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Abstract
We performed Monte Carlo simulations of a bilayer system composed of two thin films, one
ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the
films were considered: simple cubic and body centered cubic (bcc). We imposed an
uncompensated interfacial spin structure in both lattice structures; in particular we emulated
an FeF2–FM system in the case of the bcc lattice. Our analysis focused on the incidence of the
interfacial strength interactions between the films, Jeb, and the effect of thermal fluctuations on
the bias field, HEB. We first performed Monte Carlo simulations on a microscopic model based
on classical Heisenberg spin variables. To analyze the simulation results we also introduced a
simplified model that assumes coherent rotation of spins located on the same layer parallel to
the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias
field is controlled either by the intrinsic pinning of a domain wall parallel to the interface or by
the stability of the first AFM layer (quasi-domain wall) near the interface.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Exchange bias (EB) is a ubiquitous magnetic phenomenon
that usually appears when two different magnetic media are
in contact. Although EB can be observed in a large variety of
non-homogeneous magnetic materials [1, 2], in this work we
will focus on the case of a bilayer system composed of two
films, one ferromagnetic (FM) and the other antiferromagnetic
(AFM).

Assuming that the Curie temperature TC of the FM
material is larger than the Néel temperature TN of the
AFM one, and that the two films are magnetically
coupled by exchange interactions, an unusual hysteresis
phenomenon can be observed. If such a system is cooled
down below TN in the presence of an external applied
magnetic field HCF, the hysteresis loops of the FM material
evidence three important anomalies when compared with
the loop of the single FM film. First, a shift in the
loop appears, characterized by a new center called the

bias field HEB. This shift is due to the unidirectional
anisotropy induced at the interface. Second, the width of
the loop usually increases. Finally, the loop also loses its
symmetry. As temperature increases, the bias field HEB goes
to zero at a certain blocking temperature TB, with TB <

TN, restoring the normal hysteresis loop of the isolated
ferromagnet.

Although this phenomenon was reported for the first time
in 1956 [3] and despite the huge theoretical and experimental
effort devoted to understanding its origins, there are still many
controversial points concerning the underlying mechanisms
responsible for such unusual hysteresis anomalies [1, 2,
4–6]. In particular, these controversies are in part related to
the fact that EB has been observed in a great diversity of
magnetic systems, including for instance spin glasses, and
intrinsic inhomogeneous and nanoparticle systems, as well
as the bilayered system analyzed in this paper. Beyond the
theoretical interest, this phenomenon is also relevant because
of its technological applications—for instance, in the design
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of magnetic sensor and magnetic recording media devices [2],
among many others.

As regards the case of a bilayered FM/AFM system,
the spin structure at the interfacial planes is a main issue
in developing the understanding of the EB phenomenon.
In particular, AFM interfaces can be roughly classified as
compensated or uncompensated, depending on whether the
nearest AFM planes parallel to the interface have zero net
magnetization or not, respectively. Most of the earlier models
that explain EB assume an uncompensated interfacial spin
structure [4], even when this requirement is not always
fulfilled in experiments. Actually, EB can also be observed
in compensated interfaces, but in this case the existence
of uncompensated domains has proved to be fundamental
for the appearance of the hysteresis shift [7]. Furthermore,
fully uncompensated interfaces can manifest a weaker EB
field when compared with partially uncompensated or even
compensated interfaces. In fact, experiments carried out by
Moran et al [8] and Nogués et al [9] on Fe films grown over
FeF2 single crystals cut along different orientations showed
that HEB is larger when the interface is compensated ((110)
plane) in comparison with the uncompensated case ((010)
plane). This effect is supposed to be associated with spin
rearrangement at the interface [2, 9] since a similar behavior
was found when the AFM is a single crystal or a thin film.

A key point for the understanding of the EB phenomenon
on uncompensated interfaces is the effect of the variation
of the exchange coupling between interface layers on the
EB field. While it is difficult to control this quantity
at the experimental level, this problem can be handled
easily using Monte Carlo simulations based on microscopic
models. In addition, this methodology allows a detailed
description of the interfacial spin structure together with
the incorporation of thermal fluctuations, which are relevant
for the stability and therefore the appearance of the EB
phenomenon. For instance, thermal effects are necessary
to explain the widening of the hysteresis loop close to
the blocking temperature [10–12]. In this sense, numerical
studies at the micromagnetic [13–15] and Monte Carlo
simulation levels [16–23] have proved to be very useful
tools for modeling realistic systems. On the other hand,
the continuous approximation assumed in micromagnetic
based models breaks down for highly anisotropic materials
like FeF2–AFM compounds. Discretization could give rise
to different energy barriers with the consequent thermal
activated effects [24]. Hence, atomic scale based models
could be crucial for getting an appropriate description of the
magnetic properties.

