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Although intuitively appealing, the concept of spinodal is rigorously defined only in systems with
infinite range interactions �mean-field systems�. In short-range systems, a pseudospinodal can be
defined by extrapolation of metastable measurements, but the point itself is not reachable because
it lies beyond the metastability limit. In this work we show that a sensible definition of spinodal
points can be obtained through the short time dynamical behavior of the system deep inside the
metastable phase by looking for a point where the system shows critical behavior. We show that
spinodal points obtained by this method agree both with the thermodynamical spinodal point in
mean-field systems and with the pseudospinodal point obtained by extrapolation of metaequilibrium
behavior in short-range systems. With this definition, a practical determination can be achieved
without regard for equilibration issues. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3168404�

I. INTRODUCTION

First order phase transitions are accompanied by hyster-
esis and metastability: Even though the thermodynamic tran-
sition happens at the value �t of the control variable �, when
� is varied smoothly from �i��t to � f ��t, the system re-
mains in the phase corresponding to thermodynamic equilib-
rium at ���t �and conversely when changing � in the op-
posite sense�. When the phase survives being carried out
beyond its thermodynamic “homeland,” it is called meta-
stable. Metastable phases have a finite lifetime, but this time
can be very long. Diamond at room temperature and pressure
and glass-forming supercooled liquids are very well-known
examples of long-lived metastable phases �so long lived, in
fact, that for many purposes they can be considered as an
equilibrium phase�. In general, however, the metastable
phase cannot exist for all �, and it is not observed if � f is
less than some value �sp. This is the idea behind the concept
of spinodal point. However, to define the spinodal, some care
is required.

At the mean-field level, the spinodal is well defined. Fo-
cusing on the ferromagnetic case to be specific, let us con-
sider the extended free energy per particle1 f3�T ,m ,h� with h
as the magnetic field and m as the magnetization. f3 depends
on two conjugate variables because it is defined such that the
probability of finding a value M of the magnetic moment is
�exp�−�Nf3�T ,M /N ,h��, where N is the system size. In
mean field and in the limit N→�, f3 has two minima as a
function of m for T below some critical temperature Tc and h

within some range −hsp�h�hsp.
1,2 As a function of h, the

�first order� transition occurs at h=hc=0. When h=0, the two
minima are symmetric, corresponding to the two broken-
symmetry phases. When h�0, the absolute minimum corre-
sponds to the thermodynamic equilibrium �or stable� phase,
while the secondary local minimum defines a phase which is
dynamically stable but of higher free energy: The metastable
phase. When it exists, the �mean-field� metastable phase has
infinite lifetime. At h=hsp, the secondary minimum disap-
pears �it becomes an inflection point� and the phase becomes
unstable: A system prepared with a magnetization different
from the �thermodynamic� equilibrium value evolves toward
the equilibrium state. For �h��hsp, f3 has only one minimum.
Thus in mean field the spinodal, which is the point where the
metastable phase becomes unstable �in the sense that a sus-
ceptibility becomes negative�, is also the limit of metastabil-
ity, i.e., the point up to which the metastable phase can be
observed.

When the interactions have a finite range, matters are
more complicated.2,3 On one hand, the metastable phase
ceases to be observable before it becomes unstable.4–6 This is
because as the system moves away from the transition, the
lifetime of the metastable phase decreases while its relax-
ation time increases. When they become of the same order,
the phase is unobservable. This is the metastability limit,
which is thus different from the spinodal. The metastability
limit is also called kinetic spinodal,7 and the term thermody-
namic spinodal is sometimes used for the spinodal as defined
above �onset of an instability�. On the other hand, the order
parameter can fluctuate in space. Although f3 can still be
defined �and can be used to compute the true equilibriuma�Electronic mail: yasser.loscar@gmail.com.
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properties�, in the thermodynamic limit it has no convexity
changes and only one minimum; therefore, it is useless to
define a spinodal. Further, although the extensive F3 has a
double-well shape,8 the local maximum cannot be interpreted
as a barrier to the growth of the stable phase because the
global magnetization is not a good coordinate to describe this
process: A supercritical nucleus of the stable phase �one
whose growth is thermodynamically favored�9 can form
without change in global magnetization.8 The eventual dis-
appearance of the secondary minimum in F3 is hence unre-
lated to the spinodal.

