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Here we provide the details of the RSRG calculations presented in the manuscript.

I. RSRG METHOD

Consider the Kadanoff blocks of size Nb = b2 = 4 shown in Fig. S1.

Lopez et al, Supplementary figure S1: Kadanoff blocks of size b = 2 for the square lattice.

Let’s denote by S′I the block spin associated to the block I and sI the set of lattice spins belonging

to the block I: sI ≡ {si} with i ∈ I. Let’s also denote by S′ and s the complete sets of block

and lattice spins respectively. We can express H = H0 + V, where H0 =
∑

I HI(sI) contains all the

interactions between spins belonging to the block I and V all the interblock interactions. Introducing an

RG projection matrix P (S′, s) =
∏

I PI(S′I , sI), an average of an arbitrary function X(S′, s) as

〈X〉0 (S′) ≡ 1
Z0

∑
s

P (S′, s)eH0(s)X(S′, s) (1)

where Z0 =
∏

I ZI
0 with

ZI
0 (SI) =

∑
sI

PI(S′I , sI)eHI(sI)
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The simplest RG approach within Niemeijer and van Leeuwen1 scheme consist into the identification

H′(S′) + C = ln Z0 + 〈V 〉0 , (2)

where H′(S′) is the block Hamiltonian and C is a spin-independent constant. This uncontrolled approxi-

mation results from the truncation to the first-order cumulant1 of 〈exp(V )〉0. Using then of the double

majority rule RG projection matrix PI(S′I , sI) introduced by Berker and Wortis for the pure isotropic

Blume-Emery-Griffiths (BEG) model2, it is easy to see that 〈SiI〉0 = a1 S′I ,
〈
S2

iI

〉
0

= a2 S′2I + a3, and

ln ZI
0 = a4S

′2
I + a5, where

a1 = 〈SiI〉0|S′I=1
(3)

a2 =
〈
S2

iI

〉
0

∣∣
S′I=1

− 〈
S2

iI

〉
0

∣∣
S′I=0

(4)

a3 =
〈
S2

iI

〉
0

∣∣
S′I=0

(5)

a4 = ln ZI
0

∣∣
S′I=1

− ln ZI
0

∣∣
S′I=0

(6)

a5 = ln ZI
0

∣∣
S′I=0

. (7)

Applying this scheme to the Hamiltonian

HRG = h
∑

i

S2
i +

∑

<i,j>

[
LSiSi + M S2

i S2
j + U (S2

i Sj + S2
j Si) (ŷ.~rij − x̂.~rij)

]
, (8)

we obtain the closed RG recursion relations

L′ = 2L a2
1 (9)

M ′ = 2M a2
2 (10)

U ′ = 2U a1a2 (11)

h′ = 8M a2 a3 + a4, (12)

together with

g = C/N = (M a2
3 + a5/4). (13)
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Defining

B1(L,M, U, h) = ZI
0

∣∣
S′I=0

B2(L,M, U, h) = ZI
0

∣∣
S′I=1

we obtain

a3 =
2 eh + 2 e2h + 2 e2h+M−L + 2 e2h+M+L cosh(2U)

B1(L,M, U, h)

a4 = ln
B2(L,M, U, h)
B1(L,M, U, h)

a5 = lnB1(L,M,U, h)

and

a1 =
1

B2(L,M, U, h)

[
1
2

e2h + 2 e4(h+M) + e3h+2(M−L) + 3 e3h+2(M+L) + e4(h+M+L)+

+ e2h+M+L cosh(2U) + 2 e3h+2M cosh(2U)
]

a2 =
1

B2(L,M, U, h)

[
e2h + 6 e4(M+h) + e2h+M−L + 6 e3h+2M cosh(2L) + 2 e4(M+h) cosh(4L)+

+ e2h+M+L cosh(2U) + 6 e2M+3h cosh(2U)
]− a3(L,M, U, h)

a3 =
2 eh + 2 e2h + 2 e2h+M−L + 2 e2h+M+L cosh(2U)

B1(L,M,U, h)

B1 = 1 + 8 eh + 4 e2h + 4 e2h+M−L + 4 e2h+M+L cosh(2U)

B2 = 2 e2h + 6 e4(M+h) + 2 e2h+M−L + 8 e3h+2M cosh(2L) + 2 e4(M+h) cosh(4L) +

+ 2 e2h+M+L cosh(2U) + 8 e3h+2M cosh(2U).

II. RSRG FLOW AND FIXED POINTS STRUCTURE

We found that all the relevant fixed points of the recursion equations lie in the BEG subspace U = 0.

