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Mitochondrial network complexity 
emerges from fission/fusion 
dynamics
Nahuel Zamponi  1,5, Emiliano Zamponi1, Sergio A. Cannas2,4, Orlando V. Billoni2,4, Pablo R. 
Helguera1,4 & Dante R. Chialvo3,4

Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide 
oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. 
Since functional and structural properties are often interwinded, here we characterized the structure 
of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. 
Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by 
inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural 
parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely 
fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions 
of a recently described computational model of mitochondrial network emergence based on fission-
fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the 
complexity of this organelle but also support the idea that mitochondrial networks behave as critical 
systems and undergo structural phase transitions.

Mitochondria arose around two billion years ago from the engulfment of an α-proteobacterium by a precursor 
of the modern eukaryotic cell1. Subsequent evolution shaped the relationship between mitochondria and their 
host cells, leading to a high degree of morphological and functional specialization in the organelle. Long known 
for their role in ATP production, mitochondria also participate in a myriad of essential cellular processes such 
as apoptosis, calcium buffering and phospholipid synthesis, among others2. In addition, mitochondria exhibit 
complex patterns including oscillatory dynamics, phase transitions and fractality3–5.

A typical mitochondrion comprises a network of tube-like structures, with fragments of all sizes (ranging 
from less than 1 μm to 15 μm or more)6. The current theoretical understanding proposes that mitochondrial 
morphology is maintained by two opposing processes, fission and fusion, which depending on their relative pre-
dominance determine the overall connectivity and structural properties of the network7. Although the structure 
of mitochondrial networks is generally described as complex, a quantitative description of such complexity is 
still lacking. Moreover, a recent model of mitochondrial dynamics suggested that mitochondrial networks are 
poissed at the critical point of a phase transition, albeit no connection between theory and phenomenology has 
been provided yet8.

In this work, we present a quantitative description of mitochondrial network structure using tools of net-
work and percolation theory. To do that, we developed a pipeline to extract structural parameters from confocal 
images. Moreover, we evaluated how a recently published model of mitochondria fitted the data from real net-
works providing the missing link between theory and experiments.
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Results
We developed a pipeline to quantify the structural complexity of mitochondrial networks from confocal 
microscopy images like the one presented in Fig. 1(a), where a mouse embryonic fibroblast (MEF) expressing a 
mitochondria-targeted yellow fluorescent protein (mYFP) is shown (see Methods). Our pipeline entailed three 
steps, the first of which was the convertion of a grayscale image into a binary image. To do that, we used the 
im2bw routine from Matlab (Natick, Massachusetts: The MathWorks Inc.). Figure 1(b) shows examples of binary 
images obtained from the same grayscale image (Fig. 1(a)) by choosing different threshold values. Second, bina-
rized versions of the image were transformed into skeletons of uniform (one pixel) thickness, like the ones shown 
in Fig. 1(c), using the routine bwmorph from Matlab. These skeletons were composed of independent clusters of 
different sizes, each of them made up by either linear or branched segments. Following others9–11, we hypothe-
sized that such skeletons constituted a good approximation of the structure of mitochondrial networks. Although 
mitochondrial networks are embeded in the 3-dimensional cellular volume, artefactual branching points in 
2-dimensional reconstructions were negligible (see Supplementary Information). Finally, we extracted two dif-
ferent parameters from skeletons: cluster mass (s), by counting the number of pixels in each individual cluster, 
and pixel degree (k), by counting the nearest neighbors of each pixel (see Methods). Figure 1(d) shows cluster 
mass probability distribution functions corresponding to skeletons in Fig. 1(c). We saw that, while the connec-
tivity decreased whit the threshold (as expected due to larger network fragmentation), p(s) exhibited a power law 
behavior that seemed to be robust against threshold variations.

The long-tail behaviour displayed by p(s) was in accordance with recent work suggesting that mitochondrial 
networks operate near a percolation phase transition8. In order to test the existence of a structural transition, we 
perturbed the structure of mitochondrial networks in opposite directions, either by increasing mitochondrial 
fission using paraquat (pqt)12–15, or by promoting mitochondrial fusion by mitofusin 1 (mfn) over-expression16–19 
(see Methods). Examples of morphological changes observed after applying the aforementioned treatments are 
presented in Fig. 2. A rapid qualitative inspection revealed that, compared to control (ctl) networks, mfn networks 
appeared as elongated interconnected strings, while in the case of the pqt networks, mitochondria seemed as 
independent small fragments. In fact, this qualitative visual inspection is the approach used routinely to evaluate 
mitochondrial morphology and status20–25, counting relative ratios of cells exhibiting a particular mitochondrial 
phenotype, different from the one found in control cells.