The spinodal is then beyond the metastability limit, and
hence outside the realm of thermodynamics and of quasi-
equilibrium treatments. Due to these difficulties, it has been
concluded that the spinodal only makes sense in mean-field10

or in finite size systems.3 However, signs of an instability are
detectable in �meta�equilibrium measurements: The suscepti-
bility and relaxation times of the metastable phase increase
as one goes deeper into the metastable region, and if extrapo-
lated with a power law, they seem to diverge at a point be-
yond the metastability limit called pseudospinodal.10,11

Here, rather than to abandon the idea of a spinodal in
finite-range systems, we propose to define it through out-of-
equilibrium properties. The idea is that the spinodal should
be a point with infinite susceptibility and infinite relaxation
time. In this sense it resembles the critical point of a second
order phase transition. It is known12,13 that it is possible to
detect critical points by studying the short time dynamic be-
havior of the order parameter and correlation functions. We
propose to use the same method to identify a point deep into
the metastable region which, at short times, behaves dynami-
cally like a critical point. This pseudocritical regime �in the
sense that it lasts only for a finite time� does not imply the
existence of a thermodynamic singularity �see discussion in
Sec. V�. We show that in a mean-field model, where the
spinodal is well defined and can be worked out analytically,
the point identified with this technique is precisely the ther-
modynamic spinodal. Thus by defining the spinodal as the
point where this pseudocritical dynamics takes place we pro-
vide a sensible generalization of the spinodal concept to
finite-range systems. We apply the method to the two-
dimensional q-state Potts model14 with q�4, where it gives
a reasonable result, providing a bound for the metastability
limit and locating the spinodal very near the pseudospinodal.
The technique has the advantage that it does not need equi-
librium data, which are an essential requirement in order to
determine the pseudospinodal.

Our proposal was inspired by the finding of Schülke and
Zheng15 that the STD applied to the Potts model defines two
“pseudocritical points,” which are closer together with the
weaker �first order� transition and coincide for second order
transitions. A similar situation was observed in models with
out-of-equilibrium transitions.16,17

The paper is organized as follows. In Sec. II we briefly
review the STD technique. In Sec. III we consider mean-field
spin models and we show that the STD method accurately
describes the thermodynamic spinodal in those models. In

Sec. IV we apply the method to the ferromagnetic q-state
Potts model with nearest-neighbor interactions in two dimen-
sions. Section V presents our conclusions.

II. USING SHORT TIME DYNAMICS TO IDENTIFY
CRITICAL POINTS

The STD technique to identify critical points has been
reviewed in Refs. 13 and 18. Briefly, it is based on the work
of Janssen et al.,12 who studied model A �a �4 Hamiltonian
with Langevin dynamics� in the out-of-equilibrium regime
where correlation functions are still nontrivial functions of
two times and the order parameter is still time dependent.
For the present work, the relevant result is that the nth mo-
ment of the order parameter m�n��t�= ��m�t�− �m�t���n� obeys
the scaling form12,18

m�n��t,	,L,m0� = b−n�/
gn�b−zt,b1/
	,L/b,b�m0� , �1�

where t is the time, 	 is the reduced temperature 	= �T
−Tc� /Tc, L is the system size, m0 is the initial value of the
order parameter �assumed nonzero but small�, and b is a
rescaling parameter. � is a new universal exponent that
describes the short time behavior, while �, 
, and z are the
usual critical exponents.1

From Eq. �1�, setting b= t1/z, for large values of L and
small values of t1/zm0 one obtains

m�t,	,m0� � m0t�F�t1/
z	�, � =
� − �


z
, �2�

so that precisely at the critical point 	=0, the order parameter
obeys a power law m�t�� t�. Similarly, setting m0=0, one
gets for the second moment at the critical point

m�2��t� � td/z−2�/z
. �3�

It is generally assumed �and in agreement with numerical
results13,18� that when the initial condition is the ordered state
�m0=1�, a scaling similar to Eq. �1� holds

m�n��t,	,L� = b−n�/
gn�b−zt,b1/
	,L/b� . �4�

From this equation one obtains, for m0=1 and large L,

m�t� = t−�/
zG�t1/
z	� , �5�

and taking the derivative of log m,

	 � log m�t,	�
�	

	
	=0

� t1/
z. �6�

The critical point can then be obtained by performing Monte
Carlo simulations at several temperatures and looking for the
value of T at which the power laws in time predicted by Eqs.
�2�, �3�, and �5� hold. In addition, these equations together
with Eq. �6� allow to determine the critical exponents.13

