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Phase diagram of self-assembled rigid rods on two-dimensional lattices:
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Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical
behavior in a two-dimensional system of particles with two bonding sites that, by decreasing
temperature or increasing density, polymerize reversibly into chains with discrete orientational
degrees of freedom and, at the same time, undergo a continuous isotropic-nematic (IN) transition.
A complete phase diagram was obtained as a function of temperature and density. The numerical
results were compared with mean field (MF) and real space renormalization group (RSRG)
analytical predictions about the IN transformation. While the RSRG approach supports the
continuous nature of the transition, the MF solution predicts a first-order transition line and a
tricritical point, at variance with the simulation results. © 2010 American Institute of Physics.

[doi:10.1063/1.3496482]

I. INTRODUCTION

Molecular self-assembly is one of the basic mechanisms
of life and matter, and thus, modeling and measurements of
naturally occurring self-assembling systems have long been
pursued in the biological and physical sciences.'? Despite
the large number of papers that are currently reported, many
of the ideas that are crucial to the development of this area
(molecular shape, interplay between enthalpy and entropy,
nature of the forces that connect the particles in self-
assembled molecular aggregates) are simply not yet under
the control of investigators.

Self-assembly also poses a number of substantial tech-
nological challenges.3_13 In fact, the biological systems use
self-assembly to assemble macromolecules and structures.
Imitating these strategies and creating novel molecules with
the ability to self-assemble into supramolecular assemblies is
an important technique in nanotechnology. There is then a
need for understanding the basic principles governing this
type of organization.

It is obvious that a complete analysis of the self-
assembly phenomenon is quite a difficult subject because of
the complexity of the involved microscopic mechanisms. For
this reason, the understanding of simple models with increas-
ing complexity might be of help and a guide to establish a
general framework for the study of this kind of systems, and
to stimulate the development of more sophisticated models
which can be able to reproduce concrete experimental situa-
tions.

Computer simulations have shown that spherical par-
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ticles interacting isotropically through repulsive interparticle
interactions can spontaneously assemble into anisotropic
structures.'*”'® The presence of an isotropic short ranged in-
terparticle attraction coupled to a longer ranged repulsion
can also yield anisotropic structures. However, most real
components, from proteins to ions'” to the wide variety of
recently synthesized nanoparticles,g’9 interact via anisotropic
or “patchy” attractions. Simulation work'®?? reveals assem-
bly pathways of such components to be in general richer than
those of their isotropic counterparts. Experimental realization
of such systems is growing. An example of real patchy par-
ticles is presented in Ref. 23. Such particles offer the possi-
bility to be used as building blocks of specifically designed
self-assembled structures. 3>+ Moreover, the implications
of patchy colloids for proteins,21 which are patchy by nature,
could be significant.

In this line, we consider in this paper the general prob-
lem of particles with strongly anisotropic, highly directional
interactions in which effectively attractive patches induce the
reversible self-assembly of particles into chains, i.e., equilib-
rium polymerization.%_32 Recently, several research groups
reported on the assembly of colloidal particles in linear
chains. Selectively functionalizing the ends of hydrophilic
nanorods with hydrophobic polymers, Nie et al.® reported
the observation of rings, bundles, chains, and bundled
chains. In another experimental study carried out by Chang
et al.* gold nanorods were assembled into linear chains
using a biomolecular recognition system. In a direct relation
with the present work, Clair et al investigated the self-
assembly of terephthalic acid (TPA) molecules on the
Au(111) surface. Using scanning tunneling microscopy, the
authors showed that the TPA molecules arrange in one-
dimensional chains with a discrete number of orientations
relative to the substrate.
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It is well known that solutions of self-assembled chains
exhibit a transition from a disordered isotropic phase to an
ordered nematic phase as the concentration of particles in-
creases. Experimental examples of equilibrium polymer sys-
tems that exhibit a isotropic-nematic (IN) phase transition
include wormlike micelles®® and self-assembled protein fi-
bers such as f—actin.37’38 In this context, a recent paper was
devoted to the study of a system of self-assembled rigid rods
adsorbed on a two-dimensional lattice.”” In Ref. 27, Tavares
et al. studied a system composed of monomers with two
attractive (sticky) poles that polymerize reversibly into poly-
disperse chains and, at the same time, undergo a IN continu-
ous phase transition.”” So, the interplay between the self-
assembly process and the nematic ordering is a distinctive
characteristic of these systems. Using an approach in the
spirit of the Zwanzig model,* the authors found that nematic
ordering enhances bonding. In addition, the average rod
length was described quantitatively in both phases, while the
location of the ordering transition, which was found to be
continuous, was predicted semiquantitatively by the theory.
With respect to the characteristics of the phase transition, it
has recently been shown that, at intermediate density, the IN
transition is in the g=1 Potts universality class.”