In this paper we analyze the EB phenomenon in an
FM–AFM bilayer system with an uncompensated interface. In
section 2 we summarize the existing theoretical background,
discussing the phenomenology of the EB system in the
framework of two of the most relevant models. In section 3
we introduce a microscopic model for the bilayered system,
describe the simulation protocol and show our numerical
results. In order to interpret the results of the previous
section we introduce in section 4 a generalization of the
Meiklejohn–Bean model, which allowed us to analyze the role

of the AFM layers in the EB phenomenon. In section 5 we
summarize and discuss the results.

2. The theoretical background

In order to analyze the role of the strength of the interface
exchange interaction Jeb in the behavior of bias field Heb,
let us discuss first the following question: what happens
with the order of the antiferromagnet as we invert the
orientation of the ferromagnet magnetization by applying an
opposite magnetic field h? We assume that the system has
already reached thermal equilibrium at a certain temperature
T below TB, in such a way that, if Jeb were zero, both
films would have achieved an ordered state. Since TC >

TN, we assume that |JF| > |JA| where JF and JA are the
exchange interactions of the ferromagnet and antiferromagnet,
respectively. If Jeb is small enough (Jeb � JA) the spins in the
antiferromagnet will remain almost insensitive to the rotation
of the global magnetization of the FM film. In this case the
Meiklejohn–Bean model [25] predicts a linear dependence of
the bias field Heb on the value of Jeb:

HEB ∝
Jeb

LFM
, (1)

where LFM is the thickness of the FM film.
At the other extreme, when Jeb is large enough, the

rotation of the magnetization would induce the creation of a
domain wall (parallel to the interface) in the AFM films, at
least for small enough values of KA. Once a perfect domain
wall has been formed, any increase of Jeb will not alter the
value of Heb. This phenomenology is captured by the model
of Mauri et al [26] (from now on the MSBK model) when the
anisotropy of the FM film is negligible. This model predicts
an initial increase of Heb with Jeb for small values of Jeb,
followed by a saturation for large enough values of Jeb at

HEB = 2

√
ωJA KA

LFM
, (2)

where KA is the anisotropy constant of the antiferromagnet
and ω is a constant depending on the lattice structure. The
previous results suggest a monotonic behavior of the bias
field when the anisotropy of the FM film is negligible, with
a linear dependence of Heb on Jeb for small values of Jeb and
a saturation for large values of it. As we will show in the next
section, such a scenario can change substantially depending
on the effective anisotropy of the AFM film.

3. The microscopic model and numerical
simulations

3.1. The microscopic model

We considered an FM film mounted over an AFM film as
depicted in figure 1(a). The films are magnetically coupled
to each other by exchange interactions and the structure of
both films is either bcc or sc, assuming a perfect match across
the FM/AFM interface. The system is ruled by the following
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Figure 1. (a) Scheme of the bilayer system including the reference
frame used throughout this paper. (b) Schematic picture of the
system modeled by the Hamiltonian (3) in the sc lattice case. Here
we show the ground state configuration with the corresponding
interactions.

Hamiltonian:

H = −JF

∑
〈Er, Er′ 〉∈FM

ESEr · ESEr′ − KF

∑
Er∈FM

(Sz
Er)

2

−

∑
〈Er,Er′ 〉∈AFM

JAF(Er − Er
′

)ESEr · ESEr′ − KA

∑
Er∈AFM

(Sy
Er)

2

− Jeb

∑
〈Er,Er′ 〉∈FM/AFM

ESEr · ESEr′ − h
∑
Er

Sy
Er , (3)

where ESEr is a classical Heisenberg spin (|ESEr| = 1) located
at the node Er of the lattice. 〈Er, Er

′

〉 denotes a sum over
nearest-neighbor pairs of spins, JF > 0 is the exchange
constant of the ferromagnet and JAF(Er − Er

′

) is the strength
of the AFM exchange interactions which explicitly depends
on the vector r − r

′

. This dependence of JAF on Er − Er
′

is introduced in order to set an uncompensated interface at
the antiferromagnet. For the bcc lattice we set JAF = −JA
with JA > 0 for all pairs (Er, Er

′

), while for the sc lattice we
set JAF = JA if the (Er, Er

′

) belong to the same plane parallel
to the interface and JAF = −JA otherwise (see figure 1(b)).
Jeb > 0 represents the exchange coupling between the FM and
the AFM interface layers of the films, KF is the anisotropy
constant of the ferromagnet, KA is the AFM anisotropy and h
is an external homogeneous magnetic field oriented along the
y direction. We assumed that:

(i) KF < 0 in order to ensure that the FM anisotropy term
tends to align the spins on the plane of the film, mimicking
the dipolar shape anisotropy, as usual [23, 24];

(ii) KA > 0 in order to introduce a uniaxial anisotropy along
the y direction in the AFM material [18].