Here we apply the above method to look for a singular
behavior in the metastable region of a first order phase tran-
sition. By tuning the appropriate control parameter �external
field or temperature� we look for a value where the power
laws �2�, �3�, and �5� hold at short time scales �for very long
times, the approach to the proper equilibrium phase is seen�.
This value of the control parameter can be sensibly defined
as a spinodal, as we show in the cases studied below.
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III. SPINODAL POINTS IN SYSTEMS WITH LONG
RANGE INTERACTIONS

In this section we consider spin models where each spin
interacts with every other spin. For those systems mean-field
theory is exact and therefore provides a first check for the
STD method. Let us first briefly review the analytical mean-
field results on the spinodal points.

A. Thermodynamic spinodals

1. Curie–Weiss–Ising model

We first consider the Curie–Weiss or fully connected
version of the Ising model. In the presence of an external
magnetic field h the Hamiltonian is given by

HCWI = −
J

2N


i�j

sisj − h

i=1

N

si, �7�

where N is the number of spins �si= 
1�, h is an external
magnetic field, and J�0. The extended free energy per spin
f3 can be computed exactly because HCW is an explicit func-
tion of the total magnetization M =
isi and the partition
function can be evaluated for fixed M. The result in the limit
N→� is

f3�T,m,h� =
1

�
�1 + m

2
ln

1 + m

2
+

1 − m

2
ln

1 − m

2
� −

J

2
m2 − hm ,

�8�

where �=1 /T �we take Boltzmann’s constant equal to 1� and
m=M /N. The absolute minimum of f3 with respect to m
defines the stable �equilibrium� solution m�T ,h�. The model
shows a second order transition at h=hc=0 and critical tem-
perature Tc=J. For T�Tc, there is a line of first order tran-
sitions at h=0, where m�T ,h� is singular. However, an ana-
lytic continuation m+�T ,h� from positive to negative h exists
as long as �h� is not too big �and conversely a continuation
m−�T ,h� from negative to positive h�. These continuations
are the metastable states and correspond to local minima of
f3. Thus the conditions

� f3�T,m,h�
�m

= 0,
�2f3�T,m,h�

�m2 � 0, �9�

define the �meta�stable states. The secondary minimum
�and thus the metastable solution� ceases to exist when
h�hsp

�−�=−hsp, the spinodal field, given by

	 �2f3�T,m,h�
�m2 	

h=hsp
�−�

= 0. �10�

Since �2f3 /�m2=�T
−1, the susceptibility diverges at hsp

�−�, and it
is straightforward to show that for h−hsp

�−��1,

�T � �h − hsp
�−��−1/2. �11�

In fact, this singularity can be treated like a usual critical
point. For example, for fixed T we have

Ch � �h − hsp
�−��−1/2, �12�

�m � �h − hsp
�−��1/2, �13�

where Ch is the specific heat and �m=m−msp
�−� with msp

�−�

=m�hsp
�−�� �note that �m�0�. Fixing h, an expansion in 0

�Tsp−T�1 gives

�m � �Tsp − T�1/2, �14�

Ch � �Tsp − T�−1/2, �15�

�T � �Tsp − T�−1/2. �16�

If we choose �m as order parameter, the singular behavior in
the neighborhood of the spinodal point can be characterized
exactly as in a true critical point. The set of critical expo-
nents is

� = 1/2, � = 1/2, � = 1/2, � = 2, �17�

which satisfies the Rushbrooke and Widom scaling relations

� + 2� + � = 2, �18�

� = ��� − 1� . �19�

If we assume that �=0 like in mean-field critical points,
from the Fisher scaling relation �=
�2−��, we have

=1 /4. Finally, from the Josephson hyperscaling,


d = 2 − � , �20�

we can guess a critical dimension dc=6, a result confirmed
by a renormalization group analysis.19

