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a b s t r a c t

We present the complete zero temperature phase diagram of a model for ultrathin films with

perpendicular anisotropy. The whole parameter space of relevant coupling constants is studied in first

order anisotropy approximation. Because the ground state is known to be formed by perpendicular

stripes separated by Bloch walls, a standard variational approach is used, complemented with specially

designed Monte Carlo simulations. We can distinguish four regimes according to the different nature of

striped domains: a high anisotropy Ising regime with sharp domain walls, a saturated stripe regime

with thicker walls inside which an in-plane component of the magnetization develops, a narrow

canted-like regime, characterized by a sinusoidal variation of both the in-plane and the out of plane

magnetization components, which upon further decrease of the anisotropy leads to an in-plane

ferromagnetic state via a spin reorientation transition (SRT). The nature of domains and walls are

described in some detail together with the variation of domain width with anisotropy, for any value of

exchange and dipolar interactions. Our results, although strictly valid at T¼0, can be valuable for

interpreting data on the evolution of domain width at finite temperature, a still largely open problem.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The magnetic phases of ferromagnetic thin films with
perpendicular anisotropy have been the subject of intense
experimental [1–7], theoretical [8–14] and numerical [15–20]
work in the last 20 years. Magnetic order in ultrathin ferromag-
netic films is very complex due to the competition between
several different energy contributions, the most prominent being
exchange and dipolar interactions, together with a strong
influence of shape and magnetocrystalline anisotropies of the
sample. These in turn are very susceptible to the growth
conditions of the films [21,6].

A widely used model that contains the main ingredients of
ultrathin film magnetism is the 2D dimensionless Heisenberg
Hamiltonian:
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where ~Si are classical unit vectors, the exchange and anisotropy
constants are normalized relative to the dipolar coupling constant
ðd� J=O,Z� K=OÞ, /i,jS stands for a sum over nearest neighbors
pairs of sites in a square lattice, (i,j) stands for a sum over all

distinct pairs and rij � j~r i�~r jj is the distance between spins i and j.
At low temperatures and strong enough perpendicular aniso-

tropy, the presence of a striped phase (i.e., a modulated pattern of
local perpendicular magnetization with a well defined stripe
width h) is well established and is the ground state of the system
[9,10,22]. In the limit of strong uniaxial anisotropy domain walls
are sharp and the energy cost for deforming or moving a domain
wall is large. Nevertheless, even when the mechanism by which
the width of domains adjusts is not well understood, the stripe
width varies with the effective anisotropy. When the thickness of
the films (or the temperature) grows, the effective perpendicular
anisotropy is reduced in films of a few monolayers, and
magnetostatic energy becomes important, inducing the magneti-
zation to develop an in-plane component. Domains become
narrower, walls become wider and are of Bloch type at low
temperatures [4,23], until the system goes through a Spin
Reorientation Transition (SRT) when anisotropy and dipolar
energies cancel [24–26,5]. Around the SRT line a canted state
may develop, where the magnetization presents a finite in-plane
component together with the perpendicular modulation.
The extension of the canted state in parameter space strongly
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depends on the nature of the relevant anisotropies. For some
systems, like Co/Au(111), it seems necessary to go beyond the first
order anisotropy approximation of the model (1). A second order
anisotropy energy is responsible for a canted state in a large
portion of the phase diagram [25,16,14]. For other systems, like
Fe/Cu(0 0 1), the first order anisotropy seems to be enough to
describe the relevant physics [27,28]. In this case, as described by
the model (1), the canted state is restricted to a narrow region of
parameter space around the SRT, as expected from general
considerations [16], and reported in simulations at finite
temperature [29]. Finally, when the dipolar anisotropy exceeds
the magnetocrystalline one, the system enters an in-plane
ferromagnetic state.

In this work we extend previous calculations [9,30,13] and
compute the complete phase diagram in the ðd,ZÞ space of
Hamiltonian (1), at T¼0. We also improve upon previous results
by considering different kinds of domain walls (sinusoidal,
hyperbolic tangent, sharp walls), as appropriate for each regime
in parameter space. We consider only straight domains, (domains
in which the spin orientation can be modulated along the x

direction but is constant in the perpendicular direction y)
separated by Bloch walls, i.e., walls in which the magnetization
stays inside the yz plane. The local magnetization vector inside
the domains may be tilted at an angle y with respect to the
plane normal (z-axis). Within these assumptions, we obtain
the complete phase diagram, the variation of the angle y and
the behavior of the width of domains and walls in the whole
parameter space ðd,ZÞ. This allows, e.g., to obtain the crossover
between Heisenberg (extended walls) and Ising (sharp walls)
regimes. We verify that domain width adjustment with varying
anisotropy is only possible in the Heisenberg regime, domain
width being fixed in the Ising regime for any value of the
parameters Z. Analytical calculations are complemented with
Monte Carlo simulations specially designed for the present
purposes, as explained in the appendix.