We carried out Monte Carlo simulations using the
Metropolis algorithm and Hamiltonian (3). In our simulations

Figure 2. Bias field HEB (circles) and coercivity HC (squares)
versus jeb at T/JA = 0.5 and KA/JA = 1.77 for (a) an sc lattice and
(b) a bcc lattice.

Lx and Ly are the lateral dimensions of the films, in units of
the lattice parameter, and Lza and Lzf are the thicknesses of the
FM and AFM films, respectively, measured in the same units.
The total number of spins is then N = η Lx Ly (Lza+Lzf)where
η = 1 (2) for the sc (bcc) lattice. Periodic boundary conditions
were imposed in the plane of the film while we used open
boundary conditions in the perpendicular direction to the film.
For each point in the magnetization curve presented in this
work, we took 104 Monte Carlo steps per site (MCS) to
thermalize the system and then the same number of MCS
to calculate the temporal averages of the magnetization.
We follow the ideas used in [27, 28], where at each spin
actualization the direction of the spin is adjusted in a cone
in such a way as to maintain an acceptance rate close to
0.46. This is an approximation to a Landau–Lifshitz–Gilbert
Langevin dynamics in the high damping limit [29]. We set
the following dimensions for the system: Lx = Ly = 40 and
Lza = Lzf = 12, and fix the following parameters: JF = 9.56J,
JA = −J and KF = −0.5J, where J is an arbitrary parameter
that sets the energy units. Jeb varies in the interval [0, JF]

while KA can take arbitrary values. With these parameters we
can emulate a FeF2–FM system in the bcc lattice by choosing
KA = 1.77J [18]. Since we are interested in the high AFM
anisotropy to exchange ratio regimen, which implies small
domain wall width, the thickness of the antiferromagnet that
we chose is enough for supporting an AFM domain wall. On
the other hand, it is known that in this model [18, 30] for such
sizes both the AFM and the FM films reach an ordered state.

3.2. Results

In figure 2 we present the bias field HEB (open circles)
and coercivity HC (squares) obtained from Monte Carlo
simulations as functions of the interfacial interaction strength
Jeb for the two lattice structures considered and for fixed
values of the temperature and AFM anisotropy. When the
interfacial exchange coupling jeb ≡ Jeb/JA is weak, HEB
shows, for both lattice structures, a linear dependence,
indicating that the AFM spins located near the interface
are fixed, and the FM film reverses its magnetization by
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Figure 3. Hysteresis loops of several atomic layers of the bilayer corresponding to the FM planes (top) and AFM planes (bottom) for
jeb = jmax

eb and T/JA = 0.5. The panels on the left ((a) and (c)) correspond to the sc lattice and the panels on the right ((b) and (d))
correspond to the bcc lattice. See the text for details.

coherent rotation [16]. As jeb increases, the bias field reaches
a maximum value at jmax

eb and then abruptly drops to an almost
constant value. Notice that the drop is larger for the sc lattice
than for the bcc one. As will be shown later, such an effect
is due to a reduction of the effective anisotropy of the AFM
layer in the bcc case.

In figure 3 we show the hysteresis loops of several planes
of the FM and AFM films. These loops were obtained at
jeb = jmax

eb , just before the drastic drops observed for Heb in
figure 2, where the exchange bias effect is more pronounced
and the cycles are still almost reversible.

In figures 3(a) and (b) we present the magnetization in
the interfacial (IL) and outer (OL) atomic layers of the FM
film. These results show that, in the two lattices, the spins
rotate almost coherently. In figures 3(c) and (d) we show the
loops of the four AFM layers nearest to the interface (Ln
stands for the nth atomic layer). Comparing the behaviors of
the two structures we see that the sc lattice is more flexible
than the bcc one inside the ferromagnet, but more rigid inside
the antiferromagnet, because the effective anisotropy in the sc
lattice is larger. In particular, in the AFM film of the sc case
(figure 3(c)) only the first layer feels the effect of the FM film.
In the bcc case (figure 3(d)) we clearly see the formation of a
quasi-domain wall.

