Matrigel coat could reflect the fact that fractal values
in vitro are determined on two-dimensional (2D) structures while
in vivo the structures develop in three dimensions. Similarly,
lower fractal values for borders of tumours growing in vitro

compared with tumours in vivo of the same cell line (1.12 and 1.30,
respectively) were reported (Brú et al., 2003). Although D values
can differ between three-dimensional (3D) and 2D objects,
extrapolating results from 2D projection images to 3D structures
Fig. 6. Size distribution of patches P(s) from simulations and cancer and species

spread data is characterized by power laws (P(s)�s–b), corresponding to patches of

small and large areas. (a) P(s) for long-distance simulations for a ¼ 3.33y .

Standard deviations of the averages are of the order of the symbol size. s is given in

number of sites. (b) P(s) for spread of human invasive glioma from Hu et al. (2003);

s is given in mm2. (c) P(s) for field spread of U. minor; s is given in m2; b values are

given in the text; s� indicates the estimated average minimum size of a patch

generated by a single individual by reproduction and localized dispersal.
is a common approach used in several fields, from mineralogy to
medicine (see for example, Jennane et al., 2007).

To further characterize the spatial pattern we calculated the
patch size distribution P(s) excluding the initial patch from the
simulations with LDD. Patch size is calculated as the number of
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Fig. 7. Size distribution of patches P(s) from simulations with no local proliferation

after dispersal and trophoblast cells spread data. (a) P(s) calculated from LDD

simulations performed with reproduction restricted to the founder parent (i.e., no

local proliferation in secondary patches after dispersal), for a ¼ 3.33y . s is given

in number of sites. (b) P(s) for in vitro spread of normal invasive trophoblasts from

Pollheimer and Knöfler (2005). s is given in mm2.
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sites in each patch. P(s) showed a disrupted distribution
characterized by two different power laws P(s)�s�b at small and
large patch areas s separated by a crossover region (Fig. 6a).
b value in the small patch areas was 3.37 (R2

¼ 0.98), while in the
large patch areas was 2.24 (R240.98). Simulations using different
values of a produced P(s) curves with similar characteristics (not
shown). Tracking individuals in the simulations we determined
that the small area section of P(s) is generated by random
dispersal and aggregation of reproductively immature individuals.
The large area section corresponds to larger patches generated by
reproduction of previously dispersed individuals by LDD forming
their own patches by localized dispersal and recruitment,
originating a founder effect (Mayr, 1963) of genetically distinct
patches, followed by growth and coalescence of neighbouring
patches (Movie S1). Large area patches arise only at times greater
than first reproduction (Movie S1). The average minimum area of
patches generated by a single individual after its first reproductive
event, corresponding to localized dispersion and recruitment, is
s� ¼ 6575 sites (ln(s�)E4.2). These patches, that can be seen in
the snapshot from Fig. 1a and Movie S1 as small patches with only
one reproductive individual, were located at the beginning of the
power law corresponding to large patch areas in the P(s) curve
(Fig. 6a). The formation of these patches in a single reproduction
event can be understood as a percolation phenomenon. From
Eq. (1), the colonization probability at a distance r from the focus
is given by pc(r) ¼ 1�(1�Ps)mf(r); this function is almost constant
(approximately equal to one) at short distances and decay to zero
a large distances. The average radius of the central patch
r�(s� ¼ pr�2) is such that the colonization probability falls below
the site percolation threshold (0.593 for a square lattice; see
Essam, 1980). Then, for a fixed value of m, the obtained expression
for s� is a slowly varying function of a in the range 2oao4, so that
ln(s�) is almost constant in that range. Concerning the depen-
dency with m, s��m2/a; for values of m between 103 and 105,
ln(s�) varies between 2 and 5. All these behaviours are verified by
the numerical simulation results; details of these calculations will
be published elsewhere.

P(s) obtained for the glioma invasion (Hu et al., 2003) (Fig. 6b)
was very similar to the simulated patterns. The small and large
area power laws showed b ¼ 1.87 (R2

¼ 0.97, n ¼ 4), and b ¼ 1.58
(R2
¼ 0.95, n ¼ 6), respectively. We estimated s� for the glioma as

the s value corresponding to the point at the beginning of the
second part of the P(s) curve. s� is located around ln(s) ¼ 4, and its
value 60mm2, (ln(s�) ¼ 4.1), is compatible with a cluster of
approximately 8 cells, that could indicate the early initiation of
a microtumour by localized reproduction from a previously
migrated cell. Similarly, P(s) obtained for the glioma invasion
through Matrigel coat (Johnston et al., 2007) showed b ¼ 1.59
(R2
¼ 0.98, n ¼ 3), and b ¼ 1.42 (R2

¼ 0.92, n ¼ 15), respectively
(Fig. S3). s� is located around ln(s) ¼ 4, and its value 40mm2,
(ln(s�) ¼ 3.69), is compatible with a microtumour of approxi-
mately 5 cells.