Quantification of mitochondrial network properties. Although many methods have been proposed to 
extract networks from mitochondrial images, virtually all of them make use of an arbitrary thresholding step9–11,26–28.  
However, as illustrated in Fig. 1, the application of different intensity thresholds (th) resulted in different skeletons 
and hence different network architectures. We reasoned that a way to avoid this arbitrariness would be to compare 
the behavior of network parameters as a function of the threshold. As a proof of concept, we picked one network 
for each condition and computed basic structural parameters. The results obtained are shown in Fig. 3, where 

Figure 1. Network structure from mitochondrial images. (a) Confocal image of a MEF in which mitochondria 
are shown in green and the actin cytoskeleton in magenta. Image processing: (b) Grayscale images were 
converted to binary images by choosing the indicated threshold. (c) Detected lines in binary images were 
reduced to a single pixel width (skeleton). The mean degree 〈k〉 of each skeleton was computed by analysing the 
nearest neighbors of each pixel occupied. (d) Cluster mass distributions p(s) were computed by counting the 
number of pixels that made up each segment within clusters. Red curves represent power laws with exponents 
−1 (dashed) and −2 (continuous). Scale bars represent 10 μm.
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each column corresponds to one of the treatments: ctl in the middle, mfn on the right and pqt on the left. Similar 
results were obtained using other images (data not shown).

As depicted in Fig. 3(a–c), we first looked at the number of clusters Nc and the average cluster mass 〈s〉 
of mitochondrial networks29. Nc exhibited a non monotonic behavior in all cases, with a peak in the interval 
0.1 ≤ th* ≤ 0.2 (Fig. 3(a–c), empty circles). This is expected, regardless of the nature or origin of the image, any-
time a section is made cutting a rough landscape30,31. Interestingly, the peaks of pqt and mfn networks shifted to 
left and to right, respectively, from the peak of the ctl network, suggesting that the relative position of the peak 
could constitute a robust readout of network connectivity. Moreover, we envisioned that the position of the peak 
in Nc could be useful as a less arbitrary criterion when the selection of a single threshold is needed.

On the other hand, 〈s〉 changed monotonically with the threshold in all cases (Fig. 3(a–c), solid circles). 
Regardless of the similar behavior, 〈s〉 values of the pqt network were much smaller than that of other networks, in 
accordance with the effect asserted by the compound on mitochondria. In the case of the mfn network, although 
its 〈s〉 values were within the same order of magnitude of those of the ctl network, it should be noted that mito-
fusin 1 over-expression reduced overall network size (see Fig. 2), making them proportionally bigger.

Long-tail distributions in Fig. 1(d) indicated that mitochondrial networks exhibited scale free properties, such 
as the coexistence of numerous small fragments with few massive clusters. To extract more precise information 
from mass distributions, we plotted the complementary cummulative distribution function (CCDF)
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≥

where p(si) is the probability of finding a cluster of mass i in the network, which enhances the statistical signifi-
cance of the high mass region32. Figure 3(d–f) show the CCDFs of cluster mass as a function of a range of thresh-
old values. CCDFs describe how often the cluster mass is above a particular value s and we used them here to 
characterize the effect of the treatment on the giant cluster of the network. In addition, we found that the average 
cluster mass 〈s〉 can be used to normalize mass densities, eventually leading to a unique average representative 
distribution for any threshold value that followed approximately a power-law of the form

∼ γ− +P s s( ) (2)1

with 0.5 ≤ γ ≤ 2. This result allowed us to consider cluster mass distributions as roughly independent of the 
threshold value, which is a desirable property in any descriptive parameter used to quantify the structure of mito-
chondrial networks. More importantly, Fig. 3(d–f) suggest that perturbations in the fission/fusion balance altered 
mass frequencies and modified the mass of the giant cluster, causing a shift in the slope of the CCDF.