In figure 4 we plot the same quantities as in figure 3
for a value of jeb above the peak, where the bias field has
already diminished abruptly. Unlike in the previous case
(figure 3), here the AFM layers show hysteresis behavior
for both the sc and the bcc lattices (figures 4(c) and (d)
respectively). This indicates that the drop in the bias field
is associated with the onset of irreversible changes in the
magnetic dynamics. As occurred below the peak (figure 3),
the changes in the antiferromagnet are constrained to the first

planes near the interface. It is worth stressing that now the
hysteresis phenomenon also appears in the AFM layers, as
evidenced in the behavior of the coercivity in figure 2.

Next we analyzed the temperature dependence of the
overall magnetic behavior. In figure 5 we present the bias
field HEB and the coercivity HC as a function of temperature
for two values of the interfacial interaction strength: jeb =

0.5 (figures 5(a) and (b)) and 1.0 (figures 5(c) and (d)). The
panels on the left correspond to the sc lattice and panels
on the right to the bcc lattice. The dotted lines represent
the staggered magnetization of the antiferromagnet at zero
external magnetic field, normalized with respect to the value
of the bias field at the lowest temperature. In figures 5(b)–(d)
we observe that the system presents a blocking temperature TB
separating two phases with different magnetic behaviors. At
low temperature the system is characterized by the presence of
exchange bias and almost zero coercivity. On the other hand,
for TB < T < TN the bias disappears and the HC increases
and further decays following the behavior of the normalized
staggered magnetization. A completely different behavior is
observed in figure 5(a), where the ordered phase coincides
with the bias regime and therefore TB = TN. In this case we
do not observe any trace of coercivity in the simulations. Note
that for both structures, sc and bcc, the blocking temperature
decreases with the interfacial interaction strength, indicating
that the energy barrier for depinning the partial domain wall
decreases as the wall approaches a 180◦ domain wall.

Finally we explored the effect of the lattice structure on
the bias field. The main difference between the two lattice
structures lies in the number of nearest neighbors belonging
to adjacent layers of any site in the AFM film, which is four
times larger in the bcc than in the sc structure. Hence, one
would expect the effective anisotropy to be reduced by a factor

4
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Figure 4. Hysteresis loops of several atomic layers of the bilayer corresponding to the FM planes (top) and AFM planes (bottom) for
jeb = 2 and T/JA = 0.5. The panels on the left ((a) and (c)) correspond to the sc lattice and the panels on the right ((b) and (d)) correspond
to the bcc lattice.

Figure 5. HEB and HC versus T/JA for KA/JA = 1.77 and two interfacial exchange interactions: top, jeb = 0.5 ((a) and (b)) and bottom,
jeb = 1 ((c) and (d)). Left: sc lattices ((a) and (c)); right: bcc lattices ((b) and (d)). The dotted lines represent the staggered magnetization of
the antiferromagnet at zero external magnetic field, normalized with respect to the value of the bias field at the lowest temperature.

of 4 in the bcc lattice with respect to the sc one, while the
bias field is expected to be four times larger in the bcc than
in the sc case. To check this hypothesis we calculated the bias
field as a function of jeb for both lattices for the same value of
K
′

= KA/αJA, with α = 4 for the bcc lattice and α = 1 for the
sc lattice. In order to compare the results, one has to take into
account that the Curie temperatures are different for the two
lattice structures. Hence, both calculations were carried out
keeping T/Tc constant. In figure 6 we plot Heb/α as a function

of jeb for high and low values of K
′

. For large enough values
of the anisotropy the previous conjecture is verified, namely,
the only effect of changing the lattice structure is a rescaling
of the bias field and the effective anisotropy. For small values
of the anisotropy, such scaling is observed as long as no
hysteresis effects appear, namely, for small enough values of
the coupling jeb. For large values of jeb the bias field exhibits
only a small drop and it saturates at a constant value in the bcc
lattice, but it drops to zero in the sc case. We observed that so

5
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Figure 6. HEB/α versus jeb for T/Tc = 0.14 and different values of
K
′

= KA/αJA. Open symbols: bcc lattice. Filled symbols: sc lattice.
(a) K

′

= 1.77. (b) K
′

= 0.4425.

large a drop is due to the depinning of the quasi-domain wall,
i.e. to a complete reversion of the staggered magnetization at
the AFM film. This effect is not observed in the bcc lattice
(at least for the range of parameter values analyzed here). It is
due to a reduction in the in plane magnetization component at
the AFM layers, associated with a canting of the spins which
enhance the pinning of the wall.

