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Three-state model with competing antiferromagnetic and pairing interactions
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Motivated by the rich phase diagram of the high-temperature superconductors, we introduce a pseudospin
model with three state variables which can be interpreted as two states (spin ±1/2) particles and holes. The
Hamiltonian has a term which favors antiferromagnetism and an additional competing interaction which favors
bonding between pairs of antiparallel spins mediated by holes. For low concentration of holes the dominant
interaction between particles has antiferromagnetic character, leading to an antiferromagnetic phase in the
temperature-hole concentration phase diagram, qualitatively similar to the antiferromagnetic phase of doped
Mott insulators. For growing concentration of holes antiferromagnetic order is weakened and a phase with
a different kind of order mediated by holes appears. This last phase has the form of a dome in the T-hole
concentration plane. The whole phase diagram resembles those of some families of high-Tc superconductors.
We compute the phase diagram in the mean-field approximation and characterize the different phase transitions
through Monte Carlo simulations.
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I. INTRODUCTION

One of the frontiers of modern condensed matter physics
is the description of phase transitions in complex many body
systems that challenge the well-known theories of classical
fluids or the well-established quantum theories of Fermi or
Bose liquids. In particular, when two or more competing inter-
actions are present, usually strong correlations play a signifi-
cant role in the physics at low temperatures and the phase dia-
gram can show a rich variety of different phases, with different
symmetries and thermodynamic properties. Competing inter-
actions are common in nature, and an important example is
magnetic systems in which different types of magnetic inter-
actions usually coexist like exchange, dipolar, Dzyaloshinsky-
Moriya, and Zeeman [1–5]. Each of these terms usually leads
to a particular kind of order at low temperatures, but when at
least two of them are simultaneously present a much richer
behavior appears. Competition between interactions can lead
to pattern formation and phases with complex symmetries
[6–9]. High-temperature superconductors appear as another
example of extremely complex and fascinating systems. Since
their discovery in the 1980s thousands of papers have been
published on the subject, but after 30 years of very intense re-
search both the experimental and theoretical situations are still
not satisfactory [10–14]. From the theoretical perspective, per-
haps the biggest open question is the nature of the microscopic
pairing mechanism which leads electrons to form Cooper
pairs in the high-Tc superconductor families of compounds
[10,15]. It is accepted that the BCS theory, so successful at
explaining superconductivity in the “usual” superconductors
[16,17], does not explain the superconducting behavior of
the cuprates or the iron-based compounds. In the cuprates
or iron-based superconductors strong electronic correlations
seem to be at work forcing the theoretical description of the

relevant physics to go beyond the classic BCS theory. One of
the striking effects of the strong electronic correlations is the
simultaneous relevance and consequent competition between
different degrees of freedom, leading to possibly different
kind of orders associated to electron density, spin, and orbital
degrees of freedom. It is not even completely clear when
these different orders compete with each other or instead in
some sense “catalyze” the appearance of superconductivity.
Sometimes this is referred to as “intertwined orders” [12,18].
From this simple perspective it is immediately clear that the
phase diagrams of these systems are extremely rich and com-
plex. In fact, both experimental and theoretical work usually
focus on one or a few relevant observables in limited regions
of parameter space. An overall understanding of the phase
diagram, collecting all or most of the pieces at work is still
not available.

The more well-known families of high-Tc superconductors
are the “cuprates” [12,13] and the iron-based ones or “pnic-
tides” [11,19]. Both families show similar thermal proper-
ties, although not identical. In both cases superconductivity
arises by doping with electrons or holes the so-called parent
compounds. The undoped parent compounds are insulators
at low temperatures, showing antiferromagnetic order at half
filling. As long as the doping is introduced in the system,
antiferromagnetism gradually gets weaker and eventually dis-
appears. Beyond some degree of doping, which depends on
the compound, a superconducting phase appears at very low
temperatures. By increasing the doping the superconducting
phase extends to higher temperatures until a maximum Tc is
obtained at an “optimal” doping level. Beyond optimal dop-
ing the critical superconducting temperature goes down and
eventually goes to zero at another critical doping level. This
is the well-known “superconducting dome.” In general in the
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cuprate superconductors, antiferromagnetism disappears for a
doping level less than that at which superconductivity appears;
the antiferromagnetic phase and the superconducting dome do
not intersect in the temperature-doping plane. On the other
side, in the iron-based superconductors the antiferromagnetic
and superconducting phases usually appear superposed, lead-
ing to a region of coexistence between antiferromagnetism
and superconductivity. In the same temperature-doping plane
of the phase diagram other phases, associated with other
degrees of freedom and different symmetries, usually appear,
like modulated electronic and spin orders, called stripes and
nematic phases [14,20,21]. Structural transitions in the crys-
tal symmetry of the compounds are also observed probably
being relevant for the emergence of superconductivity or
other types of order seen in the phase diagram. The common
presence of quenched disorder in the samples also leads to
freezing of degrees of freedom and spin-glass-like behavior
in some cases. From this crude exposition of the thermal
phenomenology of high-Tc superconductors one can imme-
diately conclude that obtaining a complete phase diagram is a
formidable task.

