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Modulated systems in external fields: Conditions for the presence of reentrant phase diagrams
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We introduce a coarse-grained model capable of describing the phase behavior of two-dimensional
ferromagnetic systems with competing exchange and dipolar interactions, as well as an external magnetic
field. An improved expression for the mean-field entropic contribution allows us to compute the phase diagram
in the whole temperature versus external field plane. We find that the topology of the phase diagram may
be qualitatively different depending on the ratio between the strength of the competing interactions. In the
regime relevant for ultrathin ferromagnetic films with perpendicular anisotropy we confirm the presence of
inverse-symmetry breaking from a modulated phase to a homogeneous one as the temperature is lowered at
constant magnetic field, as reported in experiments. For other values of the competing interactions we show
that reentrance may be absent. Comparing thermodynamic quantities in both cases, as well as the evolution of
magnetization profiles in the modulated phases, we conclude that the reentrant behavior is a consequence of the
suppression of domain wall degrees of freedom at low temperatures at constant fields.
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I. INTRODUCTION

The field versus temperature phase diagram of ultrathin
ferromagnetic films displaying stripe, bubbles, and homoge-
neous phases has attracted attention in recent years, mainly
due to the existence of new experimental results from which
the phase diagram and other interesting characteristics of the
phase transitions have been reported [1,2]. Early theoretical
results on the phase diagram from an effective model with
dipolar interactions were challenged [3] by experiments.
The main qualitative difference between early phase dia-
grams and recent experimental results was the observation
of an inverse-symmetry-breaking (ISB) transition, with a
sequence of homogeneous-modulated-homogeneous phases,
as the temperature is lowered at fixed external field [1,2].
The existence of an ISB transition in such systems had been
predicted in the pioneering work of Abanov et al. [4], using
a phenomenological approach. Subsequent theoretical work
analyzed the existence of ISB from a scaling hypothesis [5,6].
Reentrant behavior was shown on a coarse-grained model
of the Landau-Ginzburg type [7], although no attempt was
made to explain the nature of the reentrance, mainly due to
limitations in the very definition of the model, which was
not able to capture the low-temperature sector of the phase
diagram. Recently, Velasque et al. studied a mean-field version
of the dipolar frustrated Ising ferromagnet (DFIF), and showed
that the stripe phase in a field presents reentrant behavior [8].
Furthermore, by comparing the DFIF with two simpler models,
the authors concluded that the reentrant behavior in this kind
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of system has its origin in the entropy gain from domain wall
degrees of freedom of modulated structures.

Inverse freezing in magnetic models has been observed
mainly in spin glasses and disordered systems, in which
frustration leads to complex entropic contributions [9–12].
Nevertheless, the question of the physical origin of reentrant
behavior remains obscured by the inherent complexity of
the thermodynamic behavior of disordered systems. Magnet-
ically frustrated systems without quenched disorder, where
low-temperature phases and ground states display known
symmetries, seem to be better candidates for getting a better
understanding of ISB [5,7,8]. Besides ultrathin ferromagnetic
systems with dipolar frustration, other frustrated systems
without quenched disorder showing inverse transitions are,
e.g., the J1-J2 model in the square lattice [13,14] and the axial
next-nearest-neighbor Ising (ANNNI) model [15].

The aim of the present work is twofold: First, we introduce
a coarse-grained model for ultrathin ferromagnetic films with
perpendicular anisotropy which, at variance with previous
ones, is valid at any temperature, allowing the computation of
the complete phase diagram. By minimizing the corresponding
free energy in a mean-field approximation, we obtain the
magnetic field versus temperature phase diagram showing
homogeneous paramagnetic, stripes, and bubbles phases.
This spans the complete phenomenology observed in experi-
ments [1,2]. Furthermore, we show that in the experimentally
relevant sector of coupling constants the system shows inverse-
symmetry breaking, but for general values of the ratio between
the competing interactions, this is not always the case. Thus,
we concentrate our discussions on two relevant cases, one
showing ISB and another without reentrance, and analyze the
origin of the different behaviors between them. Second, we
discuss the physical origins of inverse-symmetry breaking in
this kind of system. We present compelling evidence that the
inverse transition is driven by the excess of degrees of freedom
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present in the domain walls, namely, a basically entropy-driven
mechanism. We show that the domain wall structure and
evolution with temperature and magnetic field is very different
in the two prototypical cases studied, which reinforces the
argument on the relevance of domain wall structure for ISB,
complementing and expanding the analysis of reference [8].

