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Finite-temperature phase diagram of ultrathin magnetic films without external fields

Santiago A. Pighin,1,* Orlando V. Billoni,2,† and Sergio A. Cannas2,‡
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We analyze the finite-temperature phase diagram of ultrathin magnetic films by introducing a mean-field
theory, valid in the low-anisotropy regime, i.e., close to the spin reorientation transition. The theoretical results
are compared with Monte Carlo simulations carried out on a microscopic Heisenberg model. Connections
between the finite-temperature behavior and the ground-state properties of the system are established. Several
properties of the stripe pattern, such as the presence of canted states, the stripe width variation phenomenon, and
the associated magnetization profiles, are also analyzed.
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I. INTRODUCTION

Despite the increasing growth of knowledge about magnetic
ordering in ultrathin magnetic films during the last decade,
from both experimental [1–10] and theoretical [7,11–17] work,
there are still many open questions, especially regarding
its finite-temperature behavior. One of the main obstacles
to advance in these studies is the long-range character of
the dipolar interactions, which are fundamental to explain
pattern formation in those systems. In particular, numerical
simulations, although they have been of great aid [18–25],
are strongly limited by finite-size effects. To avoid them, the
system size must be large enough to contain a large number of
domains. The main problem relates not to the direct influence
of dipolar interactions on the boundary conditions, but to the
fact that the basic spatial scale for these systems, namely, the
typical domain size, scales exponentially with the exchange–
to–dipolar coupling ratio δ at very low temperatures [26] and
is roughly linear with δ close to the transition to a disordered
state [2,7,27]. Typical values of δ in ultrathin magnetic films,
like Fe-based films, are about δ ∼ 100 [16], thus implying
the necessity for very large system sizes to accommodate a
reasonable number of domains. To perform simulations with
those sizes has represented, up to now, a formidable task, even
in the best case (close to the transition). Therefore, knowledge
about how the different thermodynamical properties scale
with δ would be very helpful for estimattion of whether the
numerical results for relatively small values of δ (typically
between 3 and 5 to date) can be extrapolated to more realistic
values.

For analysis of the magnetic properties of ultrathin films, the
out-of-plane anisotropy–to–dipolar coupling η is also impor-
tant. The system behavior appears to be strongly dependent on
experimental features that modify it, such as the film thickness
and the sample preparation conditions. A strong dependence is
also observed in numerical simulations for δ = 3 [23]. For low
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η values, a spin reorientation transition (SRT) from a uniformly
magnetized planar phase into a perpendicular striped phase can
happen at finite temperature T (in the absence of an external
field), in agreement with a previous theoretical prediction [28].
On the other hand, for high values of η there is no planar
ferromagnetic (PF) phase and the system undergoes a direct
transition from the striped state to a disordered one. From
these numerical results a global (η,T ) phase diagram was
obtained, which is in qualitative agreement with a variety of
experimental results [23]. However, for such a small value of
δ certain features can be very different from those expected
for large values of δ. For instance, at zero temperature the
striped equilibrium state for η above certain critical value ηc

(where the SRT occurs) is characterized by a stripe width
almost independent of η for δ < 5. On the contrary, for
values of δ � 5, a strong variation of the equilibrium stripe
width with η emerges when η > ηc [16]. Another feature
that depends strongly on the interplay between exchange
and anisotropy is the structure of the magnetization pattern
close to the SRT. At zero temperature and close to the SRT,
the out-of-plane component of the magnetization presents
an almost-sinusoidal shape with a large in-plane component,
displaying a canted structure [16]. For small values of δ (δ < 5)
such a structure remains for a relatively large interval of values
of η above the SRT and changes abruptly to a completely
perpendicular striped state with sharp domain walls (Ising-like
state). Consistently, numerical evidence of a canted structure
with a sinusoidally shaped magnetization profile close to
the SRT at finite temperature has recently been reported for
δ = 4.5 [24]. However, as δ increases, the range of anisotropy
values at which this canted state is present shrinks at zero
temperature [16], becoming almost negligible for realistic
values of δ. Hence, it is not clear whether or not it is expected
to be relevant at finite temperature.