4. The layered model

As we have seen in section 3, the behavior of the bias
field is strongly determined by the magnetization dynamics
of the atomic layers close to the interface. Moreover, we
observed that, for reasonably large values of the anisotropy,
the spins in each layer rotate almost coherently under the
application of an external field parallel to the interface. On
the basis of these observations, we introduced a generalization
of the Meiklejohn–Bean [25] model that explicitly includes
the contribution of the AFM layers close to the interface. We
consider that only the n layers of the AFM film closest to
the interface are free to move, while the rest of the AFM
layers retain the equilibrium AFM configuration of the bulk at
temperature T . Let ES and Eσj be the average magnetization per
layer per unit area at the ferromagnet and the antiferromagnet
jth layers respectively. ES and Eσj (j = 1, . . . , n) are assumed
to be unit vectors parallel to the interface. The magnetization
per unit area of the whole FM film is then given by LFMES

Figure 7. (a) Scheme of the model for n = 1 (equation (5)).
(b) Angles representing the state of the system.

(with LFM the FM film thickness), since we are assuming
a coherent rotation of the whole FM film. The nth layer is
the closest one to the interface. We assume that the applied
field EH is parallel to the interface and only interacts with the
FM film. This approximation is valid as long as the applied
field is small enough compared with the molecular field of
the aniferromagnet. Finally, we consider the anisotropy of the
antiferromagnet to be much larger than the FM one, so the
latter can be neglected. The Hamiltonian of the model is then
given by

Hn = −KA

n∑
i=1

(σ
y
i )

2
+ (−1)nαJAσ0(T)σ

y
1

+ αJA

n−1∑
i=1

Eσi · Eσi+1 − Jeb Eσn · ES− EH
′

· ES, (4)

where EH
′

= LFM EH, α = 4 (α = 1) for the bcc (sc) lattice
and σ0(T) is the average equilibrium magnetization per unit
area of one layer in the AFM bulk, assumed to be parallel
to the easy axis. The (−1)n factor in the second term of
equation (4) ensures the correct equilibrium configuration at
zero temperature and magnetic field with the n−1 AFM spins
aligned with the FM spin. The model is then equivalent to a
n+1-spin chain, where the first spin in the chain is subjected to
a local effective field produced by ordering in the AFM bulk,
while the spin located at the end of the chain (ES) represents the
FM film which interacts with an external magnetic field and is
ferromagnetically coupled to the nth AFM spin.

At T = 0 the sublattice magnetization in the bulk is
saturated, so we have σ0(T) = 1. In a first approximation we
can consider the simplest case of only one AFM layer free to
move n = 1 (see figure 7(a)), which is enough to illustrate the
general mechanism. The energy is then given by

E = −KA(σ
y)2 − αJAσ

y
− αJeb Eσ · ES− EH

′

· ES, (5)

where Eσ ≡ Eσ1. The FM and AFM spins can be expressed in
terms of the angles φ and θ with respect to the easy axis
direction y of the antiferromagnet, in our case the field cooling
direction (figure 7(b)). Then

E = −KAcos2φ − αJA cosφ − αJeb cos(θ − φ)

− H
′

cos(θ − γ ), (6)

6
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where the angle γ gives the applied field direction (figure 7(b).
From now on, we will consider the applied field parallel to the
easy axis direction (γ = π ). In order to obtain the hysteresis
loops and the bias field, the model is analyzed using standard
procedures (see e.g. [31]). First, we set the partial derivatives
∂θE and ∂φE equal to zero in order to obtain the critical points:

0 = αJeb sin(θ − φ)− H
′

sin(θ)

0 = −αJeb sin(θ − φ)+ αJA sinφ + KA sin(2φ)
(7)

and then we look at the stability criteria, ∂θθe ∂φφe−∂θφe2 > 0
and ∂θθe > 0, to decide whether there is a minimum or not. It
turns out that

0 < αJeb cos(θ − φ)− H
′

cos θ

0 < αJeb cos(θ − φ)[αJA cosφ

+ 2KA cos 2φ] − H
′

cos θ × [αJeb cos(θ − φ)

+ αJA cosφ + 2KA cos 2φ]. (8)

For JA = 0 we recover to the Meiklejohn–Bean model
(see [6] and references therein) and the bias field is given by

H
′

eb = αJeb

√
1−

(
Jeb

2KA

)2

, (9)

provided that Jeb < KA. In this range of Jeb the coercivity field
is zero. For Jeb/KA > 1 the bias field drops to zero, while the
coercivity jumps to a finite value (see figure 8), due to the
complete reversal of all spins in the AFM film. In the limit
KA = ∞, equation (9) predicts a linear increase of H

′

eb with
Jeb (see figure 8). This case sets an upper limit for the bias
field of any model with an uncompensated interface.