The temperature-coverage phase diagram obtained in
Ref. 27 is qualitative only, and the theory overestimates the
critical temperature in all ranges of coverage. In addition, the
possibility of a reentrant nematic transition at high
densities*® was not investigated by Tavares et al. Accord-
ingly, the main objective of the present work is to provide an
accurate determination of the phase diagram of the system.
For this purpose, extensive Monte Carlo (MC) simulations,
supplemented by finite-size scaling analysis and two analyti-
cal approximations, have been carried out to obtain the criti-
cal temperature characterizing the IN phase as a function of
the coverage. The paper is organized as follows. In Sec. II
we describe the lattice-gas model. The simulation scheme
and computational results are given in Sec. III. In Sec. IV we
present the analytical approximations [mean-field (MF) ap-
proximation and real space renormalization group (RSRG)
approach] and compare the MC results with the theoretical
calculations. Finally, the general conclusions are drawn in
Sec. V.

Il. LATTICE-GAS MODEL

As in Refs. 27 and 29, we consider a system of self-
assembled rods with a discrete number of orientations in two
dimensions. We assume that the substrate is represented by a
square lattice of M=LXL adsorption sites, with periodic
boundary conditions. N particles are adsorbed on the sub-
strate with two possible orientations along the principal axis
of the square lattice. These particles interact with nearest-
neighbors (NN) through anisotropic attractive interactions
(see Fig. 1). Then, the adsorbed phase is characterized by the
Hamiltonian
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FIG. 1. Schematic representation of a system of self-assembled rigid rods on
a square lattice.

H=-w2, |7 |7y 7. (1)
(i)

where (i,;) indicates a sum over NN sites; w represents the
NN lateral interaction between two neighboring i and j,
which are aligned with each other and with the intermolecu-
lar vector 7;; and d; is the occupation vector with ;=0 if the
site ¢ is empty, d,=x if the site i is occupied by a particle
with orientation along the x-axis, and g;=y if the site i is
occupied by a particle with orientation along the y-axis.

A cluster or uninterrupted sequence of bonded particles
is a self-assembled rod. At fixed temperature, the average rod
length increases as the density increases and the polydisperse
rods will undergo an nematic ordering transition.”’

Since each site state is characterized by a three-state
variable, we can rewrite Hamiltonian (1) in terms of new
variables S;=0, =1, where S;*1 represents the vertical
(,=y) and the horizontal (¢;=x) orientations, while S,=0
represents the empty state. Then, Hamiltonian (1) reads

W A -
H=- ZE SSLS+ DS+ D . 7))
(i)

+(S; = D(S; = D(E. 7]

== (S +S)(S2+S)( . Fy)
4 '
+(S7 = S)(S; = S)(E . 7). 2)

This Hamiltonian has the same energy spectrum as Eq. (1).
Notice that the transformation S;— —S; is not a symmetry of
the Hamiltonian (2), since it is equivalent to a 90° rotation of
the lattice, but it is a symmetry of the system, since it left the
partition function unchanged. The total number of adsorbed
particles can be written as

N=ES?. (3)

When N=M, we have Sl-2=l and the Hamiltonian (2)
results to
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w

H({S}) =~ ZE [1 +5;8;+ (Si"‘sj)()3 . Fz‘j—f- 71])] (4)

(i.j)