The organization of the paper is as follows: In Sec. II we
introduce the model and the mean-field approximation. In
Sec. III we present the results for the magnetic field versus
temperature phase diagrams and analyze the nature of the
reentrant behavior and the nature of the phase transitions
observed. In Sec. IV we conclude with a summary of the
results.

II. MODEL

Modulated phases in ultrathin ferromagnetic films occur
at mesoscopic scales; i.e., the typical length scale of the
modulations in the magnetization density is much larger than
the lattice spacing, thus justifying a coarse-grained description
(see, e.g., Ref. [5] for a detailed justification of the coarse-
grained description in this kind of system). Then, our starting
point is the effective Hamiltonian

H [φ] = 1

2

∫
d2x ( �∇φ(�x))2

+1

2

∫∫
d2xd2x ′ J (|�x − �x ′|)φ(�x)φ(�x ′)

−B

∫
d2x φ(�x), (1)

where φ(�x) is the out-of-plane magnetization density, the first
term represents the effective short-range exchange interaction,
the second term is a competing long-range dipolar interaction,
which in the limit of strong perpendicular anisotropy reduces
to the form J (x) = J/x3, and the last one is a coupling to
an external homogeneous magnetic field B perpendicular to
the plane of the film. Within a mean-field approximation, we
can then construct an effective free-energy functional F [φ] =
H [φ] − T S[φ], which after a minimization with respect to
the field φ gives us the equilibrium state (S[φ] being some
properly defined entropy functional). Then, the effective free
energy reads

F [φ] = 1

2

∫∫
d2xd2x ′ A(

∣∣�x − �x ′∣∣)φ(�x)φ(�x ′)

− 1

β

∫
d2x S(φ(�x)/φ0) − B

∫
d2x φ(�x), (2)

where S(x) is an entropy density, φ0 corresponds to the
saturation value of the magnetization, β = (kBT )−1, and the
quadratic kernel A(|�x − �x ′|) encodes all the information about
the physical interactions in the system. Note that, up to
this point, the model defined is quite general. Previously
considered coarse-grained models have been mainly of the
Ginzburg-Landau type, defined by an expansion in powers
of the order parameter, typically up to φ4, which limits the
validity of results to temperatures near the critical point [5,7].
Instead, in line with the mean-field approximation, we consider

an entropy density function to be of the form

S(x) = 1 + x

2
log

1 + x

2
+ 1 − x

2
log

1 − x

2
. (3)

This form imposes saturation values to the order parameter
|φ(�x)| � φ0 and allows a computation of the thermodynamic
properties for any temperature.

It is well known that the solutions which minimize
the effective free energy (2) (at low enough temperatures)
correspond to periodic patterns in space in the form of stripes
or bubbles [3,16]. The general solution for the order parameter
can be written as a Fourier series expansion of the form
φ(�x) = ∑∞

i=0 ci cos(�ki · �x). Different sets of wave vectors will
define different patterns, so part of the problem is to choose the
appropriate set of wave vectors for constructing the particular
solutions expected. Replacing the general solution into Eq.(2),
and after a Fourier transformation, the free-energy density
reads

f [φ] = F [φ]

V
= 1

2
Â(0) c2

0 + 1

4

∑
i

Â(ki) c2
i

− 1

βV

∫
d2x S

(∑
i

ci cos(�ki · �x)