For KA = 0 (JA 6= 0) the coercivity is always zero and the
bias field is given by

H
′

eb = α
JAJeb√

J2
eb + J2

A

. (10)

This equation is valid for any value of Jeb, showing a
saturation at H

′

eb = αJA for large values of it (see figure 8).
Equation (10) becomes equivalent to the MSBK model bias
field with zero anisotropy at the FM film if we replace JA by
the partial domain wall energy, namely set JA → 2

√
KA JA .

In the general case when KA 6= 0 the coercivity is non-zero
and the problem has to be treated numerically.

To understand the general behavior of the bias field as a
function of Jeb let us first analyze the structure of the energy
landscape given by equation (6) in the absence of external
magnetic fields. Suppose that the system was cooled in the
presence of an external field HCF pointing in the positive
y direction. Then, the energy has an absolute minimum,
corresponding to both magnetic variables ES and Eσ pointing
in the positive y direction. We denote this minimum by
(↑,↑). If the anisotropy is weak, KA < JA/2, this minimum is
unique. When KA > JA/2 a second (local) minimum appears
corresponding to both variables ES and Eσ pointing in the
negative y direction. We denote this minimum by (↓,↓). If
KA � JA the energy difference between the two minima is
1E ≈ 2JA.

Figure 8. Bias field H
′

EB as a function of the interfacial exchange
constant Jeb for different values of JA and KA. (I) JA = 0 and
KA � 1 (equation (9)); (II) JA = 0 and KA = 1 (equation (9));
(III) JA = 1 and KA = 0 (equation (10)); (IV) JA = 1 and KA = 1.

Let us consider now the descending branch of a hysteresis
cycle, that is, we saturate the sample with an external field
pointing in the positive y direction and decrease the field in
regular steps until the sample is saturated in the opposite
direction. The effect of the inverse applied field on the
magnetic configuration depends on the relative strength of
jeb = Jeb/JA. If jeb � 1, the FM layer aligns with the field
when h ≡ H

′

/JA ∼ jeb but the AFM layer still points up,
that is, the lower minimum (↑,↑) changes its configuration
to (↑,↓). Therefore, heb ∼ jeb. When jeb ∼ 1 (and therefore
heb ∼ 1), the second minimum corresponding to the (↓,↓)
configuration becomes absolute. As jeb increases further, the
configuration (↑,↓) remains as a local minimum, until above
certain value of jeb it loses stability. Hereafter we will consider
α = 1 (sc lattice) for simplicity.

The typical behavior of the bias field for finite values of
KA and JA is illustrated in figure 8. For low values of Jeb the
bias field shows a monotonic behavior, taking values between
those given by equations (9) and (10). In this regime, the local
minimum (↑,↓) of the energy remains stable and the AFM
layer forms a reversible quasi-domain wall, without inversion
of its magnetization. Above some maximum value Jmax

eb , the
local minimum loses stability, giving rise to an irreversible
inversion of the AFM layer magnetization and the system
exhibits finite coercivity and a sudden drop in the bias field.
However, at odds with the JA = 0 case, the bias field drops to a
finite value, after which it increases again monotonically with
Jeb (in agreement with the simulation results of section 3), due
to the competition between the anisotropy and interaction of
the AFM layer with the AFM bulk magnetization. For large
enough values of Jeb the bias field saturates to a smaller value
than for the KA = 0 case (H

′

eb ≈ JA). As KA increases both
the drop in the bias field and the value of Jeb where it happens
increase.

Next we compared the predictions of the model with
the Monte Carlo results. In figure 9 we illustrate the typical
behavior for large values of the anisotropy. We see that, as
temperature fluctuations decrease, the maximum in the bias

7
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Figure 9. Bias field HEB versus jeb for different values of the
temperature in the sc lattice, with the anisotropy value
KA/JA = 1.77.

field and the value of jeb where it occurs increase, due to
thermal activation. Of course, this depends on the time scales
involved in the hysteresis loop, i.e. on the rate of variation of
the field. If the rate of variation of the field is kept constant,
the Monte Carlo results systematically approach the behavior
predicted by the model as the temperature decreases, because
the characteristic activation time systematically increases.