In this work we analyze the finite-temperature phase
diagram in the low-anisotropy region (close to the SRT)
and several related properties using a coarse-grained based
mean-field model for ultrathin magnetic films and Monte
Carlo (MC) simulations on a microscopic model. The main
objective of the paper is to discuss which of the observed
features of the phase diagram for low values of δ are expected
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to reflect the large-δ behavior. Several properties of stripe
patterns are also analyzed. The plan of the paper is as follows:
in Sec. II we introduce the coarse-grained model and calculate
the associated mean-field phase diagram. In Sec. III we present
MC simulation results for a Heisenberg model and compare
them with the previous ones. In Sec. IV we discuss our results.

II. THE MEAN-FIELD MODEL

We consider a general phenomenological Landau-Ginzburg
free energy for a two-dimensional ultrathin magnetic film of
the form

F [M] = 1

2

∫
d2x

{
( ∇M(x) )2 + r0M2(x) + u

2
M4(x)

}

+ 1

2δ

∫
d2x

∫
d2x′

×
[

M(x) · M(x′) − 3(n · M(x))( n · M(x′) )

|x − x′|3
]

−η

δ

∫
d2x M2

z (x), (1)

where M = (Mx,My,Mz) is the coarse-grained magnetization,
δ is the exchange-to-dipolar coupling ratio, η is the anisotropy-
to-dipolar coupling ratio, and n is a unit vector pointing in
the x − x′ direction. A cutoff at some microscopic scale �

is implied in the second integral. We assume � = 1. The
temperature dependency comes through r0 = r0(T ).

In order to minimize Eq. (1), we propose a variational stripe-
like solution, i.e., a modulated solution along the y direction,
where only Bloch walls between domains are allowed [26],
namely, M(x) = M(x) and Mx(x) = 0. We also assume that
the modulus of the magnetization is uniform, i.e.,

M2
y (x) + M2

z (x) = M2 ∀ x.

This approximation is expected to break down for large
enough values of η, where the statistical weight of spin
configurations with large in-plane components tends to 0, but
nonuniform out-of-plane configurations are still expected to
minimize the free energy [17]. In fact, in the η → ∞ limit
the whole effective free energy, (1), ceases to be valid, being
replaced by a functional of a scalar order parameter (local
out-of-plane magnetization), without the anisotropy term [17].

Under the present assumptions, the following form of the
dipolar term can be assumed [27]:

L

δ

∫
dx

∫
dx ′ Mz(x)Mz(x ′)

|x − x′|2 ,

where we have neglected the self-energy term arising from
the dipolar energy, since it just implies a constant shift in the
anisotropy coefficient η. Then the variational free energy per
unit area reduces to

f [M] = 1

2L

∫
dx

{ (
∂My

∂x

)2

+
(

∂Mz

∂x

)2

+ r0M
2 + u

2
M4

}

+ 1

δL

∫
dx

∫
dx ′ Mz(x)Mz(x ′)

(x − x ′)2
− κ

Lδ

∫
dx M2

z (x),

(2)

where κ = η − α with α = 3.485 . . . [16]. We can write
Mz(x) = M φ(x), where |φ(x)| � 1. Then

f = 1

2
(r0(T ) + 2 e/δ)M2 + u

4
M4, (3)

where

e[φ(x)] = δ

2L

∫
dx

{(
∂
√

1 − φ2

∂x

)2

+
(

∂φ

∂x

)2 }

+ 1

L

∫
dx

∫
dx ′ φ(x)φ(x ′)

(x − x ′)2
− κ

L

∫
dx φ2(x),

(4)

i.e., e[φ(x)] is the microscopic energy per spin of the associated
microscopic model (Heisenberg model with out-of-plane
anisotropy, exchange, and dipolar interactions) for a spin den-
sity profile (Sx(x),Sy(x),Sz(x)) = (0,