From a statistical mechanics point of view, it is usually very
helpful to develop a simplified model which captures some
of the relevant properties of a real system. This approach has
proved to be extremely successful in the context of critical
phenomena after the appearance of the concept of universality.
In a nutshell, universality means that the behavior of the
order parameters and the associated responses to the conjugate
fields of any system near a continuous phase transition depend
only on a few relevant characteristics of the system, basically
the symmetries of the order parameter and the dimensionality
of space. In particular, microscopic details of the interactions
are not relevant regarding the critical behavior. A well-known
example is the Blume-Emery-Griffiths (BEG) model [22],
which, despite its extreme simplicity, completely describes
the phase diagram global topology of 3He and 4He mixtures,
including the right order of the phase transitions. Extensions
of the BEG model have also been proposed to describe some
aspects of superconductivity [23–27]. Pseudospin models, as
those considered, e.g., in Refs. [24–27] are versatile and can
accomodate different kinds of discrete degrees of freedom,
like charge and spin, and in principle can be improved system-
atically by including different kinds of interactions. Lattice-
gas models [28–31] are another example, closely related to
the previous ones. With this in mind and motivated by the rich
complexity of the phase diagram of high-Tc superconductors,
in this paper we introduce a very simplified model which
captures the topology of the antiferromagnetic and supercon-
ductor phases of those systems. To our knowledge, these two
phases have only been obtained from a single model Hamil-
tonian in very few cases, e.g., Refs. [32,33] and references
therein (see also Ref. [23]), and because of the complexity
of the models involved and the different nature of the order
parameters a detailed analysis of the phase transitions have
not been done yet. Then, although the present model is clearly
too simplified to describe the complex physics of the cuprates
or iron-based superconductors, we nevertheless think it can be
useful to think on the universal or robust thermal properties
which can lead to the particular phase diagrams of such
systems.

II. THE MODEL

The model is defined by a set of three-state classical
variables Si, j = 0,±1, i, j = 1, . . . , L, interacting in a square
lattice of N = L × L sites, where Si, j = 0 represents a hole
and the two other states Si, j = ±1 may be thought of as repre-
senting the spin states of an electron. This model has some
resemblance with the “spin-pseudospin” models introduced
and studied in Refs. [24–27]. In those references the three
states represent charge degrees of freedom and only one of the
states, the “neutral” one, was allowed to carry spin. Instead, in
the present model only effective magnetic degrees of freedom
are associated with two of the states (electrons with spin 1/2)
while the third state represents the holes which do not carry
spin. It is worthwhile to mention that an equivalent lattice gas
model can also be defined in the present context, as noted in
the Introduction. A lattice gas interpretation of the spin-1 BEG
model was considered a long time ago and shown to describe
condensation and solidification of a simple fluid [28].

The Hamiltonian has two terms which compete with each
other: a nearest-neighbor interaction of strength JA which
favors antiferromagnetic order and a three-site interaction
mediated by a hole of strength JB. If the concentration of
holes is zero, then this interaction does not show up and
the system presents only an antiferromagnetic phase of Néel
type at low temperatures. The presence of a hole favors an-
other kind of antiferromagnetic order, this time between third
neighbors along the two principal directions of the square
lattice with a hole in between. This particular choice for the
interaction mediated by a hole has no particular relation with
the true physical pairing mechanism in the superconductor
compounds. In particular, other similar possibilities for the
pairing interaction in a square lattice could be envisaged, as,
e.g., a coupling between the spin states on the diagonal of
the unit lattice mediated by a hole at anyone of the other
two corners, among others. Instead, as stated in the previous
section, the introduction of a fictitious pairing aims at identi-
fying possible universal, robust thermal mechanisms behind
the topology of the temperature-doping phase diagrams. In
this sense, it is also worth mentioning that possible quantum
fluctuations are completely overlooked by the present model.
While quantum fluctuations are certainly relevant for some
defining characteristics of the superconductors, notably trans-
port properties, their relevance for the form of the temperature
phase diagram is not so clear. We think that in the present
context the inclusion of quantum fluctuations may even be
misleading due to the simplified nature of the model. The
Hamiltonian is given by

