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Inverse transition in a two-dimensional dipolar frustrated ferromagnet
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We show that the mean-field phase diagram of the dipolar frustrated ferromagnet in an external field presents
an inverse transition in the field-temperature plane. The presence of this type of transition has recently been
observed experimentally in ultrathin films of Fe/Cu(001). We study a coarse-grained model Hamiltonian in
two dimensions. The model supports stripe and bubble equilibrium phases, as well as the uniform phase. At
variance with common expectations, already in a single-mode approximation, the model shows a sequence of
uniform-bubbles-stripes-uniform phase transitions upon lowering the temperature at a fixed external field. Going
beyond the single-mode approximation leads to the shrinking of the bubbles phase, which is restricted to a small
region near the zero-field critical temperature. Monte Carlo simulations results with a Heisenberg model are
consistent with the mean-field results.
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I. INTRODUCTION

It is well known that dipolar forces in ferromagnetic systems
favor the appearance of domain structures.1 In particular, in
thin ferromagnetic films with uniaxial out-of-plane anisotropy
two kind of patterns are usually observed: stripes and
bubbles.2–4 Stripes are the stable structures at low temperatures
in the absence of external fields.5,6 When an external magnetic
field is present, a bubble phase may appear in the field-
temperature phase diagram.7 Regarding the h − T mean-field
phase diagram, Garel and Doniach7 using a single-mode
approximation obtained that, as the external field is increased,
a sequence of stripes-bubbles-uniform phases successively
have the lower free energy below the critical temperature.
Furthermore, the transition lines stripes-bubbles and bubbles-
uniform decay monotonically with growing temperature, until
both meet at a critical point8 Tc at h = 0. This behavior was
partially confirmed by simulations of a dipolar lattice gas.9,10

Moreover, recent Monte Carlo simulations in the dipolar Ising
model11 also support this scenario, at variance with previous
simulations.12 Interestingly, this seemingly established pic-
ture of the mean-field phase diagram was recently put in
question, both from experimental results on ultrathin films
of Fe/Cu(001)4,13 and also from a theoretical point of view.14

The experiments on Fe/Cu(001) show convincingly an inverse
transition sequence uniform-modulated-uniform when cycling
in temperature at a fixed external applied field. In a recent work,
Portmann et al.14 addressed the question about the origin of
this inverse symmetry-breaking transition in the context of
a scaling hypothesis proposed by the authors. The critical
field line hc(T ), which separates the modulated from the
uniform phases, is a consequence of the balance between the
dipolar energy, which favors the presence of domains, and
the external field energy, which favors a uniform state. Within
the proposed scaling form for the energies, this immediately
implies that hc ∝ M(T )/λ(T ), where M(T ) and λ(T ) are the
saturation magnetization inside a domain and the modulation
length at zero field, respectively. As the temperature grows,
the magnetization is first nearly constant while the modulation

length strongly diminishes, but on approaching the critical
temperature M decreases faster than λ. Then the critical field
line hc(T ) first grows, passes through a maximum, and finally
decays to zero at Tc. This means that the phase diagram has a
domelike shape, instead of the monotonic behavior predicted
by the Garel and Doniach work.7 This behavior was anticipated
by Abanov et al.6 and, in a different context, by Andelmann
et al.,15 but no further analysis of their origin or implications
was done.

Motivated by these new results, we have reconsidered the
mean-field phase diagram of a coarse-grained Hamiltonian
for the dipolar frustrated ferromagnet. We have gone beyond
the usual single-mode approximation7 (defined in Sec. II), by
considering the effects of higher harmonics in the modulation
profiles. This is expected to be crucial in the context of
the recently proposed scaling hypothesis. The single-mode
approximation is valid very near the critical point. In particular,
in this approximation, the modulation length is independent
of temperature, at variance with the experimental observed
behavior. Furthermore, in this condition the scaling hypothesis
is not expected to be applicable, and a dome shape of the phase
diagram is not to be expected. Actually, even in the single-mode
approximation, the mean-field critical field line passes through
a maximum, and an inverse transition is obtained, as was
shown by Andelman et al.15 (even when they studied a
different system, both problems are equivalent, as shown in the
supplementary material),16 and verified by ourselves. Going
beyond the single-mode approximation we determined the
variation of the modulation length with temperature and show
that a few modes are enough in order to get an asymptotic
behavior. Our results are in agreement with previous ones.17,18