The last sum in Eq. (4) vanishes and therefore
H,:—%E<i’j>SiSj+constant. Hence, in that limit the present
model reduces to the Ising one with coupling constant
wising=yy /4,

lll. MC SIMULATIONS
A. MC method

We have used a standard importance sampling MC
method in the canonical ensemble’’ and finite-size scaling
techniques.48 The procedure is as follows. Starting with a
random initial configuration (sites occupied with concentra-
tion #=N/M and particle axis orientation chosen with prob-
ability 1/2), successive configurations are generated by at-
tempting to move single particles (monomers). One of the
two (translation or rotation) moves is chosen at random. In a
translation move, an occupied site and an empty site are
randomly selected and their coordinates are established.
Then, an attempt is made to interchange its occupancy state
with probability given by the Metropolis rule:*
P=min{l,exp(-BAH)}, where AH is the difference between
the Hamiltonians of the final and initial states and g
=1/kgT (being ky the Boltzmann constant). For a rotation
move, the rotational state of the chosen particle (horizontal
or vertical) is changed with a probability determined by Me-
tropolis criteria.

A Monte Carlo step (MCS) is achieved when 6X M sites
have been tested to change its occupancy state. Typically, the
equilibrium state can be well reproduced after discarding the
first 5X 10° MCS. Then, the next 6 X 103 MCS are used to
compute averages. All calculations were carried out using the
parallel cluster BACO of Universidad Nacional de San Luis,
Argentina. This facility consists of 60 personal computers
(PCs) each with a 3.0 GHz Pentium-4 processor and 90 PCs
each with a 2.4 GHz intel Core 2 Quad processor.

In order to follow the formation of the nematic phase
from the isotropic phase, we use the order parameter defined
in Ref. 29

S= |Nv_Nh|’ (6)

N,+ N,
where N,(N,) is the number of monomers aligned along the
horizontal (vertical) direction (N=N,+N,)).

In our MC simulations, we set the density 6, varied the
temperature 7, and monitored the order parameter 6, which
can be calculated as simple averages. The reduced fourth-
order cumulant U; introduced by Binder"” was calculated as

(8%

UL(T)=1_W5

()

where the thermal average (...), in all the quantities, means
the time average throughout the MC simulation.
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FIG. 2. Size dependence of the order parameter as a function of temperature
for #=0.525 and 6=1 (inset).

B. Computational results

The critical behavior of the present model has been in-
vestigated by means of the computational scheme described
in the previous section and finite-size scaling analysis.47’48

We start with the calculation of the order parameter plot-
ted versus the reduced temperature T"=kzT/w for several
lattice sizes (L=60, 80, 100, and 120) and two values of
coverage [6=0.525" Fig. 2 and 0=1, inset of Fig. 2]. As it
can be observed, & appears as a proper order parameter to

0.66 -
0=0.525 o -6
o L=80
U*=0.639(5) & L=100
T* =0.250(2) L=120
0634 "« \
0.24 028 T* 032
L
0.60
057
0.66
6=1.0
Ur=0.611(1)
T* =05672) ©
0.60 T*
0.56 0.58 0.60
554 0 (b)

T T
0.564 T* 0.568 0.572

FIG. 3. Curves of U, vs T* for 6=0.525 (a) and =1 (b). From their
intersections one obtained Tf In the insets, the data are plotted over a wider
range of temperatures.
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FIG. 4. (a) Phase diagram of the model: our simulation data (squares and line) and additional points (circles) obtained from MC simulation, carried out by
Tavares et al. (Ref. 27). (b) Schematic representation of the low-density nematic phase (point A in the figure). (c) Same as (b) for the intermediate-density
disordered phase (point B in the figure). (d) Same as (b) for the high-density nematic phase (point C in the figure).

elucidate the phase transition. When the system is disordered
(I">T,, being T, the critical temperature), all orientations
are equivalents and & is zero. In the critical regime
(T*<T,), the particles align along one direction and & are
different from zero.

Hereafter we discuss the behavior of the critical tem-
perature as a function of coverage. The standard theory of
finite-size scaling allows for various efficient routes to esti-
mate 7, from MC data.*”*® One of these methods, which will
be used in this case, is from the temperature dependence of
U, (T"), which is independent of the system size for T"=T.
In other words, 7. can be found from the intersection of the
curve U, (T¥) for different values of L, since U'=U/(T})
=const. As an example, Fig. 3 shows the reduced fourth-
order cumulant U, plotted versus T* for the cases studied in
Fig. 2. The values obtained for the critical temperature were
T:=0.250(2) (corresponding to #=0.525) and 7.=0.567(2)
(corresponding to #=1). The procedure was repeated for
ranging between 0 and 1. The results, which are collected in
Fig. 4(a), represent the temperature-coverage phase diagram
of the system. The critical line (squares and line in the figure)

separates regions of isotropic and nematic stability. The
different phases are shown schematically in parts (b)—(d) of
Fig. 4.