H =
L∑

i=1

L∑
j=1

[
JA

2
Si, j (Si+1, j + Si−1, j + Si, j+1 + Si, j−1)

+ JB
(
1 − S2

i, j

)
(Si+1, jSi−1, j + Si, j+1Si, j−1)

]
, (1)

where JA > 0, JB > 0. As anticipated in the above discussion,
the motivation behind the second term is to induce a kind of
“pairing” between couples of particles with up and down spins
mediated by a hole.
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FIG. 1. Superantiferromagnetic pattern.

At zero temperature there are two possible ground states:
the usual antiferromagnetic Néel state and a “superantiferro-
magnetic” (SAF) or “stripe” state, as shown in Fig. 1. Then,
to study the phase diagram and phase transitions present in
the system, we considered two order parameters: the usual
antiferromagnetic order parameter (staggered magnetization)
and an orientational parameter which characterizes the super-
anti-ferromagnetic order defined as:

O = 1

2N

L∑
i=1

L∑
j=1

Si, j[Si+1, j+1 + Si−1, j−1 − Si−1, j+1

− Si+1, j−1]. (2)

This order parameter is able to capture emergent order in-
duced by the second interaction term in (1).

III. MEAN-FIELD PHASE DIAGRAM

The grand potential density is given by:

f = − 1

βN
ln[Tr e−βH ], (3)

where H = H − μM and

M =
L∑

i=1

L∑
j=1

S2
i, j (4)

is the total number of particles and μ the corresponding
chemical potential.

A mean-field grand potential � can be obtained using the
inequality [22,24,34,35]:

f � � = f0 + 1

N
〈H − H0〉0, (5)

where H0 is a reference noninteracting (one body) variational
Hamiltonian with

f0 = − 1

βN
ln Z0 (6)

and

Z0 = Tr e−βH0 (7)

its partition function. H0 assumes the general form:

H0 = −
L∑

i=1

L∑
j=1

ηi, j Si, j −
L∑

i=1

L∑
j=1

μi, jS
2
i, j, (8)

where μi, j and ηi, j are local variational parameters. Then
Z0 = ∏

i, j Zi, j
0 with:

Zi, j
0 =

∑
S=0,±1

eβηi, j S+βμi, j S2 = 1 + 2 eβμi, j cosh(βηi, j ) (9)

and

〈Si, j〉0 = 1

Zi, j
0

∑
S=0,±1

Seβηi, j S+βμi, j S2

= 2

Zi, j
0

eβμi, j sinh(βηi, j ) (10)

〈
S2

i, j

〉
0 = 1

Zi, j
0

∑
S=0,±1

S2eβηi, j S+βμi, j S2

= 2

Zi, j
0

eβμi, j cosh(βηi, j ). (11)

A. Antiferromagnetic solution

We consider first the antiferromagnetic solution ηi, j = ±η,
according to which sublattice the site of coordinates i, j
belongs, and μi, j = μ. This implies a constant density:

ρ = 〈
S2

i, j

〉
0 = 2 eβμ cosh(βη)

1 + 2eβμ cosh(βη)

= 2 cosh(βη)

e−βμ + 2 cosh(βη)
(12)

and a staggered magnetization 〈Si, j〉0 = ±m with

m = 2 eβμ sinh(βη)

1 + 2 eβμ cosh(βη)
= 2 sinh(βη)

e−βμ + 2 cosh(βη)
. (13)

It is easy to obtain Zi, j
0 = 1

1−ρ
and therefore f0 = 1

β
ln(1 − ρ).