The U. minor field P(s) curve (Fig. 6c) closely resembled the P(s)
curves from simulations and glioma invasion. Two power laws
appear characterizing the two sections of the curve, with b ¼ 3.27
(R2
¼ 0.99, n ¼ 109) for the patches with small area and b ¼ 1.48

(R2
¼ 0.88, n ¼ 11) for patches with large areas. Considering the

part of the curve for small areas, the first P(s) point indicates the
size cover of individual, probably reproductively immature, trees.
The corresponding s value for this point, s ¼ 20 (ln(s ¼ 3)), is
lower than the minimum canopy cover of an individual tree at a tm

(estimated as 25 m2 from field), and it was checked by tracking
the area values for individual trees in the aerial images and in the
field. The remaining points in this part of the P(s) curve could
correspond either to bigger immature isolated individuals or
patches produced from aggregation of seeds after dispersion. We
estimated s� for U. minor as the s value corresponding to the point
at the beginning of the second part of the P(s) curve, and found
s� ¼ 90 m2 (ln(s�) ¼ 4.5) (Fig. 6c). This s� value is 3.6 times higher
than the minimum field estimated canopy cover of an individual
tree at first reproduction and thus compatible with a young patch
originated by reproduction from a patch founder parent, followed
by localized dispersal. The scaling pattern of P(s) is remarkable
similar to the simulated pattern.

When the probability distribution of patch sizes P(s) is
calculated from simulations performed with reproduction re-
stricted to the founder parent (i.e., no local proliferation after LDD
dispersal) the small patch area scale power law still appears and
ends at around ln(s) ¼ 4, with b ¼ 3.38 (R2

¼ 0.99, n ¼ 38).
However, the large area power law no longer appears (Fig. 7a),
since it is a direct effect of local reproduction following LDD
dispersal (Cannas et al., 2006). Although the spatial pattern of the
trophoblast cells invasion from Pollheimer and Knöfler (2005)
(Fig. 5) is apparently similar to glioma spread, its P(s) showed no
defined pattern for the large patch area part of the distribution
(Fig. 7b), while the small patch area scale power law still appears
and ends at around ln(s) ¼ 4, with b ¼ 1.53 (R2

¼ 0.86, n ¼ 8). In
another example, P(s) from in vivo throphoblast uterine invasion
from Goffin et al. (2003) showed a similar absence of large
patches pattern (Fig. S4). Distribution of higher patch sizes in
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trophoblast cells invasion only reflects random cell aggregation
after migration but no proliferation, and hence no particular patch
size arrangement appears for large patch areas.
4. Discussion

The main features of the spatial patterns generated by LDD are
the presence of a patchy arrangement of the population, and
consequently, the absence of a well-characterized wave front
during its spatial expansion (Xu and Ridout, 1998; Filipe and
Maule, 2004; Gilbert et al., 2004; Muirhead et al., 2006). Our
results agree in general with these and other previous works.
However, we specifically characterized in detail the spread
generated by LDD, in particular by a power-law dispersal function,
and show that both the process of spatial pattern generation and
the features of the patterns present clear and specific signatures.
We interpreted a whole spatial pattern composed by two scaling
features, the fractal borders of patches and patch size distribution.
We found that the patch fractal dimension may not be very useful
for LDD pattern characterization since it is highly dependent on
time due to the fast dynamics of the system. We took also into
account the pattern formation in time to interpret the generation
of the scaling features. A novel result of this paper is the finding of
a neat correspondence between the fractal and scaling characteri-
zation of the simulated and real patterns, and the inferred
ecological and biological processes and mechanisms acting
behind. This allows for a deeper understanding of dispersal
mechanisms in apparently diverse and previously unrelated
systems. Specifically, we show in detail how the LDD process of
spread mediated by a fat-tailed distribution like a power law can
generate a fractal patch border pattern by patch growth and
coalescence, and how a particular disrupted patch size distribu-
tion appears by combination of LDD and localized dispersal and
recruitment. We suggest that this is the process driving the early
invasion from primary tumours, and invasion by invader species.
In both real cases analysed, the mechanism of invasion appear to
be consistent with the mechanism inferred from the simulations.
Other examples support our present results. For instance,
migrated cells of a glioma-astrocytoma originated multiple cell
groups by division that appeared to be progenitors of tumour
masses on Matrigel experiments (Bernstein et al., 1991). In
another study labelling astrocytoma cells undergoing division
(mitosis) in vitro, small subpopulations of invading cells were
found forming groups of proliferating cells some distance away
from the main tumour mass. Similar small clusters of proliferating
cells were detected at the tumour edge (Tamaki et al., 1997). In a
previous study referred to invasive trees dispersed by LDD,
Cryptostegia grandiflora and Pinus ponderosa (Cannas et al.,
2006), we found the same LDD signature acting at different
spatial and temporal scales (hundreds of km2 and more than
100 year invasion for C. grandiflora, and several hectares for
P. ponderosa during a 30-year invasion).