The most notable effect of including higher harmonics is the
shrinking of the bubble phase in the h − T plane. The triple
point, already present in the single-mode approximation, shifts
to higher temperature, and the whole region where the bubble
phase is the thermodynamically stable one is considerably
reduced near the critical temperature. The overall results
seem to indicate a loss of stability of the bubbles phase at
low temperatures. These results are compared with Monte
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Carlo simulations of a Heisenberg model with exchange and
dipolar interactions. A tentative phase diagram is presented,
which is in qualitative agreement with some of the mean-field
predictions. In particular, it was not possible to find bubbles at
low temperatures for the parameters values studied. At higher
temperatures bubbles seem to be the stable phase for not too
low fields.

The organization of the paper is as follows: In Sec. II we
introduce the mean-field model. In Sec. II A we compute the
profiles of the modulated solutions and the variation of the
stripe width with temperature by considering higher harmonics
in the variational solution at zero external field. In Sec. II B
we present the results for the h − T phase diagram. In Sec. III
we show results of Monte Carlo simulations of a Heisenberg
model and compare them with the mean-field calculations. In
Sec. IV we present our conclusions.

II. MEAN-FIELD PHASE DIAGRAM

The mean-field model is defined by the Landau-Ginzburg
free energy:

F [φ] = 1

2

∫
d2x

{
[∇φ(x)]2 + r0φ

2(x) + u

2
φ4(x)

}

+ 1

2δ

∫
d2x

∫
d2x′φ(x)φ(x′)J ′(|x − x′|)

−
∫

d2x h(x)φ(x), (1)

where the scalar field φ(x) represents, e.g., the out-of-
plane magnetization density in a magnetic thin film with
perpendicular anisotropy. The terms between brackets model
ferromagnetic behavior in the continuum limit, where r0 ∝
T − TF , TF being the Curie temperature. J ′(|x − x′|) is a
(translational invariant) competing interaction, which intro-
duces frustration and is responsible for modulated patterns at
low temperatures. It may represent, e.g., the dipolar interaction
in an ultrathin film J ′(r) ∝ 1/r3. Here δ is the ratio between
the ordering (e.g., exchange) and the competing (e.g., dipolar)
interaction intensities, and h(x) is an external field. In the
Fourier representation the Landau-Ginzburg free energy reads

F [φ] = 1

2

∑
k

A(k)φ(k)φ(−k) + u

4 L2

∑
k1

∑
k2

∑
k3

×φ(k1)φ(k2)φ(k3)φ(−k1 − k2 − k3)

−
∑

k

h(k) φ(−k), (2)

where

φ(x) = 1

L

∑
k

φ(k)eik.x, (3)

A(k) = r0 + k2 + J (k)

δ
, (4)

and

J (k) =
∫

d2x J ′(r) e−ik.x. (5)

The equilibrium configuration is given by the set of
amplitudes {φ(k)} that minimize the free energy (2). We will

assume that J (k) is such that A(k) has a single minimum at
k = km. At high enough temperatures and in the absence of
an external field, the uniform configuration (paramagnetic)
φ(k) = 0 is the absolute minimum. The critical temperature
at which the uniform solution becomes unstable is given by
the condition A(km) = 0. Hence, without loss of generality we
can assume the general form

A(k) = −bτ + c (k − km)2, (6)

where τ ≡ (Tc − T )/Tc and b,c > 0. This form should be
valid close enough to Tc. We will consider a uniform external
field h, so that h(k) = Lh δk,0. For large enough values of h,
a uniform solution φ(k) = 2 Lm0 δk,0, with