Then the variational grand potential density of the antifer-
romagnetic phase reads:

φAF = �AF/N = 1

β
ln (1 − ρ) + m2[−2JA + (1 − ρ)JB]

+ mη. (14)

Solving for the stationary condition on the variational
parameter η, ∂φAF

∂η
= 0 gives:

η = m

{
4JA + (1 − ρ)JB

[
m2

ρ − m2
− 2

]}
. (15)

Inserting this result into (12) and (13), we obtain two cou-
pled equations for the order parameters ρ and m which
must be solved self-consistently. From (15), m = 0 is al-
ways a solution. In the limit μ → ∞ we have ρ = 1 and
m = tanh(4JAβm), as expected. The numerical solution of
the self-consistent equations for m and ρ suggests that for
large positive values of the chemical potential μ there is a
line of continuous transitions between the antiferromagnetic
and paramagnetic phases, which ends at a tricritical point, as
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FIG. 2. Mean-field phase diagram for JB = 2JA. Continuous lines
represent phase boundaries. Lines with symbols represent limits of
stability of the AF and SAF solutions, as explained in the text. TP
identifies a tricritical point on the AF-Disordered line. The three
different phases meet at a triple point indicated by an arrow.

shown in Fig. 2. The criticality was studied by means of a
Landau expansion of the grand potential density:

φAF = φ0 + A m2 + B m4 + C m6 + . . . . (16)

The second-order transition line is defined when A(μ, Tc) =
0. This gives:

1

ρ
= βc[4JA − 2JB(1 − ρ)]. (17)

Changing variables to Tc = 1/βc (in units of the Boltzmann
constant kB) and defining the density of holes x = 1 − ρ, we
obtain the critical line Tc(x):

Tc(x) = (1 − x)[4JA − 2JBx]. (18)

We see that the antiferromagnetic phase disappears at a critical
hole density xc = 2JA/JB. Tuning the relative strength of the
competing interactions it is possible to change the critical hole
density and, consequently, the extent of the antiferromagnetic
order in the system. This should be the phase diagram of the
antiferromagnetic phase assuming a continuous transition for
any x. Nevertheless, it is possible to show that the continous
transition line ends at a tricritical point (μt , T t ). This is iden-
tified imposing the simultaneous vanishing of the prefactors
A(μt , T t ) = 0 and B(μt , T t ) = 0. For the case JB = 2JA the
tricritical point can be found numerically to be at (μt , T t ) =
(1.77, 2.55). For μ < μt the line of transitions is of first
order. This is illustrated in the T -μ phase diagram in Fig. 2
for JB = 2JA. Other values of the relative strength between
the antiferromagnetic and pairing interactions only lead to a
change in the critical density of holes xc and a rescaling of the
transition lines in the T -μ phase diagram, without changing
the qualitative appearance.

B. Superantiferromagnetic solution

The SAF ground state has the symmetry shown in Fig. 1.
The system is divided into two interpenetrated sublattices A
and B (black and red-green sites in the figure). Sublattice A
has a uniform low-density, low-magnetized state. Sublattice B
has a striped state (red and green sites in Fig. 1). Then, for

the SAF phase, we choose the variational parameters to be
μi, j = μ + δ and ηi, j = 0 for all sites (i, j) in the sublattice
A. For all sites (i, j) in the sublattice B we set μi, j = μ and
ηi, j = ±η for sites belonging to alternated columns. Then, for
sites belonging to the sublattice A, 〈Si, j〉A

0 = mA = 0 and

〈
S2

i, j

〉A
0 = ρA(δ) = 2eβ(μ+δ)

1 + 2eβ(μ+δ)
= 2

e−β(μ+δ) + 2
. (19)

For sites belonging to the sublattice B,

〈Si, j〉B
0 = ±mB(η) = ± 2eβμ sinh(βη)

1 + 2eβμ cosh(βη)

= ± 2 sinh(βη)

e−βμ + 2 cosh(βη)
(20)

and

〈
S2

i, j

〉B
0 = ρB(η) = 2eβμ cosh(βη)

1 + 2eβμ cosh βη)

= 2 cosh(βη)

e−βμ + 2 cosh(βη)
. (21)

In this case

f0 = − 1

2β
{ln[1 + 2eβ(μ+δ)] + ln[1 + 2eβμ cosh(βη)]},

(22)
and the variational grand potential for the SAF phase results:

φSAF = �SAF/N

= − 1

2β
{ln[1 + 2eβ(μ+δ)] + ln[1 + 2eβμ cosh(βη)]}

− JB [1 − ρA(δ)] m2
B + 1

2
η mB(η) + 1

2
δ ρA(δ) (23)

The stationarity conditions ∂φSAF

∂η
= 0 and ∂φSAF

∂δ
= 0 give:

δ = −2JBm2
B (24)

and

η = 4JB[1 − ρA(δ)]mB. (25)

Inserting (24) and (25) into (19), (20), and (21), we end up
with three coupled equations for ρA, ρB, and mB to be solved
self-consistently. A complete solution can only be possible
by solving numerically the set of equations. Nevertheless, a
simple analysis of some limiting cases is useful to check for
consistency of the equations:

(i) The global density in the SAF state is defined to be
ρ = (ρA + ρB)/2.

(ii) In the disordered phase, mB = 0 implies that δ = η =
0 and therefore the density is uniform:

ρA = ρB = 2eβμ

1 + 2eβμ
. (26)

(iii) The density saturates in the limit μ → ∞, ρA = ρB =
1, implying η = mB = 0, consistently with an antiferromag-
netic solution.

(iv) In the limit μ → −∞, ρA = ρB = mB = 0, as ex-
pected.

(v) There exists a minimum value of the chemical po-
tential μm such that for μ < μm the only stable phase is
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the disordered one characterized by mB = 0. For JB/JA = 2,
μm ≈ −4.0.

The mean-field SAF phase is shown in Fig. 2. From the
numerical solution of the saddle-point equations it turns out
that the SAF order parameter mB always changes discontinu-
ously at the transition lines. In the mean-field approximation
the SAF-disordered transition is discontinuous for any value
of the chemical potential μ. This situation changes in the
results from Monte Carlo simulations, as will be shown in
the next section. The SAF phase has a dome like shape in
the T -μ or T -x planes. An analysis of the relative potentials
shows that there is a first-order transition line between the
AF and SAF phases, as shown in Fig. 2. The three first-order
lines meet at a triple point which is located approximately at
(μt p, T t p) = (0.55, 2.2) for the case JB = 2JA. Also, the limit
of stability of the AF and SAF solutions is shown in the figure
with dotted lines, which should become the transition lines in
the absence of competition. Overall, the phase diagram has a
similar shape with the ones of the iron-based high-temperature
superconductors [32,33].

IV. MONTE CARLO SIMULATIONS

We performed grand-canonical Monte Carlo simulations
using Metropolis algorithm with Hamiltonian (1) on a square
lattice with N = L × L sites and periodic boundary condi-
tions. For each set of parameters values we let first the
system to equilibrate over 2 × 104 Monte Carlo steps (MCS)
and then we average over Ms sample points taken every
100 MCS over a single MC run; Ms run between 1000 and
20 000. All the calculations, except those related to hysteresis
cycles, were obtained by cooling down at constant steps from
high temperature keeping the chemical potential constant and
taking the initial configuration at every temperature as the
last one of the previous temperature value. We calculated
the average antiferromagnetic staggered magnetization 〈ms〉,
the orientational order parameter 〈O〉, with O given by
Eq. (2), the associated susceptibilities (kB = 1)

χs = N

T

(〈
m2

s

〉 − 〈ms〉2
)
, (27)

χO = N

T
(〈O2〉 − 〈O〉2), (28)

and the density

ρ = 1

N

∑
i, j

〈
S2

i, j

〉
. (29)

In all cases we used JB/JA = 2.
We obtained the phase diagram in the μ-T plane. We

summarize first the main qualitative features of the different
regimes observed before presenting a more detailed analysis.

(i) There exists a minimum value of the chemical potential
μm such that for μ < μm the only stable phase is the disor-
dered one characterized by 〈O〉 = 〈ms〉 = 0. For JB/JA = 2
and L = 64, μm ≈ −3.86025, consistent with the mean-field
result.

(ii) In the interval between μm and μ ≈ −1 a low-
temperature-ordered SAF phase was observed, characterized
by 〈O〉 �= 0 and 〈ms〉 ≈ 0.

FIG. 3. Temperature vs. chemical potential phase diagram for
JB/JA = 2 and L = 64.