Evidence coming from other fields supports the idea of a
specific LDD signature. In a field example, the process of patchy
pattern generation we described supports the conjecture of LDD
paleocolonization of oak populations occurred 10 000 years ago
(Petit et al., 1997; Davies et al., 2004; Bialozyt et al., 2006). The
existence of patches which are virtually fixed for a single
haplotype of chloroplast DNA scattered over several hundred
square kilometres (Petit et al., 1997) can be explained by the LDD
process of pattern generation through the founder effect we show.
Also, simulations performed allowing for occasional long-distance
allele dispersal showed that the lag time between the formation of
the advance colonies and the main body of the expanding
populations leads to the formation of patches of highly inbred
demes founded by migrants from the initial colonies (Ibrahim
et al., 1996) although results were not explicitly contrasted with
field data.

This founder effect is central to the clonal nature of cancer
(Nowell, 1976), and can give explanation for the well-known
genetic heterogeneity found at tumoural and metastatic levels in
cancer (González-Garcı́a et al., 2004; Klein et al., 2002). New cell
lines disperse far away at very early times from the primary
tumour and may give early origin to clonal metastatic tumours
through the LDD founder effect we described. The same process
can complement previous explanations of the intratumoural
genetic heterogeneity (González-Garcı́a et al., 2004), since we
describe how LDD mediated by a power law allowing for local and
long-range dispersal produces the coalescence of neighbouring
patches, potentially representing different clones. After some
dispersal time, these genetically different cell clusters could
coalesce and give origin to a genetically heterogeneous tumour.
The LDD process could also explain the existence of genetically
related multi-focal tumours in some tissues (van Oijen and
Slootweg, 2000) through the long-range cell dispersal followed
by local proliferation. The LDD mechanism is particularly relevant
to the debate on the role of cancer stem cells (Mimeault and Batra,
2007; Reya et al., 2001) on the arising of resistant cell lines during
metastatic invasion that challenges the traditional therapeutical
approaches (Merlo et al., 2006; Iwasa et al., 2006). If by the LDD
process a mutated, resistant cell line with self-renewal ability is
dispersed from the primary tumour, a resistant metastatic tumour
can develop far away in very short time given the appropriate
conditions. Although we used cancer images of gliomas just
because they were the clearest examples showing the earliest
invasion process we found, the increasing use of novel imaging
technology will enable the direct observation of the early
spreading of cancer cells from their site of origin and arriving at
secondary sites (Sahai, 2007). The general LDD signature we
described for gliomas should hold for other types of invasive solid
tumours propagating through more structured invaded tissues,
for example lung cancer (Li et al., 2004), and adenocarcinomas
like breast carcinoma (Imanishi et al., 2007), and pancreatic
infiltrating ductal adenocarcinoma (Hingorani et al., 2003). In
invasive adenocarcinomas, the growth commonly first begins in
the interior of ducts. As images from these ducts are normally
taken from histological slices showing sectioned ducts, it is not
easy to observe the first invasive steps. However, the spread
occurs both along and to the interior of the ducts, and soon the
dispersing cells trespass the ducts and invade the organ stroma, in
the diffusive way we described (Hingorani et al., 2003, Imanishi
et al., 2007).