)
− B c0, (4)

where V is the total volume (area) of the system. The
function Â(�k) stands for the Fourier transform of A(x)
(fluctuation spectrum) and c0 represents the amplitude of
the zero wave vector mode. Since the function A(x) is the
sum of two competing interactions, it turns out that the
Fourier transform of the model defined in (1) has a minimum
at a nonzero wave vector k0. This signals the fact that
the competition between exchange and dipolar interactions
favors the formation of periodic patterns in the order parameter.
The value of k0 corresponds to the optimum wave vector for
the formation of single-mode modulated structures and sets
a natural characteristic length scale for the system. Hence,
from now on, all wave vectors will be expressed in units of k0

(k0 = 1) and all lengths in units of 2π/k0.
It is also useful to express the energy in units of |Â(k0)| and

the temperature in units of |Â(k0)|/kB , so that

f [φ] = 1

2
A(0) c2

0 + 1

4

∑
i

A(ki) c2
i − T s − hc0, (5)

where A(k) = Â(k)/|Â(k0)|, h = B/|Â(k0)|, and s is the
entropy per volume unit. The expression above is written in
terms of dimensionless variables only, which makes it suitable
for numerical work.

In order to develop modulated patterns of typical scale k0,
A(k) should have a negative minimum. Such condition ensures
the necessary stability of those modes near the circumference
of radius k0, and consequently the formation of modulations in
the order parameter. Consequently A(k0) = −1. Considering
that the short-range part of A(k) is proportional to k2 in the
long-wavelength limit, and that in the same limit the dipolar
interaction gives a contribution proportional to −k [17,18], the
appropriate form for A for the systems considered here has the
general form

A(k) = −1 + a(k − 1)2. (6)
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FIG. 1. The spectrum of fluctuations A(k) of Eq. (6) for two
values of the curvature parameter a = 0.2 and a = 4.

The only free parameter in the fluctuation spectrum (6) is
the curvature a. In Fig. 1 the fluctuation spectrum is shown for
two representative values of the parameter a. In the following
it will be shown that these two cases have very different phase
diagrams.

Regarding the ground states or low-energy configurations of
these kind of systems, to our knowledge, the only exact results
available correspond to the ground states of the square-lattice
Ising model with ferromagnetic nearest-neighbor interactions
plus antiferromagnetic dipolar interactions proportional to
1/r3 [19,20], where it has been shown that the ground states at
zero external field are striped patterns for large enough ferro-
magnetic interactions, limit relevant to experimental ultrathin
films with perpendicular anisotropy. For finite external fields
there are no exact results but, based on experimental evidence
of low-temperature patterns, a series of interesting works have
compared the energetics of striped, bubbles, checkerboard,
and homogeneous configurations [2,21,22]. All the theoretical
evidence indicates that, at zero temperature and low enough
fields, the striped configurations have the lower energy, until a
critical field value from where an hexagonal array of bubbles
becomes the ground state. At a still higher critical field, the
homogeneously magnetized state turns to be the lowest energy
state. Then, the relevant equilibrium configurations of the
density field φ(�x) may be of two different types [23]: striped
configurations which can be written in the form

φs(�x) =
∞∑
i=0

ci cos(keq �si · �x), (7)

with the vectors �si = i(1,0), and bubble configurations:

φb(�x) =
∞∑
i=0

ci cos(keq
�bi · �x), (8)

where the set of vectors �bi are defined on a triangular lattice
with lattice spacing equal to 1. The details of the definitions of
the wave vectors forming the bubbles solutions are shown in
the Appendix. In both cases keq represents the equilibrium
wave vector that defines the modulation length for each
structure. Substituting Eqs. (7) and (8) into Eq. (5) leads to
a mean-field variational free energy in terms of the infinite

FIG. 2. External field versus temperature phase diagram for a =
4 and different degrees of approximation nmax.

set of amplitudes {cn} and keq . After truncating Eqs. (7)
and (8) to some maximum number of modes nmax, variational
expressions at different levels of approximation for the stripes
and bubbles free energies are obtained. Assuming that the only
equilibrium states are stripes, bubbles, or homogeneous ones,
we determined the equilibrium phase diagram by minimizing
and comparing the free energies for each type of solution to
the same fixed level of approximation nmax. The functional
minimization was performed by the method of Gaussian
quadratures.