The range of anisotropy values for which the present
approximation applies can be estimated as KA/JA >

2
3 since

it is known that in this range the domain wall width is equal
to one lattice parameter [32]. When the anisotropy decreases,
the domain wall thickness increases and more layers have
to be considered for a proper description. For small enough
values of the anisotropy a smooth domain wall is expected,
so the behavior of the system should be well described by
the MSBK model. The crossover to the regime of the MSBK
model behavior can be estimated as the point where the
energy of the domain wall equals the exchange energy at the
antiferromagnet, namely 2

√
KA JA = JA, which corresponds

to KA/JA = 0.25. This is illustrated in figure 10, where
we compare the maximum bias field hmax

EB = Hmax
EB /JA and

the minimum after the drop hmin
EB = Hmin

EB /JA (see figure 8)
with the bias field predicted by the MSBK model hEB =

2
√

KA /JA . The vertical dotted lines divide the graph into
three regions of qualitatively different behavior. The region
of validity of the present model (KA/JA >

2
3 ) is marked as

III. In this region a quasi-domain wall forms and, unlike for
the continuous approximation where the internal domain wall
spins change their orientation in a reversible way, now these
spins can have an irreversible or hysteretical behavior, like
when defects are present in the antiferromagnet [24].

In region I the continuous approach assumed in the
MSBK model is valid. In region II neither the present
model nor the MSBK model is expected to be valid, since
the micromagnetic approach fails because the magnetization
profile is not smooth on the atomic scale, but more than one
interfacial plane is involved in the magnetization process at
the interface. Moreover, we have seen from the Monte Carlo
simulations that in this region, lattice structure effects can be
very important. At the crossover point, KA/JA = 0.25, we see
that hmax

EB = hmin
EB , i.e., the hysteresis disappears as expected.

Figure 10. Reduced bias fields hmax
EB and hmin

EB as a function of the
reduced anisotropy KA/JA. The dashed line is given by the MSBK
model (hEB = 2

√
KA /JA ).

It is worth noting that size effects in the antiferromagnet
become relevant only in regions I and II, in particular when the
thickness of the antiferromagnet is comparable to the domain
wall size.

Let us analyze thermal effects in the bias field when the
AFM domain wall is pinned, i.e., it is not able to propagate
in the bulk of the AFM material. Suppose that the rate of
variation of the field is small enough that the system can
be assumed at thermodynamical equilibrium at every step of
the loop. Then, the equilibrium behavior can be obtained by
computing the partition function

Zn =

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφn exp

(
β

(
KA

n∑
i=1

cos2φi

− (−1)nσ0(T) cosφ1 −

n−1∑
i=1

cos(φi − φi+1)

))

×

∫ 2π

0
dθ eβ

ES· Eω, (11)

where we have taken αJA = 1, β = 1/kBT , φi and θ are the
angles with respect to the y axis of the ith AFM and the FM
spins, respectively, and Eω ≡ EH

′

+JEσn (J ≡ αJeb). We assumed
that the bulk AFM magnetization per layer is given by the
mean field approximation [10, 33], namely

σ0(T) = L(zβσ0(T)), (12)

where L(x) is the Langevin function and z is the number
of nearest neighbors which depends of the lattice structure
z = 6 (8) for the sc, (bcc).

The last integral in equation (11) can be easily solved,
obtaining the general expression (aside from an irrelevant
multiplicative factor)

Zn =

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφn exp

(
β

(
KA

n∑
i=1

cos2φi − (−1)n

× σ0(T) cos φ1 −

n−1∑
i=1

cos(φi − φi+1)

))
× I0(β ω(φn)), (13)

8
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Figure 11. Reduced bias field hEB versus jeb for different values of
KA/JA. Full lines: equilibrium curves for n = 1 at T/JA = 0.1.
Dotted lines: T/JA = 0.

where Iν(x) is the modified Bessel function and ω(φ) =√
H′2 + J2 + 2 J H′ cos φ. The average magnetization in the

FM layer can be obtained as mF
≡ 〈cos θ〉 = 1

β Zn

∂Zn

∂H′
and the

magnetization at the jth AFM layer, mAF
j ≡ 〈cosφj〉, can be

computed in a similar way. Solving numerically the previous
equations as functions of the applied field and temperature we
obtained the dependence of the bias field on temperature. We
considered the cases n = 1 and 2. No qualitative differences
were observed. We present here the results for n = 1, which
are adequate for illustrating the general behavior.