2. Curie–Weiss–Potts model

The Curie–Weiss–Potts model is defined by the
Hamiltonian

HCWP = −
J

N


i�j

���i,� j� , �21�

where J�0, �i=1,2 , . . . ,q, and ���i ,� j� is the Kronecker
delta. The extended free energy per spin f3 for this model can
also be computed exactly,14

f3�m,T� = −
J�q − 1�

2q
m2

+
1

�q

�1 + �q − 1�m�ln�1 + �q − 1�m

q
�

+ �q − 1��1 − m�ln�1 − m

q
�� . �22�

The order parameter m is defined as

m =
1

q − 1
�q�max�mk�� − 1� , �23�

where mk=1 /N
i=1
N ���i ,k�, k=1¯q, and the maximum

means choosing the value of k that gives the highest value of
mk. The extended free energy �22� presents two local minima
�and therefore a first order transition� for q�3, where the
transition happens at Tt=J�q−2�ln�q−1� /2�q−1�.20 A disor-
dered metastable solution with m=0 �supercooled paramag-
net� exists for Tsp

�−��T�Tt �with Tsp
�−�=J /q� as well as an
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ordered metastable solution with m=msp�0 for Tt�T
�Tsp

�+�, where the spinodal temperatures are obtained from
Eq. �10� with h=0. An analysis similar to the above shows
that close to the upper spinodal Tsp

�+�, the order parameter �m,
the specific heat, and the susceptibility show the same criti-
cal behavior �Eqs. �14�–�16�� with the same critical exponent
�17�. Of course, the same set of exponents is obtained from
other mean-field approximations: The Landau �4 model and,
for the upper spinodal point, the Landau �6 model. The val-
ues of these exponents are confirmed by means of renormal-
ization group techniques.19,21

On the other hand, the behavior close to the lower spin-
odal temperature Tsp

�−� is different. The susceptibility shows a
power-law divergence with exponent �=1, while the magne-
tization and the specific heat remain finite �in fact, they are
identically zero in the disordered phase�. The vanishing of
the specific heat is peculiar to the approximation; the point is
that in principle one should not expect to find the same criti-
cal exponent in both spinodals.

B. Short time dynamics

We now apply the STD procedure to the Curie–Weiss–
Ising model in the neighborhood of the spinodal point using
�m as an order parameter. We consider the process at fixed
temperature with the magnetic field as the control variable.
We choose the initial condition in the ordered state �m=1�
corresponding to h→�. In this case, the procedure analog to
a quench T near Tc for a thermal second order transition is to
set h to a value near h=hsp

�−�. To determine hsp
�−�, we assume a

scaling like Eq. �1� with 	= �h−hsp
�−�� /hsp

�−�.
In this test case, we can check the spinodal field and

magnetization found with STD against the exact values ob-
tained from Eqs. �9� and �10�,

msp
�−� =�1 −

T

J
, �24�

�hsp
�−� =

1

2
ln�1 + msp

�−�

1 − msp
�−�� −

msp
�−�J

T
. �25�

We have simulated the dynamics of this model using a stan-
dard Metropolis algorithm in a system of N=1.6�106 spins.
We started with all spins up and did n�103 runs while re-
cording �m and the second moment of the magnetization per
spin �m�2�. Figure 1 shows the short time behavior of �m
and �m�2� for T= 4

9Tc, where time is measured in Monte
Carlo steps �MCSs� �one MCS is defined as a full cycle of N
spin update trials�. From Eqs. �24� and �25� we have �hsp

�−�

�−0.714 627 and msp
�−��0.745 356.

For both first and second moments �Eqs. �3� and �5�� a
power law behavior �m� t−x and �m�2�� ty at h=hsp

�−� is
found with exponents x=0.98
0.02 and y=1.03
0.02, re-
spectively. The power laws are rather short lived �lasting up
to t�100 MCS� and both observables deviate afterward.
However, as we will show below this is a finite size effect,
and a true power law should be observed in the thermody-
namic limit. In order to calculate the derivative of log �m
from simulations we have taken the magnetic field very close
to the spinodal field, that is h=hsp
� with �=2�10−4.

Figure 2 shows the numerical derivative obtained from runs
at three values of h. Again these data can be fitted with a
power law with exponent w=2.02
0.02.

Using the scaling relations �Eqs. �5� and �6�� from Sec. II
and the values of x and w, we obtain

� = 0.49 
 0.01, �26�

and assuming dc=6 from Eqs. �3� and �5� we have

z = 2.01 
 0.03. �27�

The exponent 
 is obtained from Eq. �6�,

1 10 100

0.01

0.10

∆m

-0.7166
-0.7146
-0.7126

10
0

10
1

10
2

time [MCS]

10
-7

10
-6

10
-5

∆m
(2)

(a)

(b)

βh

FIG. 1. Short time behavior of the first and second moments of �m for the
Curie–Weiss–Ising model. Full �black� lines correspond to power law fits at
h=−0.7146=hsp

�−�.