III. RESULTS

In Figs. 2 and 3 we show the magnetic field (h) versus tem-
perature (T ) phase diagrams for two representative cases: a =
4 and a = 0.2. As can be seen, the topology is very different in
each case. In both cases, three thermodynamic phases can be
possible: stripes, bubbles, and uniform, qualitatively similar
to observations in experiments. The value of a determines
whether the phase diagram will show reentrant behavior or
not, both cases being possible. Comparing expression (6) with
a more microscopic one, e.g., the spectrum of the dipolar
frustrated Ising ferromagnet considered in [8,18], it can be
shown that a ∝ 1/δ2, where δ = J/g, J being the strength of
the short-range exchange interaction and g the intensity of the
competing dipolar interaction. In the modulated sector of the
dipolar frustrated Ising model, δ � 1 and therefore a takes
typically a small value. We will see in the following that this
leads to reentrant behavior, consistent with what is observed
in experiments on ultrathin ferromagnetic films. Nevertheless,
for small δ, reentrant behavior is absent, as can be seen in the
phase diagram of Fig. 2.

As shown in the figure, in this case at low fixed temperature
the model goes through two successive transitions as the
external field is raised. At zero and low fields the stripe configu-
rations are the equilibrium phase of the model [7,8,18], but at a
critical field the magnetized background triggers an instability
towards bubble solutions, which are the equilibrium ones at
intermediate fields until a transition to a uniformly magnetized
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FIG. 3. External field versus temperature phase diagram for a =
0.2. Different panels correspond to nmax equal to (a) 5, (b) 10, (c) 15.

paramagnetic state takes place at a second critical field. As the
field is raised the stripes develop a finite magnetization in
the form of an asymmetry favoring the direction parallel to the
field. This asymmetry grows and eventually leads to the bubble
equilibrium phase. Both the asymmetry and modulation length
grow with the field in a way similar to what was observed in
the dipolar frustrated Ising model in Ref. [8], and seems to
diverge at the critical field where the homogeneous phase sets
in, as will be discussed later. Remarkably, both transition lines
become almost independent of nmax for relatively small values
of it (nmax = 5) even at very small temperatures. This means
that both modulated solutions present basically the same wall
structure at all temperatures.

For small values of a, the h-T pase diagram shows reentrant
behavior. In Fig. 3 we show three instances of the phase
diagram, depending on the maximum number of modes

Uniform Bubbles Uni.

Bubbles

Uniform
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0.0 0.2 0.4 0.6 0.8 1.0
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T
S

E S E,S E S E,S
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–0.65

–0.60
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–0.50

–0.45

–0.40

T

f

FIG. 4. Thermodynamic functions of the bubbles and uniform
phases for a = 0.2, h = 0.06, and nmax = 15. The dashed red lines
mark the different transition temperatures for the present field.
(a) T S as a function of T . (b) Free energy as a function of T . The
background colors indicate whether the free-energy balance favors
the stable phase as a result of having both smaller internal energy and
larger entropy than the other (E,S), larger entropy only (S), or smaller
energy only (E).

considered in the stripes and bubbles solutions given by
Eqs. (7) and (8). In the bottom panel we show two pictures
illustrating the real-space stripes and bubbles solutions. For the
three cases considered, nmax = 5, 10, and 15, the qualitative
picture is the same. Nevertheless, it can be seen that the triple
point, at which the three different phases meet, drifts to the
left as nmax grows. Then, it can be expected that, in the limit
nmax → ∞, this point will either be at T = 0 or it will simply
disappear. Computational limitations prevented us of reaching
larger values of nmax, and then the solutions began to be
unreliable at very low temperatures, where more and more
modes acquire a finite weight in the variational profiles. This
trend is in line with experimental results on the phase diagram
for Fe/Cu(001) ultrathin films [1,2].