√
1 − φ(x),φ(x)). Its

minimal energy configuration as a function of the microscopic
parameters (δ,η) can be described by variational expressions
characterized by different sets of variational parameters
p1,p2, . . ., which are described later. Minimization of the free
energy, Eq. (3), leads to

∂f

∂M
= M(r0 + 2 e(p1,p2, . . .)/δ + uM2) = 0, (5)

∂f

∂pi

= M2

δ

∂e

∂pi

= 0. (6)

We also have

∂2f

∂M2
= r0 + 2e/δ + 3uM2, (7)

∂2f

∂M∂pi

= 2M

δ

∂e

∂pi

, (8)

and

∂2f

∂pi∂pj

= 1

δ
M2 ∂2e

∂pi∂pj

. (9)

M = 0 is always a solution of the extremal equations (5) and
(6) and the corresponding free energy f = 0 is independent
of the parameter values of (p1,p2, . . .). Hence, all the second
derivatives are 0, except

∂2f

∂M2

∣∣∣∣
M=0

= r0 + 2e/δ, (10)

which controls the stability of the M = 0 solution.
An ordered solution (local minimum of f ) with M 	= 0

exists whenever r0 + 2 e/δ < 0. From Eqs. (5) and (6) we
have that

M2 = −(r0 + 2e/δ)/u (11)

and
∂e

∂pj

= 0. (12)

Hence, from Eqs. (7) and (11) it follows that

∂2f

∂M2
= 2uM2,

and from Eqs. (8) and (12),

∂2f

∂M∂pi

= 0.
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Then the Hessian matrix of f has a positive eigenvalue 2uM2

and a diagonal block that equals M2He/δ, where He is the
Hessian matrix of e. Therefore, a local minimum of f has to
be a local minimum of e. The free energy of an ordered phase
is

f = − 1

4u
(r0(T ) + 2emin/δ)2. (13)

The extremal properties of e are well known [16,27]. For
low values of the anisotropy η the minimum of e corresponds
to a PF configuration φ(x) = 0. Above a certain critical
value ηc(δ) = α + π2/3 − π2/2δ [16,27], e is minimized by a
striped profile with periodicity 2h (h is the stripe width). Close
to ηc the domain structure corresponds to a canted sinusoidal
wall profile (SWP), where |φ(x)| = cos θ is constant inside
the striped domains (0 � θ � π/2 is the canting angle) and
presents a sinusoidal structured wall of width w [27]. The
energy of the SWP is given by

eSWP(s,k,�) = δk2

2�
(1 −

√
1 − s2)

+ s2

(
(π2/3 − η)(1 − �/2) − π k

2
G(�)

)
,

(14)

where s = cos θ , k ≡ π/h, a � ≡ w/h, and [27]

G(�) = 16

π2

∑
m=1,3,...

1

m(1 − m2�2)2
cos2

(
πm�

2

)
. (15)

Different approximations of a high accuracy for G(�) are
available [2,27], so the values of (s,k,�) that minimize Eq. (14)
can be found numerically for arbitrary values of (δ,η). As
the value of η is raised above ηc the canting angle decreases
rapidly from θ = π/2 at η = ηc to θ ≈ 0 and the striped
pattern that minimizes e changes to a hyperbolic wall (HPW)
magnetization profile whose energy is given by [16]

eHPW(k,�) = γ (1 − �/2) + 4δ

π2

k2

�
− 4k

π
ln

(
6π

5�

)
, (16)

where γ = A − η, with A = 4.5327 . . . . Equation (16) can be
easily minimized [16].

If r0 < 0 and η < ηc (emin = 0), the global minimum of
f corresponds to M2 = −r0/u and s = 0, that is, to a PF
state with free energy f = −r2

0 /4u. When r0 = 0 and η < ηc

the system undergoes a second-order phase transition between
the paramagnetic state and the PF one, independently of η.
We assume hereafter that r0 = a(T − TF ), where TF is the
paramagnetic-to-PF transition temperature.