2A(0) m0 + 8 um3
0 = h, (7)

is expected to be the absolute minimum. For low values of
h and below the critical temperature τ > 0 one expects a
modulated solution with a characteristic wave vector k = k0 to
become the absolute minimum, where k0 → km when τ → 0.
We will consider two different types of variational solutions:
a striped configuration

φs(x) = 2
∞∑

n=0

mn cos(n k0 · x) (8)

and a bubble-type configuration

φb(x) = 2
∞∑

n=0

mn

3∑
i=1

cos(n qi · x), (9)

where qi are three vectors satisfying |qi | = k0 and
∑3

i=1 qi =
0. The Fourier transforms of both configurations are given by

φs(k) = L

∞∑
n=0

mn

[
δk,nk0 + δk,−nk0

]
, (10)

φb(k) = L

∞∑
n=0

mn

3∑
i=1

[
δk,nqi

+ δk,−nqi

]
. (11)

The single-mode approximation amounts to considering
only the first harmonic in the Fourier expansion and will
be considered in Sec. II B in connection with solutions in
an external field. Replacing Eqs.(10) and (11) into Eq. (2),
we get the mean-field free energy in terms of the infinite
set of amplitudes {mn} and k0, which can be considered as
variational parameters. Then, truncating Eqs.(10) and (11)
to some maximum order nmax (i.e., imposing mn = 0 ∀n >

nmax) we obtain variational expressions at different levels
of approximation for the stripes and bubbles free energies,
respectively. The complete expressions and some examples
are presented in the supplementary material.16 Assuming
that those are the only possible equilibrium states, we can
calculate the equilibrium phase diagram by minimizing and
comparing the free energies for each type of solution to
the same level of approximation nmax. Except for a few
particular analytical approximations, in most of the cases
free-energy minimization was done numerically using a
generalized simulated annealing optimization procedure.19 All
the numerical results shown in this section were done for
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b = 1, u = 1, and c/km = 0.1, which appropriately represents
the spectrum of a two-dimensional Ising model with exchange
and dipolar interactions.20 Some checks performed with
different values of the parameters did not show qualitative
differences.

A. Zero-field solutions: stripe width variation

In order to check the limits of validity of the present
variational method we first analyze the limit of a zero magnetic
field. In this case the free energy of the bubbles solution is
always larger than the striped one. Also, due to the up-down
symmetry of the system, all the harmonics in Eq. (10) with n

even do not contribute: mn even = 0.
Direct minimization of Eq. (2) with respect to the fields

φ(k) leads to

A(k)φ(k) = − u

L2

∑
k1

∑
k2

φ(k1)φ(k2)φ(k − k1 − k2).

(12)

Replacing Eq. (12) into Eq. (2) we obtain

F = 1

4

∑
k

A(k)|φ0(k)|2, (13)

where φ0(k) are the solutions of Eq. (12). When T > Tc we
have A(k) > 0 ∀k and therefore, from Eq. (13), the minimum
free energy corresponds to the paramagnetic solution φ0(k) =
0 ∀k. When T = Tc, A(km) = 0 and a single-mode solution
with wave vector k0 = km = π/λm becomes the minimum of
the free energy. As the temperature is further decreased new
modes will contribute to the minimum free-energy solution,
and the stripe width λ0 ≡ π/k0 is expected to increase. We
performed a numerical optimization considering up to five
modes, i.e., up to nmax = 9. The resulting stripe width λ0 −
λm as a function of temperature is shown in Fig. 1. The results
become almost independent of nmax for nmax > 9.