To get some insight on the nature of the reentrant behavior
we first look at the thermodynamic functions. Figure 4 shows
the entropy and free energy versus temperature, for a = 0.2
and fixed external field h = 0.06, which goes through the
bubbles phase for nmax = 15 (see Fig. 3). The free-energy
crossing associated with both phase transitions (uniform to
bubbles and bubbles to uniform as T increases) appears clearly
in Fig. 4(b). We see that both phase transitions result from
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FIG. 5. Thermodynamic functions of the bubbles and uniform
phases for a = 4, h = 2, and nmax = 15. The dashed red lines mark
the transition temperature for the present field. (a) T S as a function of
T . (b) Free energy as a function of T . The background colors indicate
whether the free-energy balance favors the stable phase as a result of
having both smaller internal energy and larger entropy than the other
(E,S) or just smaller energy (E).

a subtle balance of both the energy E and the entropy S

(f = E − T S) as indicated by color codes in the figure. At
temperatures T < 0.55 both the energy (not shown) and the
entropy of the bubbles phase are larger than the corresponding
quantities in the uniform phase. At very low temperatures
the influence of the energy is stronger than the influence of
the entropy and the uniform phase is the stable one. At the
ISB transition point (T ≈ 0.3) such balance inverts and the
bubbles phase becomes the stable one. Hence, the behavior
of the entropy becomes crucial to the appearance of the ISB
transition. On the other hand, at the direct transition from
bubbles to uniform (T ≈ 0.9) the roles played by energy
and entropy are interchanged: the uniform phase has both
larger entropy and energy than the bubbles. At the transition
point the decrease in the internal energy of the uniform
phase counterbalances the larger entropy of the bubbles.
Consistently, the same behavior is observed in Fig. 5 when
a = 4, in the non-reentrant regime. In this case, the entropy
of the uniform phase is larger than in the bubbles one at all
temperatures, so the only relevant thermodynamical quantity is
the energy, at least as far as the phase transition is concerned.

In Ref. [8] it was suggested that the excess entropy of
domain wall degrees of freedom was responsible for the

FIG. 6. Domain wall width behavior in the bubbles magnetization
profiles for nmax = 15. (a) Non-reentrant region a = 4 and h = 2.
(b) Reentrant region a = 0.2 and h = 0.06. The inset shows the
domain wall width lw to wavelength λ ratio (λ = 2π/keq ) as a function
of the temperature. Red circles mark the boundaries of the bubbles
phase.

reentrant behavior seen in the dipolar frustrated Ising model
in the stripes phase. Here, we confirm that expectation. It
is again instructive to compare the behavior of characteristic
quantities for the cases with and without reentrance in our
model. In Fig. 6 we show two-dimensional cuts of the bubbles
magnetization profiles in the two cases a = 4 (top panel)
and a = 0.2 (bottom panel) at a fixed value of the magnetic
field, characteristic in each phase diagram, and nmax = 15. In
each panel two profiles, corresponding to two characteristic
temperatures, are shown. The temperatures were chosen to
be near the high-temperature transition and a sufficient low
temperature in each case. It is possible to see that the profiles
change little between both temperatures in the model without
reentrance. The domain wall width is large, of the order of
the modulation length λ = 2π/keq , both at high and low T .
On the contrary, in the model with ISB the profile changes
qualitatively from high to low T . At high T the profile is
more sinusoidal; few modes have finite weight in the Fourier
expansion. As the temperature is lowered more and more
modes acquire a finite weight, and the profile evolves to a
square-wave-like one. At exactly zero temperature, the profile
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FIG. 7. Bubbles modulation wavelength λ as the transition field
hc is approached from the bubbles phase at fixed temperature T = 0.8
and different values of nmax, in the a = 0.2 model. The continuous
lines are fittings using hyperbolic functions in the log-log scale.

will be exactly a square wave, which has zero entropy. From
the entropic contribution perspective, this means that while
for the a = 4 model the entropy contribution of domain
walls is nearly the same in the whole temperature range,
for the a = 0.2 model the walls rapidly lose entropy as the
temperature approaches low values. In the inset of the bottom
panel in Fig. 6 we show the change in domain wall width
relative to the modulation length. Our conclusion is that this
important loss of entropy of domain walls is responsible for the
inverse-symmetry-breaking phenomenon observed in ultrathin
ferromagnetic films. Also note that, according to Fig. 1,
for large values of the inverse curvature a, the low-energy
physics is dominated by a few modes around the minimum of
Eq. (6). This is reflected in a weak temperature dependence
of the modulation length and wall width, as shown in the top
panel of Fig. 6. At variance with this behavior, for a large
curvature (small a values), the spectrum of fluctuations is
shallow, implying that many modes can be accommodated
with a moderate change in energy/temperature. This is again
reflected in the bottom panel of Fig. 6, where a sharp change
in the magnetization profiles of the bubbles phase is observed
as the temperature is changed.