When T < TF and η � ηc the SWP configuration with free
energy given by Eq. (13) is the stable solution for values of
η close to ηc. Since the striped order emerges continuously,
the SRT at η = ηc, according to the present approximation,
is a second-order one. As η is further increased there is
an energy crossing at a certain value of η and the stable
configuration changes into an HWP. Hence, for ηc � η � η∗

FIG. 1. Mean-field phase diagram for δ = 6 and a/TF = 1. Solid
lines correspond to second-order phase transitions. The dashed line
marks the crossover between canted-stripe and perpendicular-stripe
configurations; it is estimated arbitrarily as the region above which
the maximum in-plane component of the magnetization is less than
5% of the saturation magnetization M (s < 0.05).

the stable configuration is a canted striped one, while for
η > η∗ the stripes are fully saturated in the out-of-plane
direction inside the domains (we call this state an “Ising striped
configuration”).

If T > TF (r0 > 0) and η > ηc, the global minimum
corresponds to the modulated phase when r0 + 2emin/δ < 0,
i.e., T > TF − 2emin/aδ. Therefore, there is a transition line
at Tc(η) = TF − 2emin(η)/aδ. The order parameter changes
continuously at Tc (M2 = −(r0 + 2emin) = 0), but s changes
discontinuously. In Fig. 1 we illustrate the typical topology of
the phase diagram for the particular case δ = 6. All the solid
lines in Fig. 1 correspond to second-order phase transitions.
We also show the crossover line between the region where
the magnetization profile shows a significative canting angle
(canted stripes) and the region where the local magnetization
is almost perpendicular to the plane (perpendicular stripes).

Although the paramagnetic solution is not a global min-
imum of f when η > ηc and T > TF , it could still be a
local minimum provided that r0 + G < 0 for some values
of s and k0. From Eq. (10), this condition ensures the
local stability against variations of M . However, since all
the rest of the second derivatives cancel, complete stability
of the paramagnetic solution is beyond the linear analysis.
We verified numerically that indeed the paramagnetic phase
remains locally stable (metastable) below T = TF at a fixed
η > ηc. Such metastability is a result of the high degeneracy of
the paramagnetic solution under the present approximation, so
it appears to be a spurious result. However, it can be indicative
of a change in the order of the transition if the approximation is
improved. Indeed, there are several lines of evidence indicating
the first-order nature of the stripe-disordered phase transition
[11,19,23].

III. MONTE CARLO SIMULATIONS

In order to compare the mean-field results with the
behavior of a specific microscopic model, we performed
MC simulations using a Heisenberg model with exchange
and dipolar interactions, as well as uniaxial out-of-plane
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anisotropy. The model, which describes an ultrathin magnetic
film (see Ref. [16] and references therein) can be characterized
by the dimensionless Hamiltonian,

H = −δ
∑
〈i,j〉

�Si · �Sj +
∑
(i,j )

[ �Si · �Sj

r3
ij

− 3
(�Si · �rij )(�Sj · �rij )

r5
ij

]

− η
∑

i

(
Sz

i

)2
, (17)

where the exchange and anisotropy constants are normalized
relative to the dipolar coupling constant, 〈i,j 〉 stands for a
sum over nearest-neighbor pairs of sites in a square lattice
with N = Lx × Ly sites (the lattice parameter is taken equal
to 1), (i,j ) stands for a sum over all distinct pairs and
rij ≡ |�ri − �rj | is the distance between spin i and spin j . Each
spin is defined by a unit vector with components Sx , Sy ,
and Sz. All the simulations were done using the Metropolis
algorithm, and periodic boundary conditions were imposed on
the lattice by means of the Ewald sum technique. We focus
our simulations on the case δ = 6, where the system presents
a canted equilibrium state at zero temperature for a wide range
of anisotropy values [16].