10
1

10
2

time [MCS]

10
1

10
2

10
3

d
lo

g
(∆

m
)

/d
τ

FIG. 2. Short time behavior of the derivative of log �m with respect to the
reduced field 	��h−hsp

�−� /hsp
�−�� evaluated at 	=0; the straight line corre-

sponds to a power law with exponent w=2.02.
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 = 0.249 
 0.004. �28�

Thus, in this test case we find that the spinodal field as well
as the �static� critical exponents determined through STD are
in excellent agreement with the theoretical results �17�, �24�,
and �25�.

We have also explored finite size effects which we use to
obtain another determination of z. Figure 3 shows the evolu-
tion of �m for systems with number of spins ranging from
N=1.6�102 to N=1.6�106 at h=hsp

�−�. The same power law
fit of Fig. 1�a� is also included here. There are clear finite
size effects and it is seen that the power-law fit is valid for
t� tmic�10 up to a time which increases with system size.
The time tmic is a microscopic time scale and it is the time
required to sweep away the microscopic short-wave
behavior.18 We define a time scale t�, so that for t� t� �m has
abandoned the power law and is rapidly evolving toward its
equilibrium value �here we take t� as the time when �m=3
�10−3�. Figure 3 �inset� shows t� versus N in a log-log scale.
Such behavior can be understood by considering the evolu-
tion of the correlation length �. In the critical regime, it in-
creases following the relation

� � t1/z. �29�

We expect deviations from this critical law when the corre-
lation length becomes of the order of the linear dimension of
the system ��L. If we assume that our system of N spins
behaves like one with linear dimension L=N1/dc, the devia-
tion would appear when ��N1/dc or �t��1/z�N1/dc, and there-
fore

t� � Nu, u =
z

dc
. �30�

In this way we can use finite size effects to extract z. From
the fit of Fig. 3 �inset� we get u=0.34
0.01, which together
with dc=6 gives z=2.06
0.06, in excellent agreement with
the previous estimate.

We conclude from this test that the STD technique iden-
tifies the �thermodynamic� spinodal points consistently with
the static results. We proceed now to a short-range model,
where static approaches are unsuitable.

IV. SPINODAL POINTS IN THE SHORT-RANGE
POTTS MODEL

We consider now the nearest-neighbor q-state Potts
model14 on the square lattice with Hamiltonian

HP = − J

�i,j�

���i,� j�, J � 0, �31�

where the sum runs now over all the pairs of nearest-
neighbor sites. The two-dimensional Potts model undergoes
a second order phase transition for q=2,3 ,4 and a first order
one for q�4. In the square lattice, the transition temperature
is known exactly to be22 Tt�q� /J=1 / ln�1+�q�. For q larger
but near q=4, however, the transition is very weak. As
Binder23 pointed out, the pseudospinodal temperatures Tsp

�+�

and Tsp
�−� are extremely close to Tt ��Tt−Tsp

�−�� /Tt�10−3 for
q=5,6�. It is thus very hard to establish whether the pseu-
dospinodals are different from the transition temperature in
the thermodynamic limit �Binder23 concluded that systems at
least as large as 1000�1000 would be required�, and the
question of the existence of metastable phases in the thermo-
dynamic limit has remained controversial.11,24,25

We have determined the lower spinodal of this model
using the short time dynamics as well as the pseudospinodal
from metaequilibrium measurements. We have done Monte
Carlo simulations with single-spin-flip Metropolis dynamics
on square lattices with N=L�L sites �L ranging between
L=200 and L=4000� and periodic boundary conditions for
q=9, 12, 24, 48, 96, and 192. The runs were quenches from
infinite temperature, i.e., at constant T �typically below Tt�q��
but starting from a random configuration.