With respect to the numerical results obtained by
Tavares et al. at =0.2 and 6=0.4 [denoted with solid circles
in Fig. 4(a)], the agreement with the present data is very
good.

As it is well-known, the behavior of the reduced fourth-
order cumulant as a function of temperature not only pro-
vides an accurate estimation of the critical temperature 7, in
the infinite system, but also allows to make a preliminary
identification of the order and universality class of the phase
transition occurring in the system.47 In the case of Fig. 3, and
as it is shown in the insets, the curves exhibit the typical
behavior of the cumulants in the presence of a continuous
phase transition. Namely, the order parameter cumulant
shows a smooth drop from 2/3 to 0, instead of a characteris-
tic deep (negative) minimum, as in a first-order phase
transition.*’

With respect to the value of the intersection point U*,
two different behaviors can be visualized from Fig. 3.
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FIG. 5. Nematic order parameter & as a function of the coverage. The data
correspond to 7%=0.25 and L=100.

On one hand, at 6=0.525, the value obtained for U"
(U*=0.639(5)) is consistent with the g=1 Potts universality
class® observed in Ref. 29, where the system was studied at
a fixed temperature (7%=0.25). On the other hand, and as it is
expected for 6=1, the fixed value of the cumulants,
U*=0.611(1), is consistent with the extremely precise trans-
fer matrix calculation of U*=0.610 690 1(5) for the two-
dimensional (2D) Ising model.>* Even though the value of
U* may be taken as a first indication of universality, a de-
tailed calculation of critical exponents is required for an ac-
curate determination of the universality class along the criti-
cal line in Fig. 4(a), and this will be subject of future
research.

Finally, Fig. 5 shows the nematic order parameter & as a
function of the coverage. The data correspond to T7=0.25
and L=100." As the density is increased above a critical
value, the particles align along one direction and & increases
continuously to one, remaining constant up to full coverage.
In other words, nematic order survives until #=1. This find-
ing (1) allows us to discard the existence of a reentrant nem-
atic transition at high densities as speculated in Ref. 27 and
(2) indicates a substantial difference between the present sys-
tem and that of monodisperse rigid rods without self-
assembly, where a second nematic to isotropic phase transi-
tion is observed at high densities.**>*

IV. ANALYTICAL APPROXIMATIONS AND
COMPARISON BETWEEN SIMULATED AND
THEORETICAL RESULTS

In this section we calculate the phase diagram within
mean field and real space renormalization group approaches.
Let

f=- MLﬂln[Tr e‘ﬁH’] (8)

the grand canonical free energy, where H' =H—uN; H and N
are given by Egs. (2) and (3) and u is the chemical potential.
The orientational order parameter and coverage are then
given by

J. Chem. Phys. 133, 134706 (2010)

1
=—> (S 9
M;( i) 9)

and

1
0=—2,(S}, 10
M;( i) (10)
respectively, where (--+) means here a grand canonical en-

semble average.

A. MF approximation

To obtain a MF free energy @ for this problem we use
the variational method,” based on Bogoliubov inequality

1
f= = for o (H = Hp, (1)

where H|) is a trial Hamiltonian containing variational pa-
rameters and

1 '
=— —1In[Tr ¢ PH0].
Jo MB [Tre ]
‘We choose
H(,)=—7725i—,“~25i2’

where 7 is an effective field that breaks the orientational
symmetry. Then

(7)) = no- g(az + ) - /lgln{l +2¢P% cosh(Bn)},

(12)
where
B ~ 2¢P* sinh(B7)
6=(Spo= 1 + 2¢P* cosh(B7) "
and
B
b= (2= —= T "

1 +2¢P* cosh(B7)

Minimizing Eq. (12) we obtain the self-consistent equation

0(1—0)}
-5 |

n= w5[ 1+ (15)
We see that the isotropic state 7=0 (6=0) is a solution of Eq.
(15). At low temperatures Eq. (15) also presents ordered
(nematic) solutions 7# 0. Making a Landau expansion of
Eq. (15) we obtain the following results:

e There is a tricritical point at 7;=3/4 and Mt:—%wln 2,
where a,=a4=0 and as>0. The coverage at this point
is 6,=1/2.