For temperatures close enough to Tc we see that λ0 −
λm ∼ τ 2, in qualitative agreement with the Bragg-Williams
approximation of the dipolar frustrated Ising model17,18 and
with experimental results on Fe on Cu(100) ultrathin magnetic
films.17 However, at variance with the dipolar frustrated Ising
model, where a crossover to a faster increasing regime (prob-
ably exponential) is expected as the temperature decreases, in

FIG. 1. (Color online) Stripe width variation with temperature at
zero field for different values of nmax.

FIG. 2. (Color online) Change in the magnetization profile with
temperature at zero field for nmax = 9.

the present model the stripe width crosses over to a saturation
regime. Hence, we can take the crossover value of the reduced
temperature τ ≈ 0.4 as the limit of the validity of the present
approximation, in the sense of reproducing the behavior close
to Tc of a more accurate microscopic model.

In Fig. 2 we show the change in the normalized magnetiza-
tion profile φs(x)/Ms(T ), where the saturation magnetization
inside a domain is defined as

Ms(T ) = φ(x = 0) = 2
nmax∑
n=1

mn. (14)

We see how the profile changes from a sinusoidal shape
close to Tc toward a sharp wall type (i.e., square wave form)
as the temperature decreases. The same qualitative behavior is
observed both in the Bragg-Williams solution of the dipolar
frustrated Ising model and experimentally.18

B. Nonzero field solutions: phase diagram

In the single-mode approximation only m0 and m1 in
Eqs. (10) and (11) are taken different from zero. This is the
simplest nontrivial approximation, valid very near the tran-
sition point. It is straightforward to verify that minimization
conditions in this case imply k0 = km for any value of the
temperature. In other words, at this level of approximation no
stripe width variation with temperature is observed. A phase
diagram under this approximation was first obtained by Garel
and Doniach,7 showing a monotonous increase for all the
transition lines as the temperature decreases. While valid close
enough to the critical temperature, the actual behavior departs
at lower temperatures, and the mean-field bubbles-uniform
transition line displays a maximum. This was shown by
Andelman et al.,15 who considered the mean-field Landau-
Ginzburg free energy for a model of Langmuir monolayers of
polar molecules under the single-mode approximation. While
coming from a different context, a careful examination of their
variational equations shows that they map exactly into Garel
and Doniach equations under the single-mode approximation
(see supplementary material).16 We reobtained that corrected
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FIG. 3. (Color online) Phase diagram in the three-modes nmax = 3
approximation. Some typical configurations at the stripes and bubble
phases are shown. The blue dashed line corresponds to the S spinodal
line. The upper B spinodal line lies slightly below the S spinodal line,
but both lines are indistinguishable at the present scales. The inset
shows the phase diagram in the one-mode nmax = 1 approximation.

phase diagram, and it is shown in the inset of Fig. 3 for later
comparison with an improved phase diagram. All the transition
lines are first order. The most remarkable fact is the absence
of a bubbles phase (B) for low enough temperatures, namely,
at low temperatures there is a single transition line from the
stripes (S) to the uniform (U) phase that joins in a triple point
with the S-B and B-U transition lines located close to Tc.
Our single-mode phase diagram differs from the originally
obtained in Ref. 7 (and widely accepted in the literature) but
agrees with that from Ref. 15. Interestingly, as mentioned
in the Introduction, already at a single-mode approximation
an inverse transition is obtained, in qualitative agreement with
recent experiments. Also note that the triple point, at which the
bubbles phase cease to minimize the mean-field free energy,
corresponds to T/Tc ∼ 0.75 (τ ∼ 0.25), well inside the limit
of validity of the continuum model as discussed in the previous
section. Of course, the single-mode approximation is probably
not reliable at this temperature.