Another result of particular interest for the model is
the nature of the transition from the bubbles phase to the
homogeneous one at the critical field hc. In Fig. 7 we show the
evolution of the modulation length at fixed temperature T =
0.8 as the critical field is approached from the bubbles phase for
different values of nmax, in the a = 0.2 model. The behavior for
a = 4 and other values of T is qualitatively similar. Previous
works suggested that the critical field lines correspond to
first-order phase transitions [7], with a discontinuous jump
in the modulation length and magnetization. Nevertheless,
as anticipated in an analysis of the stripes solutions for the
dipolar frustrated Ising model [8], the transitions turn out
to be continuous in the whole critical line when the limit
of large number of modes is reached. Figure 7 shows, for
T = 0.8, that for any finite value of nmax the modulation

nmax

001011

m
u 

- 
m

b

0.001

0.01

0.1

1

~ nmax
-1.56

FIG. 8. Magnetization jump at the critical field between the
bubbles and uniform phases for T = 0.8 versus nmax in log-log scale,
in the a = 0.2 model.

length λ first grows as the field approaches the critical
one, but eventually saturates at a finite value, suggesting a
discontinuous jump at hc. Nevertheless, the saturation value
grows itself as nmax grows. In order to get an estimation of
the asymptotic behavior, we have fitted the data (shown in
log-log scale) with hyperbolic functions. A scaling analysis of
the saturation value of λ (not shown) suggests that it diverges
with the power law (hc − h)−0.4. The dashed line (in red)
shows this asymptotic behavior, implying that, in the limit
nmax → ∞, the modulation length grows continuously as hc

is approached and the homogeneous phase emerges as the
limit λ → ∞. A confirmation of the continuous character
of the phase transition to the uniform phase comes from an
analysis of the size of the jump in the magnetization at the
critical field. In Fig. 8 we show the difference between the
magnetizations of the homogeneous and bubbles (mu − mb)
solutions at T = 0.8 and hc versus nmax. A fit of the five points
available in logarithmic scale shows that the jump goes to zero
as nmax → ∞ with a power law n−1.56

max . Preliminary results
indicate that the bubbles-paramagnetic transition is continuous
in the whole critical line; determination of critical exponents
along the line is left for future work.

IV. CONCLUSIONS

We introduced a coarse-grained model for stripe-forming
systems (such as ultrathin magnetic films), that generalizes
the usual Landau-Ginzburg one. The inclusion of a complete
mean-field entropic form (instead of its expansion) allowed us
to obtain the (h,T ) phase diagram at any temperature, not only
close to the critical one. The method is completed by proposing
variational modulated solutions, namely bubbles and stripes,
in the form of appropriately truncated Fourier expansions.

After an appropriated rescaling, the fluctuation spectrum of
the model can be characterized by a single parameter, namely,
the inverse curvature at the minimum of the spectrum, a.
We found that a determines the existence or not of the ISB
transition. For ultrathin magnetic films models, large values
of a mean small values of δ, namely, the exchange to dipolar
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couplings ratio. We found that for large values of a the phase
diagram does not display ISB. This behavior is therefore
consistent with previous Monte Carlo simulation results [7,24]
for small values of δ, where no ISB was observed.