The phase diagram was obtained by measuring the out-of-
plane magnetization,

Mz ≡ 1

N

∑
�r

〈Sz(�r)〉 (18)

(the in-plane components are defined in a similar way); the
in-plane magnetization,

M|| ≡
√

(Mx)2 + (My)2; (19)

and an orientational order parameter [23],

Ohv ≡
〈∣∣∣∣nh − nv

nh + nv

∣∣∣∣
〉
, (20)

where 〈· · ·〉 stands for a thermal average, nh (nv) is the number
of horizontal (vertical) pairs of nearest-neighbor spins with an
antialigned perpendicular component, i.e.,

nh = 1

2

∑
�r

{1 − sig[Sz(rx,ry), Sz(rx + 1,ry)]}, (21)

nv has a similar definition, and sig(x,y) is the sign of the
product of x and y. To obtain the stripe width of the modulated
states we considered the structure factor |Ŝ(�k)|2, where

Ŝ(�k) = 1√
N

∑
�r

Sz(�r)e−i�k·�r . (22)

The stripe width was calculated using the expression

h = π/kmax, (23)

where kmax is the modulus of the wave vector that maximizes
|Ŝ(�k)|2.

In order to find the equilibrium phase diagram, we carried
out the simulations with two protocols for the independent
parameter (temperature, anisotropy, or external field). In the

first protocol, we varied the independent parameter linearly
with the simulation time, increasing or decreasing it at a given
rate r , keeping the rest of the parameters fixed. For instance,
if we choose the temperature, then T (t) = T (0) + rt , where t

is the simulation time measured in units of Monte Carlo steps
(MCSs). Each MCS corresponds to N single-spin updates of
the Metropolis algorithm. The initial spin configuration at T (0)
was previously obtained by performing te MCSs to equilibrate.
The order parameters were calculated along the simulation
and averaged over many realizations to improve statistics.
We call this protocol “linear variation of parameters.”The
second one was a ladder protocol. For instance, in the
case where T is the independent parameter, the system is
initialized at the paramagnetic state at a high temperature,
and then the temperature is reduced at discrete steps. The
initial configuration for each temperature is the last one of the
previous step. At each step we discarded the first te MCS in
order to equilibrate, then we calculated the averages over the
next tm MCS.

First, we calculated M|| and Ohv as a function of
the anisotropy for two fixed temperatures. We applied the
linear-variation-of-parameters protocol to increase η from a
small value η < ηc, starting from an equilibrated in-plane
ferromagnetic configuration. In these simulations we used
Lx = Ly = L, with L = 80 and 120. The parameter variation
rate r ranged from r = 10−5 to r = 10−7, depending on the
temperature and the system size. The typical behavior of the
order parameters at low temperatures (T = 0.1 and T = 1.0)
is illustrated in Fig. 2. Three behaviors can be identified: the
PF state at low anisotropies, characterized by M|| 	= 0 and
Ohv = 0; a canted-stripe state at intermediate values of η, with
both M|| 	= 0 and Ohv 	= 0; and a perpendicular-stripe state at
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FIG. 2. (Color online) In-plane magnetization and orientational
order parameter as a function of anisotropy for δ = 6. T = 0.1 (upper
panel) and T = 1.0 (lower panel).
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T
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0.3

M
||

O
hv

FIG. 3. (Color online) Orientational order parameter [(red) cir-
cles] and in-plane magnetization [(black) squares] as a function of
temperature for δ = 6 and η = 8.7.

large enough values of η, characterized by M|| = 0 and Ohv 	=
0. At each temperature the transition points are identified
with the values at which the corresponding order parameter
becomes 0.

At large anisotropy values (η > 8.4), the in-plane ferro-
magnetic phase is absent for any value of the temperature.
The system undergoes a direct transition from an almost-
perpendicular-stripe state to a paramagnetic state as the
temperature is increased. This can be seen in Fig. 3, where
the order parameters were computed using a ladder protocol
cooling from T = 4.0, with L = 120, te = 105, and tm = 105.

By means of the methods described above, we obtained the
phase diagram shown in Fig. 4. Although the global topology
of this diagram is in agreement with that obtained by the
mean-field theory (see Fig. 1), some noticeable differences
exist, which appear to be an artifact of the mean-field approach.
Some of them are discussed in Sec. IV. The presence of
a canted-stripe region is in agreement with previous MC
calculations carried out by Whitehead et al. in Ref. [24]
for δ = 4.5 and with the zero-temperature behavior of the
model [16]. In particular, our results show that the canted
region is larger than that corresponding to δ = 4.5.