2. Zero temperature phase diagram

We consider a square lattice with N¼L� L sites, characterized
by the integer indexes (x,y), where �L=2rxrL=2 and
�L=2ryrL=2, in the limit L-1. Hence, the index i in Eq. (1)
denotes a pair of coordinates (x,y). We consider only uniformly
magnetized solutions along every vertical line of sites, i.e.
~Sðx,yÞ ¼

~MðxÞ,8y and allow only Bloch walls between domains of
perpendicular magnetization, i.e. MxðxÞ ¼ 0 8x. Yafet and Gyrogy
(YG) showed that for these types of spin configurations the energy
per spin can be mapped onto the energy of a one dimensional XY
model [9]. The energy difference between an arbitrary magneti-
zation profile ~MðxÞ and a uniformly in-plane magnetized state is
then given by

e½~MðxÞ� ¼ ðd�2c2Þ�
du
L

X
x
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1
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X
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where du¼ d�2c1,ku¼ Z�3g, c1¼0.01243y, c2¼0.07276y,
g¼1.202057yand

C � C½MyðxÞ� ¼ 2ðc2�c1Þ
1

L

X
x

MyðxÞMyðxþ1Þ ð3Þ

Although small, this correction term makes a non-negligible
contribution when the domain walls are of the same order of
the lattice constant. This happens for small values of d ðdo5Þ,
where both stripe and wall widths are of the order of a few lattice

spacings. For larger values of d it is reasonable to assume a
smooth magnetization profile [9] Myðxþ1Þ �MyðxÞ, so that the
correction (3) can be absorbed into the anisotropy term in Eq. (2),
replacing ku-k¼ Z�3gþ2ðc2�c1Þ.

Now consider a stripe-like periodic structure of the magneti-
zation profile with period 2h, Mz(x+h)¼�Mz(x). Using a Fourier
expansion:

MzðxÞ ¼M0

X
m ¼ 1,3,...
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mpx

h

� �
, ð4Þ

the energy (2) can be written as [9]
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where fðxÞ is the angle between ~MðxÞ and the z-axis and
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Now we look for the minimum of Eq. (5) for different values of
d,Z. We propose different striped magnetization profiles Mz(x) and
compare the energies obtained by minimizing Eq. (5) for each
profile with respect to variational parameters.

We first consider a profile as proposed by YG, that is constant
jMzðxÞj ¼M0 inside the stripes with a sinusoidal variation inside
the walls between stripes (see Ref. [9, Fig. 1]). This will be called
‘‘sinusoidal wall profile approximation’’ (SWP). In order to allow
for canted profiles, we take M0 ¼ cosy, where y is the canting
angle, i.e. we define it as the minimum angle of the local
magnetization with respect to the z-axis. In Ref. [9] this
variational problem was solved for M0¼1 in the continuum limit,
i.e. when hb1 and the wall width wb1, so that the profile can be
considered a smooth function of x. While this approximation is
expected to work well for large enough values of d, it breaks down
for relatively small values of it, where the discrete character of the
lattice has to be taken into account. However, the variational
problem for that range of values of d can be solved exactly
(although numerically) by minimizing Eq. (5) with respect to the
integer variational parameters h and w and continuous parameter
y. In other words, for every pair of values ðd,ZÞ we evaluate the
energy Eq. (5) for the sinusoidal profile with different combina-
tions of h¼1,2,yand w¼1,2,ywithin a limited set. For every pair
of values h,w, we look for the value of y that minimizes the energy
with a resolution Dy¼ 0:01 and compare all those energies. This
calculation is feasible for values up to d¼ 10, for which the
maximum value of h (bounded by the stripe width in the Z-1
limit) remains relatively small (smaller than h¼140). Some
results for d¼ 15 close to the SRT were also obtained. All the
results of this calculation are compared against Monte Carlo (MC)
simulations. Details of the MC method used are given in Appendix
A. Through these calculations we obtain a zero temperature phase
diagram for low values of d.