e When p>pu, there is a second-order transition line
(a,=0, a;>0) at
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_L B
MC(T)_ﬂlnL(\/Bw_l 1)} (16)

Along the critical line we have T.=6(2-6). When
pm— we have #— 1 and T"— 1. Moreover, from Egs.
(13) and (15) we obtain in this limit d=tanh(BwJ), i.e.,
the mean field equation for an Ising model, as expected.

e When u<-w only the isotropic solution remains. It is
easy to see that there is a level crossing at 7°=0 be-
tween the empty state 6=7=0 and the completely or-
dered one 6=7n=1.

* When —w<<u<u, we have a first-order transition line
(a4 <0 and a4>0) which can be calculated numerically
by a Maxwell construction.

In Fig. 6 we show the MF phase diagram at the (u,T™)
space, which is qualitatively similar to that of the isotropic
Blume-Emery—Griffiths (BEG) model.”® The corresponding
phase diagram in (6,T%) space presents a coexistence region
between a low-coverage isotropic phase and a high-coverage
nematic one at low temperatures. The presence of this coex-
istence region (first-order phase transition) is completely at
variance with the observed numerical simulation results.

B. RSRG approach

In order to obtain a more accurate analytical prediction
for the phase diagram we apply the RSRG scheme intro-
duced by Niemeijer and van Leeuwen,”’ using four spin
Kadanoff blocks and a double majority rule RG projection
matrix. The details of the RSRG implementation are given in
the supplementary material.”® The application of a truncation
scheme allowed us to restrict the proliferation of interactions.
Under this framework, closed recursion RG relations can be
obtained for the more general Hamiltonian compatible with
the basic symmetry of the system, namely, a 90° rotation of
the lattice when S;— —S§;, that is

Hrg=h> S+ 2 [LS;S;+ MS;S: + U(S;S; + S38))
i (ij) ‘ ‘

X(§. 7= % 7)1, (17)
where H =-BH and h= Bu. For U=0 the Hamiltonian (17)
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FIG. 7. RG phase diagram in the (K,%) space. The black continuous line is
attracted by the fixed point C; and therefore corresponds to a second order
critical one. The gray dashed line is attracted by the fixed point 7| and
corresponds to a smooth continuation between the high and low density
isotropic phases. The inset shows the corresponding phase diagram in the
(w/w,T)=(h/K,1/K) space.

corresponds to the BEG model.”® For L=M=U= Bw/4 we
recover the model (2).

The RG flow starting from the subspace (L,M,U,h)
=(K/4,K/4,K/4,h), with K= Bw, is governed by the fol-
lowing fixed points. (i) Two attractors at I..=(0,0,0, * o).
They represent the high ((S?)zl) and the low ((S?><1)
density isotropic phases, respectively. (ii) One semiunstable
fixed point 7;=(0,0,0,-In 2). It is the locus of a surface in
the (L,M,U,h) space that corresponds to a smooth continu-
ation at high temperatures between both phases. (iii) A line
of attractive fixed points at (+o0,0,0,+). It is the locus of
the ferromagnetic phase in the whole (L,M,U,h) space and
we call it the N attractor. (iv) One nontrivial fixed point
Ci=(L,0,0,4+0)  with  L.=1In[14212+110+512]
~(0.518 612. It is the locus of a critical surface and corre-
sponds to the critical point of the Ising model in the square
lattice under the present approximation. The associated criti-
cal exponent results v=1.0013..., in excellent agreement
with the exact result v=1. The details of this analysis are
given in the supplementary material.”®

The phase diagram in the (K,h) space, obtained from the
RG flow starting with (L,M,U,h)=(K/4,K/4,K/4,h), is
shown in Fig. 7. We found a single critical line separating the
nematic and isotropic phases (black continuous line in Fig.
7), which is in the basin of attraction of the fixed point C;.
The nematic phase is in the basin of attraction of N, while the
isotropic phase is attracted either by /, or by /_. Points along
the gray dashed line in Fig. 7 are attracted by the trivial fixed
point T, thus corresponding to a smooth continuation from
low to high density isotropic phases, without phase transi-
tion. This line converges asymptotically to the critical line
when h— —. Therefore, according to the present RG pre-
diction the transition is second order for any finite tempera-
ture and it is in the universality class of the Ising model. The
corresponding phase diagram in the (u/w,T")=(h/K,1/K)
space is shown in the inset of Fig. 7.