A. Pseudospinodal

For a narrow range of quench temperatures T�Tt the
system gets stuck in a high energy paramagnetic metastable
state, where it remains for some random time, after which it
relaxes �relatively quickly� to the equilibrium ferromagnetic
state through a nucleation process. A typical energy versus
time curve is shown in Fig. 4, together with some snapshots
of spin configurations, illustrating the nucleation process.
The time for the formation of a critical nucleus has a log-
normal distribution, whose average 	nuc depends both on26 T
and L. To find the pseudospinodal, we look for a divergence

10
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10
1

10
2

time [MCS]

10
-3

10
-2

10
-1

∆m

1.6x10
2

1.6x10
3

1.6x10
4

1.6x10
5

1.6x10
6

10
2

10
4

10
6

N

10

100

t* [MCS]

NN

FIG. 3. Short time behavior of the order parameter �m at h=hsp
�−� for differ-

ent system size N. The dashed �black� line corresponds to a power law fit to
the N=1.6�106 curve. Inset: t� defined as the time for �m to reach 10−3 vs
N.

FIG. 4. A typical single-sample energy per spin vs time plot after a quench
from infinite temperature to T=0.99Tt for q=24 and L=200. Snapshots at
selected times are also shown with color coding for spin values.
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of the relaxation time of the metaequilibrium phase, so we
must ensure that the measurements are done at times shorter
than 	nuc�T� in order to avoid entering the regime where do-
mains of the stable phase have begun to grow. For this we
consider the two-time autocorrelation function

C�t1,t2� =
q

q − 1� 1

N



i

N

���i�t1�,�i�t2�� −
1

q� , �32�

where t1 is the time elapsed since the quench t2� t1 and the
average is taken over different realizations of the thermal
noise. Out of equilibrium, C�t1 , t2� depends on both t1 and t2

while in a stationary �meta�stable state it depends only on the
time difference t� t2− t1. To compute the relaxation time 	R,
we use correlation data only from the regime where it is
independent of t1, thus staying at temperatures above the
metastability limit. The typical behavior of C�t� in this re-
gime is shown in the inset of Fig. 5 for q=96. It is clear that
the relaxation time is growing as one goes deeper into the
metastable region. We defined 	R as the time at which C�t�
falls below some threshold Cthr �see inset of Fig. 5�. Varying
Cthr within a reasonable range we obtained similar results;
we have included this arbitrariness in the error estimates. The
behavior of 	R as a function of temperature is plotted in Fig.
5 for q=96.

From these data we estimated the pseudospinodal tem-
perature T�. This is not an easy task: Far from the diver-
gence, corrections to power-law scaling can be important,
but on the other hand the pseudospinodal cannot be ap-
proached with equilibrium measurements. The estimates of
T� and associated exponents will necessary have relatively
large uncertainties. To proceed, we fit the relaxation time
with a scaling form27

	R = A�T − T�

Tt
�−b�1 + B�T − T�

Tt
�c� , �33�

fixing c to different values. The best fit according to the
correlation coefficient �R2=0.999 89� was obtained for c=1,
for which the scaling correction to the power law is around
5%. However other values also give good fits. We find that
while the estimates of b depend on the form of the chosen
correction, the estimate of T� is within the interval T�

=0.95
0.01. We cannot give an accurate estimate of b other

than stating that the divergence is weak with b ranging from
0.2 to 0.85. This is enough for our purpose of comparing T�

with the spinodal obtained from STD, which we compute in
Sec. IV B.

B. The spinodal through STD

We now attempt to find the spinodal using the STD.
We consider the dynamic behavior of the magnetization
�Eq. �23�� and the corresponding second moment,18

m�2� =
q

�q − 1�2

j=1

q �� 1

N


i=1

N

���i,� j� −
1

q
�2� , �34�

starting from a completely disordered state. The results for
q=96 are shown in Fig. 6. We observe a clear power law
increase, m� t� and m�2�� t�, spanning two decades in time
for T=Tsp

�−�= �0.950
0.002�Tt. The exponents we find are
rather small ���0.06 and ��0.1�.

At variance with the mean-field case, the STD results
show no noticeable finite size effects. Figure 7 shows m�2�L2
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FIG. 5. Relaxation time vs T /Tt for L=1000 and q=96. The continuous line
is a fit to the data up to T /Tt�1.02 using Eq. �33�. Error bars are smaller
than the symbol size. The inset shows the corresponding stationary correla-
tion function vs t for temperatures ranging from T=1.005Tt �left� to T
=0.967Tt �right�. The vertical dashed line is T=T�.
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versus time at the spinodal temperature Tsp
�−�=0.950Tt for L

=480 and 960. The curves are almost indistinguishable, in-
dicating that the spinodal critical regime lasts for a size-
independent time. Clearly, at this time correlations have not
yet reached lengths of the order of the smallest system size.
This is in contrast to the mean-field case �Fig. 3�, where it
seems that the number of spins that must become correlated
before faster growth of the stable phase begins grows with N.
Again, we see that the span of the power law is limited, so
that the values of the exponents are not very accurate. How-
ever, our interest is to establish the existence of a power-
lawlike regime to define Tsp and to compare its value to the
pseudospinodal.