For small enough values of a the ISB transition emerges and
the phase diagram displays (in the limit nmax → ∞) the same
topology observed experimentally in Fe on Cu films [1,2].
Moreover, when a is small enough, an ISB transition is
observed not only between the uniform and the bubbles
solution, but also between stripes and bubbles for large enough
values of nmax (see Fig. 3), an experimentally verified fact [1].
Our results also show the presence of a triple point between
bubbles, stripes, and uniform phases for finite values of nmax.
However, such point moves towards lower temperatures as
nmax increases suggesting that, in the nmax → ∞ limit, either
it is driven to T = 0 or it simply disappears. In other words,
it would be probably a spurious effect of the finite-mode
approximation. This last scenario would be consistent with
the ground-state calculations of Ref.[ [2]. On the other hand,
our results appear to be consistent with the existence of a triple
point between the three phases at (T ,h) = (Tc,0), for any value
of a, in the sense that, within our numerical resolution, both
transition lines join at such point and are independent of nmax

in its neighborhood.
We observed a clear correlation between the appearance of

the ISB transition and the low-temperature domain wall behav-
ior at the modulated phases. In the non-reentrant regime, i.e.,
when a is large, the magnetization profiles in the modulated
phases exhibit extended domain walls whose width (relative to
the modulation length) varies very little with the temperature,
down to very low values of T . On the contrary, when the ISB
transition is present the domain wall width shows a strong
variation with temperature, becoming very sharp as the tem-
perature decreases approaching the ISB. Such phenomenon
is completely consistent with the phenomenological scaling
hypothesis stated in Ref. [5], according to which a change in
the nature of the domain walls should be enough to explain
the appearance of ISB. The change in magnetization profile
is consistent with a shallow spectrum around its minimum
(small values of a), since the system can accommodate a
large number of modes (necessary condition to develop sharp
domain walls) with a moderate change in energy/temperature.
Finally, our results suggest that (at least at the mean-field
level) the whole transition line between the modulated and
nonmodulated phases (i.e., bubbles and uniform) is continuous
with continuously diverging wavelength, consistently with the
results of Ref. [8].
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APPENDIX: CONSTRUCTION OF THE BUBBLES
SOLUTION

In this appendix we discuss in some detail how the bubbles
solution is constructed and what are its features. In the kind of

system under study here, the bubble pattern is composed of a
triangular regular array of circular bubbles, distributed over a
background of homogeneous magnetization. The bubbles are
magnetized contrary to the background in order to minimize
the dipolar energy cost in the free-energy functional.

From first principles we know that we can construct our
bubble solution φb(�x) as a superposition of one-dimensional
modulations with the correct set of wave vectors. In this way
we can write the solution in the form

φb(�x) =
∞∑
i=0

ci cos(keq
�bi · �x), (A1)

where the wave vectors {�bi} are selected as forming a triangular
lattice with lattice size equal to 1. At the same time, since we
have a regular array in which all bubbles are identical, we
need to impose some conditions to the Fourier amplitudes
of our solution. This condition implies that all those Fourier
amplitudes corresponding to wave vectors �bi related by
symmetry operations of the triangular lattice are equal.

In this way, once we have chosen the maximum number
of modes in the principal directions nmax, it is automatically
defined how many independent Fourier amplitudes we need
to consider. In Fig. 9 we show the case of nmax = 10. For this
particular choice, of the initial set of 331 Fourier amplitudes
corresponding to the set �bi , after considering the symmetry
arguments we are left with only 35 independent components,
as shown in Fig. 9 with bigger points. This reduction in the
number of Fourier coefficients greatly simplifies the numerical
work. Moreover, as can be observed from Fig. 9, our set
of independent Fourier amplitudes can be split into three
groups of modes, characterized by different degeneracies of
its components. The first group consists only of the zero
mode, which have degeneracy equal to 1. The second group
is composed of those modes with angular orientation θ = 0
and θ = π/6, having a degeneracy of 6, and the third group

FIG. 9. Lattice of wave vectors for a bubbles pattern considering
nmax = 10. Each dot represents a different wave vector �bi considered
to build our solution.

054404-7



MENDOZA-COTO, BILLONI, CANNAS, AND STARIOLO PHYSICAL REVIEW B 94, 054404 (2016)

is formed by those vectors with θ ∈ (0,π/6) which has
degeneracy 12. Taking this fact into account it is possible

to write the original free energy of our solution in terms of the
independent Fourier amplitudes.
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