The RG flow and the fixed points structure in the U = 0 subspace is qualitatively similar to that obtained

in Ref. [2], including first and second-order surfaces, as well as tricritical and critical endpoint lines2.
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We focused only on those fixed points relevant to the present problem namely, those which govern the

RG flow starting from the subspace (L, M, U, h) = (K/4,K/4,K/4, h), with K ≡ βw. The whole flow

starting from that subspace is attracted by two subspaces invariant under RG: L = M = U = 0 and

(M, h) = (0,+∞).

A. Flow in the L = M = U = 0 subspace

The recursion relations in this case reduce to h′ = a4(0, 0, 0, h). This RG equation presents three fixed

points: two attractors at h = ±∞, which are the loci of the high (h = ∞) and low (h = −∞) density

isotropic phases respectively and one unstable high temperature fixed point at h = − ln 2. The first two

fixed points are attractors in the complete (L,M,U, h) space and we will call them I+ and I−. They

represent the high (
〈
S2

i

〉 ≈ 1) and the low (
〈
S2

i

〉 ¿ 1) density isotropic phases respectively. The fixed

point T1 ≡ (0, 0, 0,− ln 2) is the locus of a surface in the (L,M, U, h) space that corresponds to a smooth

continuation at high temperatures between both phases.

B. Flow in the (M, h) = (0, +∞) subspace

This subspace corresponds to an anisotropic Ising model, since in this limit the Si = 0 state has zero

probability. The recursion relations reduce in this case to

L′ = 2Ld(L)2 (14)

U ′ = Ud(L) (15)

with

d(L) = lim
h→∞

a1(L, 0, U, h) =
2 + e4L

6 + 2 cosh(4L)
. (16)

Since L′ = L′(L), independently of the parameter U , the whole flow is governed by the RG equation

corresponding to the isotropic Ising model. This equation has a non trivial fixed point at d(L) = 1/
√

2,

whose solution is Lc = 1
4 ln

[
1 + 2

√
2 +

√
10 + 5

√
2

]
≈ 0.518612, corresponding to the critical point of
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the Ising model in the square lattice under the present approximation (compare with exact Onsager result

Lc = 1
2 ln(1 +

√
2) ≈ 0.44069). We will call this fixed point C1. The critical exponent ν is given by

ν =
ln b

ln λ
λ =

∂L′

∂L

∣∣∣∣
Lc

.

We obtain ν = 1.0013..., in excellent agreement with the exact result ν = 1. The RG recursion equation

also has two attractors: I+ (L = 0) and the isotropic ferromagnetic fixed point L = ∞ (T = 0). At

L = Lc we have another invariant line at the (L,U) space, whose RG equation is U ′ = U ′/
√

2. This

recursion relation has only trivial fixed points: one attractor at U = 0 and one unstable at U = +∞.

The line L = 0 is also invariant and have the same fixed points. Finally, we have that limL→∞ d(L) = 1

Hence, U ′ = U and the whole line L = +∞ is a line of fixed points. This is the locus of the ferromagnetic

phase in the whole (L,M, U, h) space and we will call it the N attractor. In Fig. S2 we show the flow

diagram in the complete (U,L) space.

Lopez et al, Supplementary figure S2: RG flow in the (L, 0, U, +∞) invariant subspace.

III. RSRG COVERAGE CALCULATION

The coverage can be expressed as

θ(K,h) = −β
∂f(K,h)

∂h
. (17)
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Let ~K ≡ (L,M, U, h) be the parameters vector of Hamiltonian (8). From the renormalization group

transformation we have the following relation after n applications of the RG transformation1

f( ~K0) = − 1
β

n∑
m=0

b−mdg( ~Km) + b−ndf( ~Kn), (18)

where ~Km is the parameters vector after m applications of the RG transformation, ~K0 is the initial value

and g( ~K) = C/N is given by Eq. (13). Since θ is not singular at the critical line, we can assume that

the singular part of the free energy will make no contribution to Eq. (18) and therefore the derivative of

the second term in the right hand of the previous expression vanishes when n → ∞. Therefore, we can

express

θ(K, h) =
∂

∂h

[ ∞∑
m=0

b−mdg( ~Km)

]

~K0=(K/4,K/4,K,4,h)

. (19)

Computing numerically the above sum and taking the numerical derivative we obtain the critical line T ∗

vs. θ shown in Fig. 8 of the manuscript.

1 T. Niemeijer and J. M. J. van Leeuwen, Phase Transition and Critical Phenomena, 6, C. Domb and M. S.

Green (eds.) (Springer-Verlag, New York, 1982).
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