To improve such phase diagram we considered a three-
modes approximation nmax = 3; namely, we numerically
minimized the stripes and bubbles solutions (10) and (11)
with respect to the set of parameters {k0,m0,m1,m2,m3}.
Those minimal free energies were compared between them
and against the uniform solution (U) from Eq. (5). As in
the zero-field case, the width of the stripes solution exhibit
a quadratic variation with temperature for any value of h.
We also verified that the inclusion of further modes in the
solutions decreases the free energy for all values of T and
h. The resulting phase diagram is shown in Fig. 3. The main
differences with the one-mode phase diagram are the shift of
the maximum from the B-U to the S-U transition lines and the
shrinking of the B region with the corresponding movement of
the triple point toward the critical temperature. Notice that the
location of both the maximum in the S-U line (τ ∼ 0.25) and
the triple point (τ ∼ 0.1) falls inside the estimated temperature
range of validity of the model. We also observed a strong

FIG. 4. Ratio Ms/λ0 at zero field as a function of temperature for
nmax = 9.

metastability of both the S and B phases in all the analyzed
temperature range at high values of h. The spinodal line for
the S phase is shown in Fig. 3. The upper spinodal line for
the B phase lies slightly below the previous one (both lines
are indistinguishable on the scales of the figure). Both the U
and B phases are metastable for T < Tc at any value of h > 0
below the transition lines.

Finally, to check the scaling hypothesis proposed in Ref. 14
we calculated the ratio Ms/λ0 at zero field as a function
of temperature, from the results of the previous section.
Consistently with the scaling hypothesis, we see from Fig. 4
that this ratio exhibits a maximum around T/Tc ∼ 0.75, like
the S-U transition line in the phase diagram from Fig. 3. As
we lower the temperature, the ratio increases again because the
modulation length saturates while Ms monotonously increases,
departing from the expected behavior.

III. MONTE CARLO SIMULATIONS IN A DIPOLAR
HEISENBERG MODEL

In order to compare the mean-field results with the behavior
of a specific microscopic model we performed Monte Carlo
simulations using a Heisenberg model with exchange and dipo-
lar interactions, as well as uniaxial out-of-plane anisotropy.
The model, which describes an ultrathin magnetic film (see
Ref. 21 and references therein), can be characterized by the
dimensionless Hamiltonian

H = −δ
∑

<i,j>

�Si · �Sj +
∑
(i,j )

[ �Si · �Sj

r3
ij

− 3
(�Si · �rij ) (�Sj · �rij )

r5
ij

]

− η
∑

i

(
Sz

i

)2
, (15)

where the exchange and anisotropy constants are normalized
relative to the dipolar coupling constant, < i,j > stands for a
sum over nearest neighbors pairs of sites in a square lattice with
N = L × L sites, (i,j ) stands for a sum over all distinct pairs,
and rij ≡ |�ri − �rj | is the distance between spins i and j . All
the simulations were done using the Metropolis algorithm, and
periodic boundary conditions were imposed on the lattice by
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means of the Ewald sums technique. For intermediate values of
the anisotropy η this model exhibits an in-plane-out-of-plane
reorientation transition21 at zero magnetic field. In the large
η limit and for low temperatures, the local magnetization
inside the domains is mainly in the out-of-plane direction,
and therefore the behavior is expected to be comparable to
the scalar Landau-Ginzburg model of the previous section.
We choose δ = 3 and η = 8. For this set of parameters the
system is far away from the reorientation transition, and
there is a direct phase transition from the striped state to a
perpendicular disordered state at Tc = 1.13.21 The simulations
were carried out for L = 40. To characterize the magnetic
states we calculate the out-of-plane magnetization:

Mz ≡ 1

N

∑
�r

〈Sz(�r)〉, (16)

and the orientational-order parameter:21

Ohv ≡
〈∣∣∣∣nh − nv

nh + nv

∣∣∣∣
〉
, (17)

where 〈· · ·〉 stands for a thermal average, nh (nv) is the number
of horizontal (vertical) pairs of nearest neighbor spins with
antialigned perpendicular component, i.e.,

nh = 1

2

∑
�r

{1 − sig[Sz(rx,ry), Sz(rx + 1,ry)]}, (18)

and a similar definition for nv , where sig(x,y) is the sign of
the product of x and y.