Before presenting the results, it is important to introduce some
notations and definitions of different types of solutions. We
distinguish between four types of solutions. If the minimum
energy solution corresponds to w¼1 and y¼ 0 (within the
resolution Dy), we call this a Striped Ising Profile (SIP), i.e. a square
wave like profile. If y¼ 0 but w41, we call this a Saturated

State (SS). These states only show a finite in-plane component of
the magnetization inside the walls. If 0oyop=2 the solution is a
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canted-like state. Finally, if y¼ p=2 (M0¼0) we have a planar

ferromagnet (PF).
The zero temperature phase diagram for small values of

dðdr5Þ is shown in Fig. 1. For relatively large values of Z the
minimum energy configuration is always the Ising one (SIP), with
a stripe width independent of Z. For small values of Z the
minimum energy configuration is the PF, with a spin reorientation
transition line (SRT), either to the Ising state for ho3ðd� 2Þ or to
a canted-like one for hZ3ðd42Þ. No Saturated State configura-
tions are observed for do6.

Inside the canted region, a strong stripe width variation with
the anisotropy is observed at constant d. Note that the vertical
lines that separate Ising striped states with consecutive values of
h bend inside the canted region and become almost horizontal as
d increases. Hence, the exponential increase of h with d in the
Ising region (vertical lines) changes to an exponential increase
with Z inside the canted region (curved lines on the right of
Fig. 1). It is important to note here that the canted region in this
system corresponds almost everywhere (except close to the
crossover to an Ising striped state) to a regime in which
the stripe width and walls are almost equal, which means a pure
sinusoidal magnetization profile. In this sense it has a different
character than the ‘‘true’’ canted phases obtained in systems with
non-zero higher order anisotropies [16,14], where well defined
domains show a finite in-plane magnetization component. In the
present case the canted like states are characterized by a
sinusoidal variation (with wave length 2h) in both the in-plane
and the out of plane magnetization components, without well
defined domains (see an example in Fig. 3). Hence, there are not
truly ‘‘stripes’’, but a sinusoidal modulated state or Single Mode
Canted Profile (SMCP).

We also find an excellent agreement between the sinusoidal
wall approximation (or SMCP) and the MC results, except close to
the transition between the Ising and the canted-like states. Such
disagreement is due to the fact that the actual wall is not well
described by a sinusoidal profile far away of the SRT line, as will
be shown later.

For large enough values of d the variational problem for the
SWP can be solved in a continuum approximation introduced by
YG [9], giving a set of coupled non-linear equations for the stripe

width h, the ratio between the stripe and the wall widths D¼w=h

and the canted angle y. In the limit D-1 those equations can be
solved analytically predicting a SRT at the line [9]

ZSRT ðdÞ ¼ a�
p2

2d
ð7Þ

with a¼ p2=3þ3g�2ðc2�c1Þ. The line Eq. (7) is also depicted in
Fig. 1. Notice the disagreement between the continuum approx-
imation and the exact one for dr5. This discrepancy becomes
smaller than 1% only for d47.

For arbitrary values of Z and d the equations for h, D and
y can be solved numerically. From the numerical solutions we
found that the range of values of the anisotropy Z for which the
canted angle is appreciable different from zero within this
approximation is strongly depressed as d increases. For values
d� 100 the canted-like configurations almost disappear,
except very close to the reorientation line, as already reported
by Politi [13].

Indeed, from our MC simulations, we observe that the range of
values for which canted-like states have the minimum energy
gradually shrinks as d increases, being replaced by a saturated
state for values of Z above certain threshold. This can be observed
in Fig. 2, where we show the behavior of the canted angle and the
in-plane magnetization component MJ ¼ ð1=LÞ

P
xMyðxÞ as a func-

tion of Z for d¼ 7:5. The Monte Carlo data show the existence of a
wide range of values of Z for which the canted angle is zero while
MJa0, meaning that the non-null in-plane components are
concentrated inside the walls. In other words, in that region we
have a saturated state with thick walls w41. Notice also that
the SWP approach completely fails to describe those states.
Moreover, we observe from our MC simulations that the SWP
cease to be the minimum energy solution for values of Z relatively
close to the SRT, before the saturated state sets up (see Fig. 2). This
effect becomes more marked as d increases.