Figure 3(g–i) describe two additional topological quantities inspired in network theory, namely the average 
degree 〈k〉 (empty dots) and the normalized mass of the giant cluster Ng/N (solid dots)33. Although 〈k〉 decreased 

Figure 2. Typical examples of mitochondrial network images obtained under different conditions. Confocal 
images of MEFs transfected with mYFP under control conditions (ctl), paraquat treatment (pqt) or mitofusin 
1 over-expression (mfn). Pixel intensity is depicted using a pseudocolor (calibration bar). Insets highlight the 
effect asserted by each treatment on mitochondrial structure. Scale bars represent 10 μm.
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monotonically in all cases, the relation 〈k〉pqt < 〈k〉ctl < 〈k〉mfn held for every particular threshold value, indicating 
once again that perturbing the fission/fusion balance drove the network connectivity to the extremes of discon-
nected fragments or fully connected clusters. Finally, when we computed Ng/N across the threshold range we 
found that, despite the effect that the treatments asserted on network size, the ctl network displayed an interme-
diate behaviour compared to pqt and mfn networks.

The results shown in Fig. 3 suggested that mitochondrial network structure changed in response to treatments 
in a rather predictable manner, with ctl networks always displaying an intermediate behavior. To gain insight 
into how the mitochondrial structure responds to perturbations we recomputed the CCDFs from Fig. 3(d–f) 
using all available data, by selecting a threshold value of 0.15. Similar results were obtained using thresholds in 
the range [0.1–0.2] (data not shown). Schemes in Fig. 4(a–c) define the elements measured in every network, 
namely clusters and segments, where 1-1 means a segment that connects two nodes with k = 1 and 1-3 refers to 
those segments connecting a node with k = 3 and a node with k = 1. Figure 4(a) shows that modifications of the 
fission/fusion balance changed the exponents of the power-law relation in the cluster mass distribution, adding 
support to our previous findings. Interestingly, mass distributions of 1-1 and 1-3 segments behaved similarly 
accross treatments, suggesting that differences between networks could not be attributed to changes in the mass 
of linear segments.

Fission/fusion balance is linked to mitochondrial network complexity. In the previous section we 
have described a straightforward methodology and a set of structural parameters that allowed us to characterize 
basic features of mitochondrial networks. To gain a deeper understanding on the relationship between mitochon-
drial dynamics and network status we computed additional parameters in order to quantify the complexity of the 
different networks.

We investigated the scaling properties of mitochondrial networks by performing a finite size scaling analy-
sis34,35. Results are summarized in Fig. 5(a) where the normalized mass of the giant cluster as a function of the 
area used to sample the image is shown. Fitted lines showed that the scaling behavior of pqt and mfn networks 

Figure 3. Network parameters computed from single images. Center column corresponds to ctl, left column to 
pqt and right column to mfn. Top row panels (a–c) show the number of clusters (Nc, empty symbols, left labels) 
and the mean cluster mass (〈s〉, filled symbols, right labels) as a function of the binarization threshold (th). 
Arrows point to th values at which the maximum number of clusters appears in each case. Middle row panels 
(d–f) show the cumulative distribution function of cluster mass as a function of th (colors denote different 
threshold values). Note that by normalizing each distribution using the mean cluster mass 〈s〉, all distributions 
collapse approximately to the same function. Power laws with exponents −1.5 and −3 are shown for reference 
purposes. Insets depict unnormalized distributions. Bottom row panels (g–i) depict the mean degree (〈k〉, 
empty symbols, left labels) and the normalized size of the largest cluster (Ng/N, filled symbols, right labels) of 
the networks as a function of th.
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slightly deviated from the one displayed by ctl networks, suggesting that structural alterations caused by treat-
ments affected the network scaling.

Next, given the functional relevance of the spatial distribution of mitochondria36–39, we decided to quantify the 
fractal dimension Df of the networks40,41. As can be seen in Fig. 5(b), even though treatments had opposite effects 
on mitochondria, they both decreased the network Df, suggesting once again that alterations in the fission/fusion 
balance impacted on the space-filling properties of mitochondria.

These two observations prompted us to hypothesize that alterations in the fission/fusion balance tended to 
reduce network complexity. To test this hypothesis we computed the normalized Kolmogorov complexity42
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Figure 4. Changes in mass distributions upon fission/fusion balance perturbation. (a) Cluster mass 
distributions followed a truncated power law. Shifts in the behavior upon treatment obeyed the relation 
γmfn < γctl < γpqt, where γ is the exponent of the CCDF. Power laws with exponents −1.5 and −3 are shown for 
reference purposes only. Mass distribution of open (b) and branched (c) segments showed exponential decays. 
Illustrations at the right side of each panel depict network elements measured.
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where K is the Kolmogorov complexity of the network, μR is the mean Kolmogorov complexity from 1000 rand-
omized versions of the original skeleton and σR

2 is the standard deviation from randomized versions of the origi-
nal skeleton. As shown in Fig. 5(c), the distance between the observed network structure and the random 
configuration, in Kolmogorov complexity units, was maximal for ctl networks, strongly supporting the idea that 
perturbations to mitochondrial fission or fusion lowered network complexity.