In figure 11 we compare the equilibrium reduced bias
field hEB as a function of jeb at low temperatures (full lines)
with the zero-temperature curves obtained from equation (5)
(dotted lines) for several anisotropy values. One can see that
for low interfacial interaction strength jeb� 1 the temperature
has little effect on the bias field. In both cases an increase
in the anisotropy enlarges the range of the linear behavior
expected in the strong anisotropy limit (see figure 8). This can
be easily understood if we recall that in this regime the system
behaves reversibly even at zero temperature. In other words,
in both cases the behavior of the system is governed by the
absolute minimum of the energy, so the relation jeb ∼ heb still
holds, no matter what the value of the anisotropy is.

The main difference appears for high values of jeb. First
of all, the drop in hEB observed in the T = 0 curves is absent
in the thermalized curves, since of course at equilibrium
there is no coercivity. Second, the bias field hEB saturates to
the value hEB ∼ 1 as jeb increases (jeb > 1) independently
of the anisotropy, contrasting with the case for the T = 0
curves where the maximum value of hEB increases with
the anisotropy. When jeb � 1 the applied field changes the
relative depth of the two energy minima. When h ∼ 1 the two
minima have the same energy and the magnetization at the
FM layer inverts: mF

= 0, independently of the anisotropy.
Therefore, heb ∼ 1, i.e. the bias field reaches the saturation
value observed in figure 11. On the other hand, the bias field
at zero temperature continuously grows with the anisotropy
due to the fact that the energy barriers between the minima
increase with the anisotropy.

It is worth remarking that, even at equilibrium, the bias
field exhibits a maximum at jeb ∼ 1 for large values of the
anisotropy.

5. Discussion

We found that, in fully uncompensated interfaces, the bias
field displays a non-monotonic dependence on the interfacial
interaction strength. Depending on the temperature and on the
anisotropy to exchange ratio KA/JA of the antiferromagnet,
HEB can present a peak as a function of Jeb. In particular, the
peak is observed at low temperatures and high enough ratios
KA/JA. When it is present, the peak position moves toward
lower values of Jeb as the temperature is increased, while
below a certain temperature (low compared with the blocking
temperature) the peak disappears. The peak is associated with
the onset of coercivity, i.e. with the appearance of hysteresis
for large values of Jeb.

When KA/JA >
2
3 (region III in figure 10), the behavior

of the bias field is completely determined by the dynamics of
the interfacial AFM layer. For low values of Jeb the interfacial
layer rotates coherently forming a quasi-domain wall that
changes reversibly with the applied field. In this regime the
bias field increases almost linearly with Jeb and thermal
effects are negligible. Above a certain critical value of Jeb
the quasi-domain wall loses stability and the magnetization
of the interfacial AFM layer changes irreversibly. In other
words, the bias field is controlled by the stability of the
interfacial layer. This scenario, supported by both the Monte
Carlo simulations and the simple layered model introduced
here, explains why the bias field can be drastically reduced by
increasing the interfacial interaction strength (figure 2). Also
in this regime (KA/JA >

2
3 ), the behavior of the bias field is

independent of the lattice structure. In other words, a change
in the crystalline structure is just equivalent to a rescaling of
the effective anisotropy of the antiferromagnet.

When KA/JA <
2
3 , the system can still exhibit hysteresis

and a peak in the bias field (region II in figure 10), but the
width of the domain wall increases as KA/JA decreases. In
this case the bias field is controlled by the intrinsic pinning
due to the anisotropy. Namely, for large values of Jeb the bias
field reduces because of the depinning of this domain wall,
which depends strongly on the lattice structure. In particular,
preliminary results showed that the pinning is stronger in the
bcc than in the sc lattice, due to canting effects in the AFM
layers. A detailed study of such an effect is underway and will
be published elsewhere.

In both regimes (II and III) the maximum bias field
is smaller than the value predicted by the MSBK model.
These results offer certain insights into experimental findings
for FeF2 systems [8, 9] (KA/JA > 2

3 ), where in a fully
uncompensated interface the bias field is much lower than
expected. In particular, it becomes noticeable at very low
temperatures. According to our results, if the interfacial
strength interaction is strong the bias field becomes non-null
only at very low temperatures compared with the Néel
temperature of the antiferromagnet.

9
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Summarizing, depending on the anisotropy to exchange
ratio KA/JA the bias field is controlled either by the intrinsic
pinning of an extended domain wall parallel to the interface
(low anisotropy regime) or by the stability of the first AFM
interfacial plane near the interface (sharp domain wall limit).
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