We performed field cycles at fixed temperatures according
to the following protocol. The system is initialized at a
stripes configuration (the ground state at h = 0). The field
is increased from zero to a hmax and then decreased back to
zero, using a ladder procedure with a step variation �h =
0.05. At each fixed field the system is thermalized during
te = 5 × 105 Monte Carlo step (MCS), and then we calculate
averages over the next tm = 104 MCS. We also performed
similar temperature cycles at a fixed field. Using these cycles
together with a visual inspection of the corresponding spin
configuration we obtained the h − T phase diagram.

In Fig. 5 we show the typical (field cycling) behavior of Ohv

and Mz for temperatures close to and far away from Tc, namely,
T/Tc = 0.35 and T/Tc = 0.71. The cycles for T/Tc = 0.35
show a strong hysteretic behavior, while the curves for T/Tc =
0.71 show only a weak hysteresis on a small range of h.

In the low-temperature regime (T/Tc = 0.35) we see that
Ohv drops to zero at the same field value for which Mz

saturates into Mz = 1, signaling the transition into an uniform
state. As the field increases, we see the presence of small
plateaus in the magnetization followed by sudden jumps. These
jumps correspond to an increase in the width of stripes with
spins aligned to the field preserving the orientational order,
as evidenced in the behavior of Ohv . Such an increase in the
size of domains aligned with the external field is in agreement
with experimental observations.13 In this temperature regime
no bubbles states are observed, and the system goes from a
stripes order to a uniform state, with a strong metastability in
both the uniform and the stripes states.

When T/Tc = 0.71 we observe a clear transition from
a striped state to a state without orientational order at a
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FIG. 5. (Color online) Cycles of orientational-order parameter
Ohv (upper panels) and perpendicular magnetization Mz (lower
panels) as a function of field h, for two temperatures: T/Tc = 0.35
(left panels) and T/Tc = 0.71 (right panels). The arrows indicate the
sense of field variation in the cycle.

well-defined value of the field h ∼ 1, without saturation in
the magnetization. A visual inspection of the configurations
shows indeed that, between the stripes order at low field and
the uniform state at hight field, the system displays bubble
domains in the range 1 � h � 1.75. Using this criterion we
calculate the field values for the stripes-bubbles and bubbles
uniform transitions for each temperature.

In Fig. 6 we show the phase diagram calculated with
the above described procedure. The absence of hysteresis in
the temperature range 0.5 < T/Tc < 1 (except very close to
Tc) allows us to determine with a rather good precision the
stripes-bubbles and the bubbles-uniform phase boundaries.
Very close to Tc it is very difficult to distinguish between
the bubbles state and a uniform state with fluctuations, due
to finite size effects. For temperatures above Tc (but close to
it) and zero field, the disordered state presents a tetragonal
liquid structure.21,22 As the field increases, the size of the
domains antialigned with the field shrinks, until they break
into a disordered arrange (liquid like) of antialigned domains
in a ferromagnetic background aligned with the field. Close
enough to Tc such a state is indistinguishable from a regular
arrange of bubbles for small system sizes, both by visual
inspection or quantitative (e.g., structure factor) calculations.
A detailed study with larger systems sizes is under way and
will be published elsewhere. A similar effect has been observed
by Monte Carlo simulations in the dipolar frustrated Ising
model.11 The dashed line in Fig. 6 is schematic and shows the
crossover region.