The departure of the magnetization profile from the SWP for
large values of Z and d is expected from micromagnetic theory,
which in that limit predicts that the wall structure will
be dominated by the interplay between anisotropy and exchange,
leading to an hyperbolic tangent shape of the wall [23]. Hence we
considered a periodic magnetization profile with hyperbolic
tangent walls (HWP) defined, for a wall centered at x¼0, by

MzðxÞ ¼M0 tanh
x

lw

� �
for �h=2rxrh=2 ð8Þ

Fig. 1. Zero temperature phase diagram for small values of d. Black filled symbols

and black solid lines: MC simulations. Open red symbols: SWP approximation.

Squares and continuous black lines correspond to transition lines between striped

states of different width. The shaded region corresponds to a canted-like state

ð0oyop=2Þ. Triangles are transition lines between planar ferromagnet ðy¼ p=2Þ

and SMCP states (spin reorientation transition line). Circles mark transitions

between the canted-like and the striped Ising state (y¼ 0 and w¼1). Notice the

excellent agreement between the MC and SWP calculations close to the SRT, while

the SWP approach underestimates the transition line between the canted-like and

Ising stripes states. The dotted line corresponds to the continuum approximation

of YG for the SRT (Eq. (7)). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 2. Canted angle (circles) and in-plane magnetization (squares) as a function of

Z for d¼ 7:5. Filled black symbols correspond to MC calculation. Open red symbols

corresponds to the discrete SWP approximation, while the red doted and dashed

lines correspond to the continuum (YG) approximation of the SWP. Continuous

black and red lines are only a guide to the eye. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)
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where M0 ¼ cosy as before. In the large d limit, assuming a smooth
profile hb1 and lwb1, the anisotropy energy can be expressed as

ean ��kM2
0 1�

2lw
h

tanh
h

2lw

� �� �
ð9Þ

The exchange energy can be obtained in a similar way:

eexc ¼�d 1�
lw
h

M2
0�1

M0
tanh�1 M0 tanh

h

2lw

� �� �
þtanh

h

2lw

� �� �� �
ð10Þ

The dipolar energy can be calculated using Eq. (6). The Fourier
coefficients for the profile (8) can be computed using the
approximation

tanhðxÞ �

x 1�
x2

3

� �
if 0rxr

1

2

ð1�e�2xÞ
2
ð1þe�4xÞ if

1

2
rx

8>>><
>>>:

ð11Þ

This leads to an expression for the total energy as a function of the
variational parameters h, y and lw that can be minimized
numerically. Comparing the minimum energy solution for the
SWP and the HWP we obtain the crossover line between
sinusoidal and hyperbolic wall structure shown in Fig. 3 (dashed
line). Above that line the HWP has always less energy than the
SWP. We also calculated the transition line between the canted-
like and the saturated states by setting the condition y¼ 0:01, to
be consistent with the criterium used in the MC calculations. The
results are shown in Fig. 3 together with the SRT line Eq. (7), and
compared with MC calculations up to d¼ 15. The excellent
agreement with the MC results gives support to the analytic
approximations. Only between the dashed and the continuous
lines we found truly canted states (i.e., states with h5w),
although they parallel component is rather small ðyo0:1Þ. In this
sense, the region enclosed by both lines marks a crossover
between the SMCP and the Saturated states: as Z increases
domains emerge gradually, the walls change from sinusoidal to
hyperbolic shape and the canted angle goes to zero.

For large values of Z the exponential increase of h makes it
cumbersome to apply the previous approximation for the
calculation of the dipolar energy. Instead of that, we can use the
following heuristic argument to obtain a reasonable approxima-
tion. The main error introduced by the SWP approach is in the

exchange and anisotropy contributions to the energy. Since the
main contribution to the dipolar energy is given by the interaction
between domains, we can assume that the dipolar contribution of
the wall is relatively independent of its shape. Hence, we
approximate the dipolar contribution by the SWP expression
obtained by YG [9] taking w¼flw (f is a fitting parameter of order
one to be fixed later) in the limit D51 ðlw=h51Þ. We compare the
energy obtained within this approximation with that obtained
using the Eq. (11) for different values of the system parameters.
We verified that the error made by taking f¼4 is always smaller
than 1% for h=lwZ20. We also observe that the best agreement
with the MC results is obtained for f¼4. Assuming then M0¼1, the
total energy per spin (relative to the parallel magnetized state) for
the HWP can then be approached by

eHWP ¼ gþ
d=lw�2lwg

h
�

4

h
ln

3ph

10lw

� �
ð12Þ

with g¼ p2=3�k. Minimizing Eq. (12) with respect to the
variational parameters h and lw leads to:

h¼
10

3p lw exp
d

2lw

� �
ð13Þ

with

lw ¼
d

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ2ðk�p2=3Þd

p ð14Þ

in agreement with a derivation made by Politi [13].
With the previous calculation we can also estimate the

transition line between the saturated and the Ising striped state.
In the large h limit the energy for a SIP, i.e. for

fðxÞ ¼
0 if 0rxrh=2

p if h=2oxrh

(
ð15Þ

the energy can be easily calculated from Eq. (5). The Fourier
coefficients are

bm ¼ ð�1Þðm�1Þ=2 4

pm
ð16Þ

Using Eq. (6) the dipolar energy is then given by

edip �
p2

3
�

8

h

X2h�1

m ¼ 1,3,...

1

m
þ

4

h
�
p2

3
þ4

cðhÞ�b
h

ð17Þ

where b� geþ ln4�1,ge � 0:577216 is the Euler gamma constant
and cðxÞ is the digamma function [31]. The energy per spin
respect to the in-plane magnetized state is then given by

eI ¼�kuþ
p2

3
þ

2du�b
h
�

4cðhÞ
h

ð18Þ

Minimizing Eq. (18) with respect to h leads to the equation
du=2�b¼ FðhÞ, where FðhÞ ¼cðhÞ�hcuðhÞ � lnh�1, thus recovering
the known result h� ed=2. Comparing the energies, we find that
the HWP has less energy than the Ising state for any value of Z.
Eq. (13) shows that the stripe width variation in the Saturated
state is determined by the change in the wall width as the
anisotropy increases. Hence, h will change until the wall width
reaches the atomic limit, i.e. for lw¼1, where Eq. (13) recovers the
Ising behavior h� ed=2. Imposing the condition lw¼1 to Eq. (14)
we obtain the transition line between the Saturated and the Ising
Stripes states:

Z¼ 1

2
d�2þ

p2

3
þ3g�2ðc2�c1Þ ð19Þ

which is also shown in Fig. 3, in complete agreement with the MC
results.

In Fig. 4 we compare the equilibrium stripe width h as a
function of Z obtained within the different approximations used

Fig. 3. Zero temperature phase diagram for large values of d. The shaded region

corresponds to the canted-like states. Symbols correspond to MC simulations and

lines to theoretical results. The dashed line correspond to the crossover between

sinusoidal and hyperbolic wall structure. The lower line (blue) corresponds to Eq.

(7). The middle line (red) is obtained from the HWP minimum energy solution

with y¼ 0:01. The upper line (black) corresponds to Eq. (19). Typical magnetiza-

tion profiles obtained by MC are shown for every region of the phase diagram. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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in this work for d¼ 10 and with the MC simulations. Notice that
the asymptotic approximation for the HWP given by Eqs. (13) and
(14) shows a better agreement with the MC results than the
approximation (11) for the Fourier coefficients in the dipolar
energy. This is because we adjusted the fitting parameter f to
optimize the agreement with the MC results at low values of d.
The discrepancy between both (hyperbolic) approximations
becomes negligible in the large d limit.

3. Discussion and conclusions

The main results of this work are summarized in Figs. 1 and 3,
which display the complete zero temperature phase diagram of
the model defined by the Hamiltonian (1). Working upon
reasonable assumptions for the ground states, like perfectly
straight modulations in one dimension and Bloch domain walls,
we analyzed minimum energy configurations combining a
variational analysis with Monte Carlo results. We found four
qualitatively different kinds of solutions: a planar ferromagnet for
small anisotropies, a Single Mode Canted Profile (characterized by
a sinusoidal variation of both components of the magnetization
and varying wave length) close to the SRT and two types of
perpendicular striped states for large values of the anisotropy: a
saturated state in which the in-plane component is restricted to
the domain walls, and an Ising stripe state with sharp walls for
very large anisotropies.

The SMCP and saturated states give valuable information on
the behavior of the stripe width (or the wave length in the SMCP
case) as the anisotropy and exchange parameters change. We find
that stripe width variation is directly associated to the presence of
finite width domain walls. For large enough values of the
anisotropy Z the ground state of the system is always an Ising
striped state, no matter the value of the exchange coupling d. In
those states domain walls are sharp, the stripe width is
completely independent of Z and grows exponentially with the
exchange coupling.