(iii) According to the value of μ the phase transition from
the SAF to the disordered phase can be of first or second order
with the presence of a tricritical point. Namely, for μm < μ <

μt the transition is first order and there is phase coexistence;
for μ > μt the transition is continuous, up to a region around
μ ≈ −1. The estimated tricritical values for L = 64 are μt ≈
−2.5, xt ≈ 0.5, and Tt ≈ 1.46.

(iv) For μ > 0 there is a stable low-temperature AF phase,
characterized by 〈O〉 ≈ 0 and 〈ms〉 �= 0. The disordered-AF
transition is continuous.

(v) Around μ = 0 there is a first-order phase transition
between the ordered phases, with strong hysteresis effects.

These results are summarized in the phase diagram shown
in Fig. 3. We next describe the different properties analyzed to
obtain that phase diagram. In Fig. 4 we illustrate the typical
behavior for μ � 0. In this region the staggered magnetiza-
tion becomes different from zero at low-enough temperatures,
while the orientational order parameter remains almost zero
for all temperatures. The finite-size scaling behavior of the
staggered susceptibility max χs ∼ Lγ /ν allows us to estimate
the critical exponent γ /ν = 1.72 ± 0.05, in agreement with
the exact value for the 2D Ising model γ /ν = 7/4 = 1.75,
as expected. At variance with the mean-field results, we did
not observe evidence of a first-order AF-disordered phase
transition or of a tricritical point. However, large fluctuations
close to the region where the transition line joins the SAF-
disordered one makes difficult to exclude the existence of a
tricritical point in that region.

Next we analyzed the order-parameter behavior for μm <

μ < μt . In Figs. 5 and 6 we show how both the density and
the orientational order parameter display a discontinuity that
disappears when μ → μt . For μ > μt the density is always
continuous. The AF order parameter remains almost zero in
this region. In Fig. 7 we show the finite-size scaling of the
orientational order parameter and the associated susceptibility,
whose maximum max χO ∼ L2.03 agrees with the expected
behavior in a first-order transition [36] max χO ∼ Ld .

In Fig. 8 we show an example of the finite-size behavior of
the orientational order parameter in when μ > μt , but not very
close to μ = 0, where the transition between both ordered
phases occurs. The AF order parameter remains almost zero
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FIG. 4. Second-order phase transition behavior for μ = 1 and
JB/JA = 2. (a) AF order parameter (average staggered magnetiza-
tion) behavior for different values of L. (b) Associated susceptibility.
The inset shows the scaling of the maximum of χs with L; a power-
law fit gives an exponent γ /ν = 1.72 ± 0.05.

in this region. We see that the maximum of the orientational
susceptibility scales with an exponent γ /ν ≈ 1.4, well below
both from d and from 7/4, consistently with a continuous
phase transition in a universality class different from that of
the 2D Ising model. However, this last conclusion should be
checked for other values of μ in the same region, since this
value could be influenced by the proximity of the tricritical

FIG. 5. Density behavior in the first-order phase transition be-
tween the disordered and SAF phases for JB/JA = 2 and L = 64.

FIG. 6. Orientational order parameter behavior in the first-order
phase transition between the disordered and SAF phases for JB/JA =
2 and L = 64.

point. But this is a complicated and tricky analysis, since we
have to discriminate both the finite-size and the crossover
effects related to the tricritical point. For instance, in Fig. 9 we
show the finite-size scaling behavior of the maximum of χO

for μ = −1 and sizes ranging from L = 16 and L = 256. If
we consider all the points, then the power-law fitting gives an

FIG. 7. First-order phase transition scaling behavior for
μ = −3 for JB/JA = 2. (a) Orientational order parameter behavior
for different values of L. (b) Associated susceptibility. The inset
shows the scaling of the maximum of χO with L; power-law fit gives
an exponent γ /ν = 2.03 ± 0.05.
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FIG. 8. Second-order phase transition scaling behavior for μ =
−2 for JB/JA = 2. (a) Orientational order parameter behavior for
different values of L. (b) Associated susceptibility. The inset shows
the scaling of the maximum of χO with L; power-law fitting gives an
exponent γ /ν = 1.4 ± 0.1.

exponent γ /ν = 1.5 ± 0.1. So it seems that when we depart
from the tricritical point the exponent increases, suggesting
an approach to the 2D Ising universality class. However,
if we discard the smallest size point, then we get a better
fitting (larger r2) with an exponent γ /ν = 1.35 ± 0.07, which
appears to be consistent with the previous value found for
μ = −2.