Finally, we considered the possibility that changes in network parameters could be explained as shifts in 
the percolation regime of the networks, taking into account recent suggestions that healty mitochondrial net-
works are in a critical regime, characterized by the maximal heterogeneity in sizes of network subcomponents8. 
Specifically, we reasoned that the percolation transition threshold th* of the images could indicate the stage of the 
percolation process of the underlying networks, i.e., subcritical, critical or supercritical regime43. To test this, we 
computed the Shannon’s entropy of cluster masses44,45

H p log p( )
(4)j

i
i j i j, ,∑= −
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where Hj is the entropy at threshold j and =
∑pi j
M
M,

i j
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,  is the fraction of the total mass of clusters of mass i at thresh-
old j over the total mass of the network at threshold j. Plotting Hj as a function of the threshold (Fig. 5(d)) we 
observed that each network type was characterized by a particular th* value. Moreover, the following relation was 
found th th thpqt ctl mfn≤ ≤⁎ ⁎ ⁎ , indicating that configurations found in pqt and mfn networks corresponded to sub-
critical and supercritical regimes, respectively.

In summary, our results showed that perturbations to fission/fusion kinetics gave rise to changes in connectiv-
ity patterns, altering the scaling properties and the percolation regime of mitochondrial networks.

Are mitochondrial networks poised at criticality. Structural and topological changes described in 
previous paragraphs were consistent with the idea that mitochondrial networks undergo a percolation transi-
tion29,46,47. This view propose that a steady-state mitochondrial network requires a proper balance of the two 
opposing tendencies, one towards fusing segments and one favoring fragmentation.

In an attempt to further test these interpretations we contrasted our experimental results with the predictions 
of a recently published mathematical model8 that contains explicit variables for relative fission/fusion rates c1 and 
c2 (see Methods). In order to proceed, a bootstrapping approach was required to extract model parameters from 
experimental data. First, the order parameter was defined as the ratio of the largest cluster 〈Ng〉 over the network 
size N. Then, for a fixed value of c1 both the order parameter (〈Ng〉/N) and the average degree 〈k〉 as a function of 

Figure 5. Changes in mitochondrial network complexity. (a) Scaling of Ng/N with the area used to sample 
the image. (b) Changes in fractal dimension upon paraquat treatment and mitofusin 1 over-expression. (c) 
Z-scores expressing the deviation of the observed structure from the random configuration in Kolmogorov 
complexity units. Inset shows the deviation of pqt and mfn network configurations from the ctl configuration 
in Kolmogorov complexity units. (d) Entropy of cluster mass distributions. Perturbations of the fission/fusion 
balance caused a shift in the critical threshold value th* (arrows).
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c2 were numerically computed. Next, for every value of c1, 〈Ng〉/N was plotted parametrically by varying c2, as a 
function of 〈k〉 (See Methods).

Continuous lines in Fig. 6(a) are an example of those curves. It could be observed that, at least for the parame-
ters region of interest, each point of the curves corresponded to a unique pair of values (c1, c2) (see Supplementary 
Information). This allowed us to roughly associate model parameters values to experimental data. The symbols in 
the figure correspond to an average of 〈Ng〉/N and 〈k〉 over different network groups. The phase diagram in the (c1, 
c2) space is illustrated in Fig. 6(b). Filled symbols (with error bars) correspond to the maxima in the mean cluster 
size 〈s〉 (see Supplementary Information). The continuous line is a non linear fitting to the points and represents 
a reference to the eye for the location of the phase transition. Empty symbols correspond to parameter values 
extracted from experimental data shown in Fig. 6(a). Graphs on panels (c), (d) and (e) show examples of typical 
networks constructed with the model using the three derived empirical values (i.e., the points in (b) labeled 
pqt, ctl, mfn respectively). From Fig. 6 it can be concluded that ctl networks were in the vicinity of a percolation 
phase transition, while pqt and mfn network configurations corresponded to subcritical and supercritical regimes, 
respectively.

Discussion
Mitochondria organize as complex networks that display temporal and spatial coordination, pressumably by 
operating close to the edge of dynamic instability4. Following these ideas, in this work we explored the topological 
properties of mitochondria and we tested the hypothesis that mitochondrial networks are organized near the 
percolation transition43.