0 1 2 3 4

T

6

6.5

7

7.5

8

8.5

η

Perpendicular Stripes

Planar ferromagnet

Paramagnet

Canted 
 stripes

FIG. 4. Monte Carlo phase diagram for δ = 6.

0 0.5 1 1.5 2

T

8

10

12

14

16

h

L=80

L=120

FIG. 5. (Color online) Stripe width as a function of temperature
for δ = 6 and η = 7.5. The simulation parameters were L = 80,
r = −10−6, te = 105, and tH = 105 (circles) and L = 120, r− =
10−7, te = 106, and tH = 106 (squares). Error bars are the standard
deviations taking into account many realizations; some of them are
omitted for clarity.

We explored the canted region looking at the variation of the
stripe width h. This is a difficult task because the stripe width
variation is mediated by the formation of topological defects
(usually stripe dislocations) which need long simulation times
to nucleate and move. An acceleration of this process was
obtained when we added an in-plane external-field term to
Eq. (17) of the form −ξ

∑
i(S

x
i ) and applied an LPV protocol

with ξ as the free parameter. The value of ξ varies from ξ (0) =
Hx , where Hx is an external magnetic field strong enough to
saturate the magnetization in the x direction, to 0 (zero-field
condition). After several tests, we found that Hx = 0.5 was
optimal for all the regions in the phase diagram studied in this
work. Then tH extra MCSs were performed before calculating
h. The stripe width shown as a function of temperature for
η = 7.5 in Fig. 5 is the result of an average performed over
several realizations of the LPV protocol and the error bars
correspond to the dispersion of h.

The stripe width at the SRT is h = 10 and remains constant
down to T = 0.75, where it displays a steep increase. The
widest stripes are observed at low temperatures, reaching
a maximum value of h ∼ 14, close to the zero-temperature
value, h = 17, calculated previously [16]. The h values
obtained for both system sizes are almost undistinguishable,
showing that finite-size effects are negligible.

We next analyzed the stripe width variation with the
anisotropy, which is closely related to the variation with
the film thickness d. Indeed, previous numerical simulations
suggest that the effective out-of-plane anisotropy varies in-
versely with the film thickness η ∼ 1/d [23]. A common
experimental technique to analyze the effects of the film
thickness on the magnetic patterns is to take images on
wedge-like ultrathin films (e.g., Refs. [2,29]). We modeled
these systems assuming the relation η = 1/d(x), where d(x)
is the local film width, which depends on the x position. The
simulations were performed over rectangular lattices of size
Lx = 360 and Ly = 180 using the external field protocol used
in the study of the stripe width variation and periodic boundary
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FIG. 6. Snapshots of the spin components for two wedges in
equilibrium for δ = 6 at T = 1. The film width functional dependence
varies as a linear function of x (left) or as equal-spaced steps of values
η = 8, 7, 6 (right), as schematized at the bottom of the columns.
Simulation parameters are r = 10−5 and te = 105.