The temperature Tsp
�−� identified by STD is equal to the

pseudospinodal �here defined as the apparent divergence of
the relaxation time�. The near instability of the system at Tsp

�−�

also shows up in the specific heat Ch and magnetic suscep-
tibility �T. We computed these quantities in the metastable
regime, where we find the same values either through fluc-
tuations of the energy �magnetization� or by a numerical de-
rivative with respect to temperature �field�. Plots for q=96
are shown in Figs. 8 and 9. Ch and �T grow in a way com-
patible with a divergence at T=Tsp

− . However, the available
equilibrium data span too short a range to get a reliable es-
timate of the critical exponents.

Let us remark that Fig. 6 is not completely equivalent to

Fig. 1 �Curie–Weiss–Ising�. The second moment of the order
parameter �part �b� of both figures� behaves the same in both
cases but not the order parameter itself. This is because of
the initial conditions that must be used. In general, at a criti-
cal point, if one starts with a large value of �m, one observes
a power-law decay toward zero �the Ising spinodal corre-
sponds to this case�. If one starts from near zero �m, the
order parameter is first observed to increase with a power
law, then to decay again to zero.12 This initial increase is
governed by an exponent �, which cannot be determined
from the equilibrium critical exponents alone �see Eq.
�2��.12,18 The latter is the situation in the Potts model at T
=Tsp

�−�. In an equilibrium critical point, one is free to choose
the initial condition, so both situations can be observed. In
the Potts Tsp

�−� case, however, we cannot start with a high
value of m because that would place us automatically outside
the metastable phase we are trying to observe, so we can
only hope to see the initial increase �the corresponding de-
crease at longer times is masked by the evolution to the
stable phase�. In the Curie–Weiss–Ising case, we could in
principle set �m�0 and see something similar to Fig. 6�a�.
We have failed to observe such increase, however, indicating
that the exponent � is zero. Indeed, in equilibrium it is
known that �=0 in the mean-field case.12

On the other hand, in the upper spinodal point of the
Potts model, T=Tsp

�+��Tt, we can start with an ordered initial
state, and we should again observe m decrease. Indeed, we
have simulated the short time dynamics for q=96 and N
=480 taking an ordered initial state and tuning the tempera-
ture above the transition value Tt. Figure 10 shows the mag-
netization and its second moment measured in the same way
as in Fig. 1 for different temperatures. In Fig. 10�b� we can
identify a nice power law in the second moment for
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FIG. 8. Specific heat as a function of T−Tsp
�−� in the metastable state for q

=96 and L=480. The full �blue� line is a fit with a law A�T−Tsp
�−����1

+B�T−Tsp
�−���. The dashed �red� line is a power law fit using the data for

�T−Tsp
�−�� /Tt�0.15. Error bars are smaller than the symbol size. The vertical

dashed line is T=Tt.
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FIG. 9. Magnetic susceptibility as a function of T−Tsp
�−� in the metastable

state for q=96 and L=480. The full �blue� line is a fit with a law A�T
−Tsp

�−����1+B�T−Tsp
�−���. The dashed �red� line is a power law fit using the

data for �T−Tsp
�−�� /Tt�0.15. Error bars are smaller than the symbol size. The

vertical dashed line is T=Tt.
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Tsp
�+� /Tr=1.06
0.01 over more than two decades. The fitted

exponent is y�0.90. At this temperature, Fig. 10�a� shows
that the magnetization decreases in the same way as in Fig.
1�a�. The main difference is that the spinodal magnetization
in the latter case is known exactly, while in the Potts case it
is unknown and cannot be estimated with good precision
with these data. Thus we do not see a power law in the m
plot, and we rely on m�2� to find the spinodal.