The main findings of the present study can be summarized in three aspects. First, we proposed a straightfor-
ward approach to quantify structural properties of mitochondrial networks. Applying the proposed method to 
control (ctl) and perturbed (pqt and mfn) networks, we identified regularities in the variations of connectivity 
patterns as well as changes in the behavior of the mass distribution of mitochondrial clusters. Moreover, data 
from additional experimental manipulations supported the conclusions obtained with paraquat treatment and 
mitofusin 1 over-expression (see Supplementary Information).

Second, by computing additional parameters we determined that the configuration found in control mito-
chondria is optimal. Specifically, we observed that promoting fission or fusion lowered the fractal dimension of 
the networks40, reducing the space-filling capacity of mitochondria. Additionally, we found that promoting either 
fission or fusion lowered the Kolmogorov complexity of mitochondrial networks42, increasing the randomness 
of their configuration.

Finally, we contrasted our empirical data with a recently published mathematical model8 finding that balanced 
fission/fusion dynamics lead to a network capable of a phase transition. Specifically, empirical network configu-
rations were found at parameter regions predicted by the model, allowing us to classify network configurations in 

Figure 6. Comparison of the present experimental results with those of Sukhorukov’ et al. model. (a) Model 
parameters extracted iteratively from experimental data. Open symbols and error bars correspond to means and 
standard deviations of all cells for the ctl, pqt and mfn groups (for a binarization threshold = 0.15). Each point of 
the extracted curves corresponds to a unique pair of values (c1, c2). (b) Phase diagram of the model in the (c1, c2) 
space. Filled symbols and the continuous line correspond to the location of the phase transition. The three open 
symbols (labeled pqt, ctl, mfn) correspond to the parameter values extracted from experimental data as shown 
in (a). Panels (c–e) show a graphical representation of the typical networks simulated using the three derived  
(c1, c2) values, corresponding to pqt, clt and mfn networks, respectively.
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three different regimes, subcritical (pqt), critical (ctl) and supercritical (mfn), and adding support to the idea that, 
under normal physiological conditions, mitochondrial networks are poissed near a percolation transition point.

Methods
Cell culture. Mouse Embryonic Fibroblasts (MEFs) were obtained as described by Xu et al.48. Briefly, 13.5 
days old mouse embryos were extracted from the mother uterus, rinsed with PBS and placed on a petri dish. 
The head and red organs were discarded and the remaining body was rinsed again with PBS and placed on a new 
petri dish. Using shaving blades, the tissue was chopped into pieces and trypsinized for 15 sec at 37 °C (PBS 10% 
Trypsin). Trypsin reaction was quenched with serum-containing media and the whole mixture was centrifuged 
for 5 min at 2000 rpm. The supernatant was discarded and the pellet resuspended in DMEM with 10% SFB, 1% 
GlutaMax and 1% Non-essential amino acids. Cell pellets from 4 embryos were seeded on 175 cm2 culture bottles 
and were allowed to grow for 48 h. C57BL6 mice were obtained from the Animal Facility of the Mercedes and 
Martín Ferreyra Medical Research Institute and National University of Córdoba (INIMEC-CONICET-UNC). 
All experimental protocols were approved by the Institutional Council of Animal Care (CICUAL-INIMEC-
CONICET). All methods were carried out in accordance with the approved guidelines.

Mitochondrial network morphology manipulation and cell imaging. Mitochondria were visualized 
by lentiviral infection. Lentiviruses were produced as described by Baloh et al.49. Briefly, human embryonic kid-
ney (HEK) 293 T cells were plated onto six-well plates and transfected with a polymerase-coding vector (REV), 
a packaging vector (8.71), an envelope vector (VSVG) and a shuttle vector encoding the mitochondrial-targeted 
yellow fluorescent protein (mitoYFP) using Lipofectamine 2000 (Invitrogen) reagent. Media was changed at 12 h 
and collected at 48 and 72 h, pooled and applied directly to MEFs cultures.