The LDD signature we found is robust since it depends only on
the internal population dynamics and dispersal. Following the
definition of self-organization we adhere to, we can say that this
signature reflects self-organizing processes in simulations and we
suggest that also entails self-organization in the apparently very
different real systems analysed. It appears that it is not
fundamentally affected by other ecological processes like compe-
titive interactions and habitat heterogeneity, since we found
similar results from the single species, homogenous habitat
modelling and from simulations involving competitive interac-
tions and habitat occupancy by a resident previously to invader’s
dispersal. We found the same patterns from the complex field
scenario involving the competitive spread of a species into a
mountainous forest community (Marco et al., 2002) and from
spread of cancer cells involving interaction with tumour micro-
environment (Hu et al., 2003; Johnston et al., 2007). A variation
appears in the fractal dimension of patch borders in relation to
definition of mean distance dispersal and the dispersal environ-
ment, from higher DB values for the unrestrictive environment
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(simulation field) to medium and lower values for progressively
restrictive environments for dispersion and progeny recruitment
(native forest and extracellular matrix/invaded tissue). In addi-
tion, LDD pattern signature is robust to the temporal scale
considered (years for first reproduction for the species and
hours/days for the cancer cells), and the spatial scale considered
(km for the species dispersal and micra for the cancer invasion). It
is also consistent under different spatial resolution levels of
analysis: while the model resolution is maximal (all individuals
including newly born ones were traced in the simulations),
resolution of real data is lower (only individuals of a minimum
detectable size were recorded from the aerial images and cancer
cell recognition depended on threshold detection in stained
samples). The consistency of the LDD signature is also supported
by the simulations results and real examples of invasions
involving only dispersal but not subsequent local proliferation
(‘‘physiological invasions’’). As we expected from the simulations,
trophoblast cells invasion during placentation did not show the
typical patch size power-law pattern. ‘‘Physiological’’ invasions
can thus be viewed as less self-organized processes more
dependent on extrinsic regulations than malignant invasions like
cancer. In these malignant invasions robustness against external
perturbations like chemotherapy (Kitano, 2004) could be in part
the result of the kind of self-organizing, internal processes we
describe. Thus, the LDD signature could be useful in the
discrimination of malignant, e.g., choriocarcinoma, from benign
and ‘‘physiological’’ invasions (like trophoblastic moles and
normal placentation).

The choice of an adequate dispersal distribution function, the
power law allowing extremely LDD and local subsequent dispersal
and recruitment, was crucial both to obtain a sensible and realistic
model output and to explain the dynamics of LDD spread.
Utilization of bounded or partially bounded distribution functions
in modelling LDD process has led to difficulties both in the
predictive and explanatory aspects of the models. For example,
the use of exponentially bounded dispersal functions for model-
ling the spread of an invasive moth rendered discrepancies
between the observed invasion rates, spatial pattern configuration
and fractal characterization (Gilbert et al. 2004, 2005). In another
example, brain cancer cell dispersion around the primary tumour
was modelled introducing a hypothetical chemotactic attraction
(Sander and Deisboeck, 2002). In particular, patterns generated by
these models did not reflect the spread of the invasive individuals
or cells through a large area at very early invasion times.
5. Concluding remarks

Cancer invasion is a complex, biologically robust process
involving many factors (Kitano, 2004; Merlo et al., 2006).
However, interpretation of the process of cancer invasion in terms
of self-organizing, long-range dispersal ecological mechanisms
can help to simplify the problem without loss of its essential
features and to develop more effective therapeutical strategies. In
biological invasions, the species invasiveness (dispersal ability) is
crucial for invasion success and LDD spread guarantees a fast
access of the entire habitat (Cannas et al., 2006). If as we suggest,
cancer invasion is mediated by similar LDD processes, thus very
early and far reaching dispersal of potentially metastatic cells
should be expected. This supports the current practice of
searching for metastasis as soon as the first tumour is found.