Finally, we have repeated the above simulations for sev-
eral values of q, computing the relaxation time and the STD
behavior. In all cases we found that the spinodal Tsp

�−� found
by STD is compatible with the pseudospinodal T� from me-
taequilibrium measurements. The relaxation time as a func-
tion of temperature for several q and L=1000 is given in Fig.
11 �the same results were found for L=2000 and 4000�. This
calculation was done using the same threshold Cthr=0.01 for
all values of q. We observed that for fixed T−Tsp, the relax-
ation time is nonmonotonic as a function of q with a mini-
mum around q�50 �see inset of Fig. 11�, and the same non-
monotonic behavior is observed in the exponents. We do not
have an explanation for this behavior. However, the growth
of the relaxation time for large values of q is consistent with
the appearance of a true singularity, since the q→� limit is
mean field.28 We also observed that the kinetic spinodal is
strongly q-dependent and therefore the minimum distance to
Tsp

�−� available for metaequilibrium measurements increases
with q.

In Fig. 12 we show �Tt−Tsp
�−�� /Tt versus q �we have in-

cluded the “pseudocritical” temperatures found in Ref. 15 for
q=5,7�. We see that Tsp

�−� systematically departs from Tt as q
increases. In fact, the data are very well fitted by the loga-
rithmic form A loga�1+q−4� with a=2.81, in qualitative
agreement with the behavior of the mean field or Curie–
Weiss–Potts, and the Bethe lattice solution with coordination
number29,30 z=3, as expected in the large q limit.28

V. CONCLUSIONS

We have shown that it is possible to define the spinodal
point through the short time dynamic behavior. The STD can
be used to detect a point in the phase diagram where the
dynamics is critical �albeit for a finite time�. In mean-field

systems this coincides with the thermodynamic spinodal de-
fined through the vanishing of second derivatives of the free
energy, while in finite-dimensional systems it serves as a
definition of spinodal, a point where �meta�equilibrium mea-
surements are impossible �since it is beyond the metastability
limit or kinetic spinodal�. In the two-dimensional Potts
model, we found that the spinodal defined in this way coin-
cides with the pseudospinodal found through fitting and ex-
trapolation of metaequilibrium relaxation times. Our results
are consistent with the scaling behavior associated with a
growing correlation length. In particular, �pseudo�critical ex-
ponents can be measured using STD, which in the mean-field
case we have checked with the analytical result.

For the Potts model, this method gives a spinodal tem-
perature different from the transition temperature at all q
where the transition is first order even in the thermodynamic
limit. Since the spinodal provides only a bound for the meta-
stability limit, this does not settle the question of the exis-
tence of a metastable phase, but it does show that the appar-
ent convergence of spinodal and transition temperatures is
due to the extremely weak nature of the transition for low
values of q.

Apart from the conceptual advantage of allowing a defi-
nition of spinodal points avoiding equilibration issues, the
STD method may prove to be practically useful in establish-
ing bounds for metastability limits. This would be especially
welcome, for instance, in systems with very slow dynamics
such as glass forming liquids, where metaequilibrium mea-
surements are out of the question �a direction in which some
work is in progress�, and even more so if this technique
could be implemented experimentally.

Finally, let us remark that although our results show that
one can define a spinodal �which we call thermodynamic to
distinguish it from the kinetic spinodal� through a critical-
like dynamics, this behavior is transient �except in mean
field�, so that we do not conclude that any thermodynamic
potential is singular at this point. The thermodynamic spin-
odal in this sense is better understood as similar to the pseu-
dospinodal but defined in a way free from the equilibration
and extrapolation issues that pervade the pseudospinodal. In
the two-dimensional Ising model, the pseudospinodal has
been shown to be related to zeros of the partition function at
complex values of temperature and field,31 which approach
the real plane as the range of the interaction is increased. We
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may conjecture a similar scenario for the Potts model, whose
thermodynamical behavior can be determined by zeros of its
partition function in the complex temperature plane,32 and
where evidence has been found of singular behavior �with
divergent thermodynamical quantities� associated with some
of those zeros33 for q�4. It is tempting to conjecture that the
�pseudo�critical dynamics observed here is associated with
such zeros, and that the longer its lifetime the nearer these
zeros are to the real plane. This remains to be studied, how-
ever, but it is an interesting issue to investigate especially in
short-range interacting systems, where a pseudosingularity is
observed even if the mechanism of a vanishing free energy
barrier for long wavelength fluctuations is in principle
excluded.
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