conditions in the y direction. The results are shown in Fig. 6
in two columns, each column being related to different d(x)
assumptions. The left one corresponds to a continuous linear
variation of d(x) = a + bx, where a and b were chosen such
that η varies from η = 6 at x = 1 to η = 8 at x = 300. The
right column corresponds to a ladder structure, where d(x)
varies at equal-spaced steps corresponding to the values η = 8,
7, and 6 from left to right. The figure presents typical snapshots
of equilibrated magnetic patterns at a fixed temperature. Each
pixel represents a spin component in gray scale, ranging from
white when the value is 1 to black when it is −1. From
the Sz component behavior it turns out that the stripe width
decreases as x increases until the SRT. Once the SRT is
reached, the spins are ferromagnetically ordered in the same
direction as the in-plane component of the magnetization in
the walls. Moreover, the Sx components in the walls are along
the stripe direction, showing the they are Bloch’s walls as
expected [26]. Stripe width reduction occurs by the insertion of
new stripes from the low-anisotropy (higher thickness) region,
in agreement with experimental results on Fe on Cu [1] and
Fe/Ni on Cu [2] films. These results give further support to the
assumption η ∼ 1/d and suggest that the observed stripe width
variation with film thickness is due to the induced anisotropy
gradient. In fact, the η ∼ 1/d dependency is probably related
to the contribution to the effective anisotropy coming from
the short-range part of the dipolar energy, which can be
assumed tp be proportional to the film thickness [30] (at least
in the ultrathin limit). The stripe width variation with η in the
wedge-like film in Fig. 6 is shown in Fig. 7. We also performed
a series of simulations on lattices with Lx = Ly and uniform
anisotropy, for different values of η. The equilibrium average
stripe width agreed with that observed in the wedges.

6.8 7.2 7.6 8

η

8

10

12

14

16

h

T = 1.0

FIG. 7. (Color online) Stripe width as a function of η correspond-
ing to the wedge-like film in the left panel in Fig. 6 (δ = 6). The
dashed line corresponds to a parabolic fiting.

We verified that the increase in the stripe width as η

increases follows a series of steps in a similar way to that
observed at zero temperature [16]. In other words, the canted
region in the phase diagram in Fig. 4 is composed of a
series of transition lines (not shown, for clarity) that follow
a similar direction as the SRT line and converge to the
zero-temperature transition points between different stripe
width ground states [16]. Every time the anisotropy crosses one
of these lines the stripe width increases by 1 unit (dynamically
mediated by defects). In this way, the stripe width variation
with temperature (horizontal crossing of those lines in Fig. 4)
is related to the ground-state structure of the system. In this
context, the absence of stripe width variation with temperature
for η > 8.5 is related to the fact that for δ = 6 the ground-state
stripe width has already saturated [16].

Finally, we analyzed the magnetization profile variation of
the stripe pattern as a function of anisotropy, which is shown
in Fig. 8. These results were obtained by averaging over 25 ad-
jacent profiles Sz(x,y0) in a system with uniform anisotropy in
equilibrium at T = 0.5. Topological defects like dislocations
were avoided in the calculation. We thermalized the system
using the external-field protocol with parameters Lx = Ly =
144, r = 10−5, te = 105, and tm = 104. At η = 6.45 the system
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7.4
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6.45

η

FIG. 8. (Color online) Mean stripe magnetization profiles in
the perpendicular direction for δ = 6 at T = 0.5. Each curve is
the average of consecutive profiles along a stripe, and error bars
correspond to standard deviations.
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is in the canted state, and the walls are wide with sinusoidal-
like shape. The perpendicular components of the spins
at the center of the stripes is lower than 1, meaning that all
the spins have an in-plane component aligned with the stripes,
thus contributing to the in-plane magnetization as pointed
out in Fig. 2. As the anisotropy increases, the spins at the
center of the stripes become perpendicular to the plane and
the walls narrow but are still extended. The same behavior of
the magnetization profile is observed at zero temperature [16].
Finally, at high enough anisotropy values (η � 8.0), the stripes
widen and the wall widths w become close to 1.

It is noteworthy that the fluctuations of the spin directions
at low and intermediate anisotropy values are stronger within
the walls, as can be observed from the error bars. This suggests
that these spins are less restricted from moving and therefore
facilitate defect mobility. This explains the higher efficiency
of the previously used in-plane field protocol to obtain thermal
equilibration, through the interaction between the external field
and the large in-plane components inside the walls.

Interestingly, the change in the magnetization stripe profile
as the anisotropy increases closely resembles that observed
as the temperature decreases, both experimentally [7] and in
mean-field theories [7,17].