At the SRT the system passes through canted-like states
(mostly SMCP) as the anisotropy increases, although the range
of values of Z where the canted angle is different from zero
narrows as d increases. For instance, the exchange to dipolar
coupling ratio in fcc Fe based ultrathin films can be roughly

estimated to be d� 100 (considering a cubic bilayer of Fe/
Cu(1 0 0), where [4] the exchange coupling JFe � 30 meV, the
lattice constant dFe � 2 ML and [32] mFe � 3mB). For d� 100 the
anisotropy interval for the canted-like states is approximately
DZ¼ Z�ZSRT � 0:2.

For do6 the SMCP has the minimum energy in a rather
extended region of the phase parameters space, close to the SRT.
The wave length (or ‘‘stripe width’’) of those states presents a
strong variation with the anisotropy, directly correlated with an
increasing canted angle. According to YG approximation, SMCP
solutions are expected only close to the SRT. We found that
the magnetization profile maintains the sinusoidal shape as the
anisotropy increases. Above certain value of Z the wall profile
changes to a hyperbolic tangent shape, while the magnetization
inside the domains becomes fully saturated.

For d46 the ground state is given by the Saturated State,
except very close to the SRT. A similar effect (i.e. a crossover
between a sinusoidal and a saturated magnetization profile) has
been observed in room temperature grown fcc Fe/Cu(1 0 0)
ultrathin films, as the temperature decreases from Tc, even though
those systems do not present SRT [33].

In the Saturated state, the stripe width increase with Z is
directly related to the wall width decrease through the relation
h� ed=2lw . The wall width in turn is determined by the competition
between exchange and anisotropy. Once the anisotropy is large
enough that the wall width reaches the atomic limit, h growth
stops. One may wonder whether a similar mechanism could be
behind the stripe width variation with temperature, where a
saturation is observed at low temperatures. Nevertheless, in this
case other effects, like extremely slow relaxation can be
responsible for the observed saturation.

Besides its direct application to real systems, knowing the
ground state of this system for arbitrary values of the exchange
coupling is of fundamental importance to have a correct
interpretation of Monte Carlo simulation results. Being one of
the most powerful tools to analyze these kind of systems at the
present (specially at finite temperatures), it is basically limited by
finite size restrictions, which implies relatively small values of d
(the characteristic length h of the problem grows exponentially
with d at low temperatures).
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Appendix A. Zero temperature Monte Carlo technique for
striped domain patterns

In order to have an independent computation of the striped
profiles which minimize the energy, we implemented Monte
Carlo simulation with a simulated annealing protocol and
Metropolis algorithm. To compare against the analytical solutions
we looked for minimum energy magnetization profiles among
those characterized by periodic straight domains with Bloch
walls. Hence, the problem is basically one dimensional and we
could restrict the search to one dimensional patterns over the x

direction fixing Sx
i ¼ 0 8i and imposing periodic boundary condi-

tions (PBC) in both the x and y directions. In other words, we
simulated a lattice with Lx � Ly with Ly¼1 and PBC, which are
implemented by means of the Ewald sums technique.

Fig. 4. Comparison of the T¼0 stripe width h vs. Z obtained within the different

methods for d¼ 10. Symbols correspond to MC simulations. Full black line

corresponds to the asymptotic approximation for the HWP given by Eqs. (13) and

(14). The red dashed line corresponds to the variational solution of Eqs. (9) and

(10) using the approximation (11) for the Fourier coefficients in the dipolar energy.

The blue dotted line corresponds to the continuous SWP. The vertical dashed line

corresponds to the transition between Saturated and Ising Stripes states given by

Eq. (19). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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The temperature was then decreased down to very low
temperatures at a constant rate T(t)¼T0�rt, where time is
measured in Monte Carlo Steps, T0 is the initial temperature and
r is the cooling rate. For all the range of parameters of this work,
we chose T0¼1 and r¼10�4 and the simulation protocol was
repeated 100 times using different sequences of random numbers
in order to minimize the possibility of trapping in local minima.
The results were independent of the initial spin configuration we
choose at T0. For every set of values of ðd,ZÞwe checked the results
for different values of Lx in order to avoid artificial frustration.
We also performed some comparisons with MC results in a square
Lx¼Ly lattice with PBC using the same annealing protocol and the
results were indistinguishable. This ansatz allowed us to obtain
MC results for values of d up to d¼ 10 (for which the maximum
equilibrium value is h¼140).
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