Manipulation of mitochondrial morphology was accomplished in two ways: (1) to induce mitochondrial frag-
mentation, mitoYFP-expressing MEF cultures were treated with 200 μM paraquat (Sigma-Aldrich) for 24 hours, 
and (2) to promote mitochondrial fusion, cultures were transfected (Lipofectamine 2000, Invitrogen) with a plas-
mid encoding the sequence of the human mitofusin 1 gene (MFN1, Addgene). Once ready, cells were fixed with 
4% PFA in 4% sucrose-containing PBS. F-actin staining was performed on fixed cells using Alexa 546-phaloidin 
(Molecular Probes), following manufacturer’s protocol. In all cases, image acquisition was achieved using an 
Olympus IX81 inverted microscope equipped with a Disk Spinning Unit (DSU), epifluorescence illumination 
(150 W Xenon Lamp) and a microprocessor. MEFs were imaged using a 60x oil immersion objective, an ORCA 
AG (Hamamatsu) CCD camera and OSIS software.

Image analysis. All routines used for image processing and analysis were written in Matlab (The MathWorks, 
Natick, MA). As explained above, mitochondrial structures were extracted from micrographs of MEFs where 
mitochondria were fluorescently tagged. Individual 8-bit images were converted to binary (i.e., black & white) for 
different threshold values of intensity using the Matlab routine im2bw. For each threshold value (range 0–1) the 
skeleton (i.e., the image reduced to a trace of one- pixel thickness) was extracted using the Matlab routine bmorph. 
Subsequently, clusters were extracted using the Matlab routine bwlabel. The algorithm define a cluster as those 
pixels connected with at least one of the eight nearest neighbors. The degree was computed using a numerical rou-
tine that inspects the nearest neighbors of each pixel and decides if the site corresponds to a node of degree k = 1, 
k = 2 or k = 350. Ng/N scaling was computed by averaging the size of the biggest cluster in sections of the image 
of increasing area. It was determined that the reconstructed network topology was not affected by the issue of 
potential artifacts due to the 2D projection of the mitochondrial 3D structure (see Supplementary Information). 
The complementary cumulative distribution function is defined as

CCDF Pr X x( ) (5)= ≥

and was computed by calculating the fraction of clusters of mass higher than x, were x takes the value of all pos-
sible cluster masses. Fractal dimension (Df), Kolmogorov complexity and Entropy (H) were computed using the 
Matlab routines boxcount, kolmogorov and entropy, respectively.

Sukhorukov et al. Model. Numerical simulations were conducted using the model described in 
Sukhorukov et al.8. Briefly, the network structure emerges as the result of two fusion and two fission reactions 
between the tips of a set of L dimers. In the model, a dimer tip can connect (disconnect) to other dimer tips form-
ing a network node, but at most three tips can be merged. In this way, the degree k of the nodes can take only the 
values k = 1 (isolated tip), k = 2 (two merged tips) and k = 3 (three merged tips); only two fusion processes are 
allowed: tip-to-tip (two nodes of degree k = 1 merge into a node of degree k = 2) and tip-to-side (a node of degree 
k = 1 and a node of degree k = 2 merge into a node of degree k = 3). To each fusion process there is an associated 
inverse (fission) one. The bias to each process can be written as rates of either fusion or fission51 represented as 
reaction processes on nodes Xk:
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where a1 (b1) is the reaction rate for tip-to-tip fusion (fission) process and a2 (b2) is the reaction rate for tip-to-side 
fusion (fission) process. The model can then be implemented as an agent based stochastic dynamics between a 
set of L reactant objects (dimers), submitted to the above described fusion and fission processes. The dynamics is 
simulated using Gillespie52 algorithm. Nodes participating in a particular event are chosen with equal probability 
within a list of the nodes with the same degree. Following ref.8 we assumed b2 = (3/2)b1 and varied the relative 
rates ci = ai/bi.

Sukhorukov et al. described in detail the steady state of the dynamics as a function of changes in c1 and c2
8. 

The system admits a plethora of network configurations in parameter space, including fragmented or hyperfused 
networks resulting from extreme values of fission and fusion activities as well as networks resembling those seen 
in healthy cells at intermediate values. In passing, notice that more recently this model was reformulated53 to 
include information on the microtubule cytoskeleton.

In the present work we performed simulations for L = 15000, roughly the estimated value for the average 
number of edges in control networks. In every simulation we run the algorithm 3L times after which we meas-
ured different quantities. This ensured that the distribution of nodes with degree k became stationary. For every 
set of values of (c1, c2) the procedure was repeated 100 times for different sequences of random numbers and the 
different quantities were averaged over this sample. The different quantities measured were: the average degree 
〈k〉, the average fraction of nodes in the largest cluster 〈Ng/N〉 and the average cluster size excluding the largest 
cluster 〈s〉 (see Supplementary Information), where averages were taken both over all nodes in the network and 
over different runs.

Data availability. Data are available upon request.
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