FIG. 9. Maximum of χO as a function of L for μ = −1; power-
law fitting gives an exponent γ /ν = 1.5 ± 0.1.

FIG. 10. Order parameters hysteresis cycles for JB/JA = 2, L =
64, and Tf = 0.4. (a) Staggered magnetization. (b) SAF order
parameter.

Finally, we analyzed the transition from the AF to the SAF
phase at low temperature. In general we observed that the
behavior in the transition region is very noisy and relaxation
times are rather large. Hence, it becomes extremely difficult
to determine the nature of the transition, as well as to get
a reliable estimation of the transition temperature at fixed
chemical potential by means of the standard methods, such
as energy and/or order parameters histograms, response func-
tions finite-size scaling, etc. Since according to the MF results
the transition is a first-order one, we can at least check that
by looking at hysteresis effects. We then performed chemical
potential cycles at constant temperatures in the correspond-
ing region of the phase diagram according to the following
protocol. We first let the system to equilibrate Me MCS at
high temperatures in the liquid phase (T = 1.5). Then we
cool the system down to a final temperature Tf at constant
steps �T = 0.05 for fixed value of the chemical potential
μ = μmin = −2, letting the system to evolve Me MCS at every
temperature value. The value of Tf was chosen in such a way
that the system starts the cycle well inside the SAF phase.
Then we increase the chemical potential at constant �μ =
0.05 steps keeping the temperature fixed up to a maximum
value μ = μmax = 2 (well inside the AF phase). For every
value of μ we first let the system to evolve Me MCS and
then we calculate the average of both order parameters, taking
104 sampling points every 100 MCS along the same MC run.
Once we reach μmax we repeat all the protocol decreasing
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μ down to μmin. Along the whole process we used Me =
4 × 105. The results are illustrated in Fig. 10 for Tf = 0.4.
We observe a strong hysteresis effect, consistently with a first-
order transition. From these data we got a rough estimation of
the transition temperature as an average of the μ coordinate of
the center of mass of the cycles for every order parameter. The
transition points shown in Fig. 3 were obtained in that way.
The associated error bars were estimated as the average half-
width of the cycles. Actually, that procedure overestimates the
error and those bars rather give an estimation of the location
of the spinodal lines.

V. DISCUSSION

We introduced a new effective pseudospin model with
three single site states representing electrons of spin 1/2 and
holes, at a classical level, to analyze the effect of the competi-
tion between an exchange antiferromagnetic interaction and a
pairing interaction mediated by the holes on the temperature-
concentration phase diagram. Our aim was to mimic the
hole-mediated pairing interaction thought to be responsible
for the emergence of high-temperature superconductivity. We
showed that this simple model is able to reproduce the main
features of the global topology of the phase diagram of many
high-Tc superconducting compounds. Besides some differ-
ences in the order of the involved transitions, both mean-
field and Monte Carlo analysis provide a consistent phase
diagram, with a dome in the transition line between the paired
induced phase (SAF) and a disordered phase at high temper-
atures, together with a decreasing AF-disordered transition
line as the doping increases (decreasing chemical potential for

particles). Clearly, this is an oversimplified, toy model aimed
at identifying robust features of the temperature behavior of
the phase diagram of high-Tc superconductors induced by
hole doping. We think that in the framework of pseudospin
models, the present one can be easily extended to include
charge degrees of freedom and arrive at a more realistic model
of the electron-hole interaction, as done, e.g., in Refs. [24–27].
Consideration of a decorated lattice on top of the present
square lattice to accommodate the hole degrees of freedom
may also allow for a more realistic determination of critical
hole concentrations [37,38], which become irrelevant in the
context of the present model. Another rather direct modifica-
tion of the present model, which may lead to new interesting
properties, is to include another antiferromagnetic interaction
between second neighbors in the square lattice, like in the
J1 − J2 model [39,40]. The J1 − J2 model has a SAF phase,
which is interpreted as spin or electronic stripes, similarly to
those observed in the cuprates and pnictides. Furthermore, in
the presence of an external field, the model shows a kind of
“electron nematic” phase, also usually present in the phase
diagram of high-Tc compounds [41]. The introduction of holes
or doping in the cited models can be an interesting route to
explore.
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