IV. DISCUSSION

Our mean-field results suggest that the global topology of
the phase diagram observed numerically for low values of δ

(both from previous [23,24] and from the present simulations)
is robust, at least under the validity conditions of the present
approximation, namely, in the low-anisotropy region close
to the SRT. For large enough values of the anisotropy the
approximation breaks down, as evidenced by the unphysical
monotonous increase in the transition temperature between the
stripe and the paramagnetic phases in the large-η region. This
breakdown is on the basis of the present MF approximation,
namely, in the effective free energy, Eq. (1). Such a free
energy can be obtained variationally from a partition function
Z = Tre−βH [M], where the coarse-grained Hamiltonian H [M]
has the same structure as Eq. (1) [31]. The effective free
energy F [M] is then the zero-order term in an expansion of
H [M] around its minimum when fluctuations are neglected.
If the η → ∞ limit is taken a priori of such an expansion,
all the configurations with nonzero in-plane magnetization
components get zero statistical weight, and a different Landau-
Ginzburg free energy (which depends only on the scalar field
Mz) is obtained [17]. Therefore, the correct stripe-paramagnet
critical temperature must converge to the (η-independent)
value predicted by the last free energy when η � 1. In
other words, even within the mean-field theory the correct
behavior cannot be obtained as the η → ∞ limit in the present
approach.

While the previous difference (vertical line vs finite slope)
between the MC and the MF phase diagrams is specific to
the present approach, some others appear to be associated
with general features of the mean-field theory. For instance,
the transition line between the planar ferromagnet and the
canted-stripe phases computed within the MF approximation
is horizontal, while it shows a finite slope when extracted
from MC simulations. This seems to be a direct effect of

neglecting thermal fluctuations, since theoretical works show
that those fluctuations renormalize the dipolar and anisotropy
coupling parameters in such a way that the anisotropy K(T )
diminishes faster than the dipolar coupling constant g(T )
(in our notation, η = K/g) [28,32]. Those works predict a
linear dependence of the reorientation transition temperature
with the anisotropy with a positive slope, which is roughly
in agreement with the transition lines obtained from MC
simulations. Finally, the transition line between the planar
ferromagnet and the paramagnetic phases is a vertical straight
line in the MF diagram while it shows some slope in the MC
diagram. This is because of the simplifying assumption that
the (coarse-grained) phenomenological transition temperature
TF is independent of η. While the tendency of the transition
line in the MC diagram suggests that this assumption may
appropriately describe the very-low-η limit, it clearly fails for
large enough values of η. An increase in the perpendicular
anisotropy should destabilize the PF phase, thus decreasing
the critical temperature.

One fact that emerges, from both our mean-field and our MC
results, is the strong influence of the ground-state properties on
the finite-temperature behavior close to the SRT. One example
is the presence of canted states close to the SRT line. Compared
with previous MC results for δ = 4.5 [24], the phase diagram
canted region becomes wider for δ = 6, consistent with the
zero-temperature phase diagram [16]. However, the range of
values of η where the ground-state canted angle is different
from 0 becomes extremely narrow as δ is increased further.
Hence, our mean-field results suggest that those states would
be present at finite temperature only very close to the SRT
line for any realistic value of δ. Another example is the stripe
width variation and the magnetization stripe profile change
with η, which closely follow the zero-temperature behavior
[16]. Moreover, the qualitative agreement between our MC
simulations on wedges and experimental results on Fe/Ni
ultrathin films [2] supports an inverse relationship between
out-of-plane anisotropy and film thickness η ∼ 1/d.

The correlation between the stripe width variation with the
temperature and that with the anisotropy observed close to the
SRT in the present simulations is another interesting fact. As
previously pointed out [1], varying the film thickness (always
in the ultrathin limit) produces an effect similar to that of
changing the temperature, thus leading to an “inverse effective
temperature” interpretation of the thickness. Considering the
relation η ∼ 1/d, this appears to be consistent with the
similarity observed between the change in the magnetization
profile when η is varied and that observed in Fe films when
the temperature is varied [7]. This set of similarities suggests
that a deeper analysis of the interplay between temperature
and anisotropy could shed additional light on the origin of
the strong stripe width variation with temperature observed in
ultrathin magnetic films.
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