On the other hand, at low temperatures (T/Tc < 0.5) we
did not find any evidence of bubbles states. Namely, as we
increase (decrease) the field starting from a stripes (uniform)
state, the system remains in that state until it losses stability and
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FIG. 6. (Color online) Monte Carlo phase diagram h vs tem-
perature for the dipolar Heisenberg model with δ = 3 and η = 8.
Different colors correspond to different calculation methods of order
parameter Ohv and perpendicular magnetization Mz: red for variation
in field h at constant temperature and cyan for variation in temperature
at constant field. The arrows indicate the directions of parameter
variations. Different symbols correspond to different transitions:
circles: bubbles-uniform; squares: stripes-bubbles; triangles up:
stripes-uniform; triangles down: uniform-stripes. We show some
typical spin configurations at different phases. The vertical dashed
line is schematic and shows the crossover between regions where
bubbles and disordered states can be well differentiated. The dotted
lines correspond to the loss of stability (probably spinodal lines) of
the stripes (upper line) and uniform (lower line) states when the field
is increased (decreased). Inside the region bounded by the dotted
lines the system does not equilibrate (in any reasonable cpu time) and
shows strong hysteretic behavior.

decays into a uniform (stripes) state, without passing through
a bubbles state. Although we cannot exclude the possibility of
bubbles states hidden by the strong metastability of both the
stripes an uniform states, our results appear to be consistent
with the existence of a single stripes-uniform first-order phase
transition at low temperatures, as predicted by the mean-field
calculation of the previous section.

IV. CONCLUSIONS

In view of recent theoretical and, especially, experimental
results, the mean-field phase diagram of a two-dimensional
system with competing interactions in an external field was
reconsidered. Although known since nearly 30 years ago,7 we
have found important differences from the behavior usually
accepted. Interestingly, our results are in qualitative agreement
with experimental results and point once more to the relevance
of the mean-field behavior in this kind of system.

First, we have found that, already in the single-mode
approximation, the external field-temperature phase diagram
shows an inverse symmetry-breaking transition between
paramagnetic and modulated phases, as recently predicted
based on scaling arguments and confirmed by experiments
on ultrathin ferromagnetic films.4,13,14 The presence, and
experimental relevance, of the inverse transitions was not
considered previously in the context of the mean-field phase

diagram. From a theoretical point of view, although the generic
presence of inverse transitions in this kind of systems was
proposed as a consequence of scaling in the behavior of
the characteristic lengths with temperature,14 we have found
that the h − T phase diagram shows a maximum even when
scaling is not expected to occur. This seems to be a very
basic property of systems with competing interactions in
external fields. However, it is worth stressing that, when
more accurate solutions (that correctly describe the modulation
length variation with temperature) are considered, the scaling
hypothesis correctly predicts the location of the maximum in
the symmetry-breaking transition line between paramagnetic
and modulated phases.

Second, we have confirmed that the modulation length
strongly depends on temperature below the paramagnetic-
modulated transition, even in the presence of external fields.
The quadratic dependence of the modulation length with
temperature is obtained with and without an external field. This
dependence is already obtained considering a few harmonics
that change the profile of the order parameter from a simple
cosinusoidal shape near Tc to a squarelike shape as the
temperature decreases. At low temperatures domain walls
become sharp, and our continuum approximation breaks
down.

Third, going beyond the single-mode approximation, we
have shown that the overall phase diagram does not change
the main characteristics, but the stability lines of the different
phases do change. In particular, the region where the bubbles
phase is the thermodynamically stable one shrinks to a small
region near Tc when three modes are considered in the
variational solution.

Doing Monte Carlo simulations of an Heisenberg model
with perpendicular anisotropy we have found overall quali-
tative agreement between simulations and mean-field results.
In particular, field cycles at low temperatures show strong
hysteretic behavior between stripes and paramagnetic phases,
showing no sign of bubbles. Although such strong metastabil-
ity makes it very difficult to determine whether the transition
line presents a maximum or not, its existence cannot be
excluded from the present results. At higher temperatures
hysteresis is greatly suppressed, and the saturation is reached
from the stripes phase at low fields passing through a bubbles
phase at intermediate fields. While it is difficult to guarantee
equilibrium in the system studied, the behavior observed
is in general agreement with mean-field predictions of the
thermodynamic phases. Large-scale simulations would be very
valuable to confirm our preliminary results and the overall
picture from the mean-field calculation. On the other hand, it
is worth noting that metastability has been, in fact, observed
experimentally.13
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