It is also important to remember that once the fast, first
dispersal event has occurred, the habitat invasibility, i.e., the
habitat characteristics that can facilitate the invasion becomes
relevant to the invasion outcome (Marco and Páez, 2000). In the
case of plant invasion, these habitat features are well known in
many cases, and they include physical environmental conditions
(e.g., soil, light, and water availability) and other interacting
organisms (e.g., native plants, pollinators, seed predators) (Marco
et al., 2002). In the case of cancer invasion, however, only recently
the importance of the microenvironment represented by the new
tissues and organs reached by the dispersed cells has begun to be
acknowledged. The tumour microenvironment is a complex
system of many cell types, including endothelial cells and their
precursors, pericytes, smooth-muscle cells, fibroblasts of various
phenotypes, myofibroblasts, neutrophils and other granulocytes
(eosinophils and basophils), mast cells, T, B, and natural killer
lymphocytes, and antigen presenting cells such as macrophages
and dendritic cells (Albini and Sporn, 2007), to name some of the
components. Through activity of these components, the tumour
microenvironment can for example exert metastasis suppression
effects (Kenny and Bissell, 2003), or promote cancer progress, for
example through recruitment of normal stromal cells by that
pancreatic cancer cells (Vonlaufen et al. 2007). Also, it has been
shown that presence of the primary tumour can inhibit the onset
of metastasis from previously widely dispersed cells (Guba et al.,
2001; Demicheli et al., 2005). At present, knowledge of role of
these factors in the onset and progression, or either suppression of
cancer invasion is still too premature to provide a consistent
framework for modelling the complex tumour microenvironment
in a reliable way. Further research on the relationships between
the microenvironment and cancer cells is needed to integrate
them in a coherent modelling framework, and we are working in
this direction. However, considering the importance of both
factors in cancer invasion, invasiveness and invasibility, it is
tempting to suggest that in the future, therapeutical approaches
could be increasingly directed to early screenings for dispersed
cells and to manipulate the potentially targeted microenviron-
ments that could facilitate or not the establishment of metastases.
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Pollheimer, J., Knöfler, M., 2005. Signalling pathways regulating the invasive
differentiation of human trophoblasts: a review. Placenta vol. 26, Supplement
A, Trophoblast Research 19, S25–S30.

Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L., 2001. Stem cells, cancer, and
cancer stem cells. Nature 414, 105–111.

Sahai, E., 2007. Illuminating the metastatic process. Nat. Rev. Cancer 7, 737–749.
Sander, L.M., Deisboeck, T.S., 2002. Growth patterns of microscopic brain tumours.

Phys. Rev. E 66, 051901.
Scanlon, T.M., Caylor, K.K., Levin, S.A., Rodriguez-Iturbe, I., 2007. Positive feedbacks

promote power-law clustering of Kalahari vegetation. Nature 449,
209–211.

Shaw, M.W., 1995. Simulation of population expansion and spatial pattern when
individual dispersal distributions do not decline exponentially with distance.
Proc. R. Soc. Lond. B Biol. Sci. 259, 243–248.

Sutherland, B.R., Jacobs, A.E., 1994. Self-organization and scaling in a lattice
predator–prey model. Complex Systems 8, 385–405.

Talmadge, J.E., Wolman, S.R., Fidler, I.J., 1982. Evidence for the clonal origin of
spontaneous metastases. Science 217, 361–363.

Tamaki, M., McDonald, W., Amberger, V.R., Moore, E., del Maestro, R.F.,
1997. Implantation of C6 astrocytoma spheroid into collagen type I gels:
invasive, proliferative, and enzymatic characterizations. J. Neurosurg. 87,
602–609.

van Oijen, M.G., Slootweg, P.J., 2000. Oral field cancerization: carcinogen-induced
independent events or micrometastatic deposits? Cancer Epidemiol. Biomar-
kers Prev. 9, 249–256.

Vonlaufen, Alain, Joshi, Swapna, Qu, Ch., et al., 2007. Pancreatic stellate
cells: partners in crime with pancreatic cancer cells. Cancer Res. 68,
2085–2093.

Wingen, L.U., Brown, J.K.M., Shaw, M.W., 2007. The population genetic structure of
clonal organisms generated by exponentially-bounded and fat-tailed dispersal.
Genetics 177, 435–448.

Xu, X.-M., Ridout, M.S., 1998. Effects of initial epidemic conditions, sporulation
rate, and spore dispersal gradient on the spatio-temporal dynamics of plant
disease epidemics. Phytopathology 88, 1000–1012.


	Comparable ecological dynamics underlie early cancer invasion and species dispersal, involving self-organizing processes
	Introduction
	Methods
	The model, numerical simulations and spatial pattern analysis
	Cancer invasion data
	Trophoblast cells invasion
	Field species data

	Results
	Patterns of spread of cancer cells and species individuals
	Scale-free geometry of cancer and species spread

	Discussion
	Concluding remarks
	Acknowledgements
	Supplementary Material
	References