Finally, to calculate the phase diagram in the (6,T)
space we computed numerically the coverage 6(h) along the
critical line K=K (h) of Fig. 7. The results are presented in
Fig. 8 and the details of the calculation are given in the
supplementary material.>®
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FIG. 8. Comparison between numerical and theoretical estimates of the
phase diagram in the (6,7) phase diagram.

C. Comparison between theoretical and simulated
results

In Fig. 8 we compare the critical lines obtained by MC
(open squares joined by lines) and RSRG (solid circles), to-
gether with the analytical approximation developed by
Tavares et al.”’ (solid line). While qualitatively similar to the
MC result, we see that the present RSRG approximation sys-
tematically underestimates the critical temperature. Concern-
ing the comparison with Tavares et al.”" results, quantitative
and qualitative differences have been found between the ana-
lytical and the simulation data. In fact, the theory overesti-
mates the critical temperature in all range of coverage, con-
firming the predictions in Ref. 27. For small values of 6,
small differences appear between simulation and theoretical
results; however, the disagreement turns out to be signifi-
cantly large for larger 's.

In the particular case of =1, the Tavares et al. theory
predicts a critical temperature of T.=[In(3/2)]'~2.466,
whereas the value calculated by MC simulations is T,
=0.567(2). These results can be compared with the exact
value of the critical temperature at full coverage
T:=—[2 In(\2-1)]"'=0.567, (see Sec. II). This result is
consistent with that calculated by MC simulations, which
reinforces the robustness of the present computational
scheme.

V. CONCLUSIONS

In summary, we have addressed the temperature-
coverage phase diagram of self-assembled rigid rods on
square lattices. By using MC simulations, MF theory, and a
renormalization group approach, we obtained and character-
ized the critical line which separates regions of isotropic and
nematic stability. Several conclusions can be drawn from the
present results.

First, a simulation test of the theory developed by
Tavares et al.”’ was carried out. The results showed that the
theory overestimates the critical temperature in all range of
coverage, confirming the predictions in Ref. 27. For small
values of 6, small differences appear between simulation and
theoretical results; however, the disagreement turns out to be

J. Chem. Phys. 133, 134706 (2010)

significantly large for larger €’s. On the other hand, the
RSRG approach reproduces qualitatively the shape of the
critical line, but systematically underestimates the critical
temperature. Concerning this last calculation, the main pre-
diction is that the critical properties of the whole line are
associated to a unique second-order fixed point, confirming
the continuous nature of the transition. However, it must be
pointed out that it predicts that the whole line is in the uni-
versality class of the d=2 ferromagnetic Ising model, at vari-
ance with MC numerical calculations predicting that the
transition at #=1/2 belongs to the g=1 Potts universality
class.”’ While the present RSRG results are not conclusive,
due to the approximate character of the approach, they indi-
cate that further research is required to clarify this point.

On the other hand, the behavior of the order parameter
allowed to discard the existence of a reentrant nematic tran-
sition at high densities as speculated in Ref. 27. This finding
indicates a substantial difference between the present system
and that of monodisperse rigid rods without self-assembly,
where a second nematic to isotropic phase transition is ob-
served at high densities.**>*

Concerning the MF results, the prediction of a first-order
transition line and a tricritical point is not surprising due to
the close relationship between the present model and the
BEG one, as evidenced by the Eq. (2). Indeed, the general-
ized form (17) contains both first-order and tricritical fixed
points, but the RSRG results show that in d=2 the aniso-
tropic character of the interactions drive the RG flow of the
present system outside their basins of attraction. However, in
three dimensional systems the IN transition is usually
first-order.*” On the other hand, from the exact mapping into
the isotropic Ising model at full coverage one could expect a
second-order transition for high values of the coverage, even
in three dimensions. Hence, the MF prediction of a tricritical
point is probably correct for d>?2.
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