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Universal and nonuniversal neural dynamics on small world connectomes:
A finite-size scaling analysis
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Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain
dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively
small size of the available connectome, which prevents, among other things, the determination of its associated
universality class. To circumvent that, here we study a neural model defined on a class of small-world networks
that share some topological features with the human connectome. We find that varying the topological parameters
can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or
having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space
where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state.
Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain
dynamics.
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I. INTRODUCTION

The study of brain functional activity has revealed the
existence of correlated fluctuations and scale invariance sim-
ilar to those observed in critical phenomena. Such evidence
prompted the conjecture that the large-scale organization of
the brain emerges at criticality [1–3]. Despite the relevance
of many of these findings, the small size of the available
connectomes [4] does not allow one to determine whether
the expected finite-size scaling behavior at criticality holds,
as well as the associated universality class. In this work we
study the dynamical properties of a model defined on a class
of small world networks that share some topological features
with the human connectome, for a wide range of values of the
parameters that define the associated topology and for differ-
ent system sizes. A finite-size scaling analysis allows not only
for a robust characterization of criticality, but also for an es-
timation of critical exponents and therefore the identification
of the universality class of the critical dynamics claimed to
be relevant for the emergence of the large-scale organization
of brain activity. Since finite-size scaling is a central issue
in the description of critical phenomena, the present results
provide a necessary perspective about the expected scaling be-
haviors on previous human-connectome-based models which
predict brain dynamics consistent with any kind of criticality
[4–8].

The paper is organized as follows. In Sec. II we describe
the model as well as the simulation and finite-size scaling
methods used. The results are presented in Sec. III. We discuss
the relevance of the main findings in Sec. IV.

II. MODEL AND METHODS

A. Model

This work uses an adaptation of the neural model pre-
sented in Ref. [4] running over a small-world network with
a weighted adjacency matrix wi j . To mimic the weight dis-
tribution of the human connectome [4,9], the non-null wi j

are chosen randomly from an exponential distribution p(w) =
λe−λw, with λ = 12.5. This gives a good fitting of the avail-
able connectome data.

The node dynamics of the neural model respond to the
Greenberg-Hastings cellular automaton [10], in which each
node i of the network is associated with a three-state vari-
able xi = 0, 1, 2, corresponding to the following dynamical
states: the quiescent (xi = 0), excited (xi = 1), and refractory
(xi = 2) states. The transition rules are as follows. If a node
at the discrete time t is in the quiescent state xi(t ) = 0 it
can make a transition to the excited state xi(t + 1) = 1 with
a small probability r1 or if

∑
j w ji δ(x j (t ), 1) > T , where

T is a threshold and δ(x, y) is a Kronecker delta function,
then xi(t + 1) = 0. If it is excited xi(t ) = 1, then it becomes
refractory xi(t + 1) = 2 always. If it is refractory xi(t ) = 2,
then it becomes quiescent xi(t + 1) = 0 with probability r2

and remains refractory xi(t + 1) = 2 with probability 1 − r2.
Following Ref. [4], we set r1 = 10−3 and r2 = 0.3.1 We keep
these values fixed in all the calculations. Each node interacts

1We made several checks for different values of r2 ∼ 10−1 and no
qualitative differences were observed.
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with the others according with the topology of a small-world
network, constructed as the usual Watts-Strogatz (WS) model
[11]. That is, we start from a ring of N nodes in which each
node is connected symmetrically to its 2m nearest neighbors.
Then, for each node each vertex connected to a clockwise
neighbor is rewired to a random node with probability π

and preserved with probability 1 − π , so the average degree
〈k〉 = 2m is preserved [12].

B. Statistical properties

The present analysis focuses on the dynamical clusters
of coherent activity, namely, groups of nodes simultaneously
activated (xi = 1) which are linked through nonzero weights
wi j , for different values of the parameters (π, 〈k〉) and differ-
ent network sizes N . Each simulation started from a random
distribution of activated sites and we let the system run 100
time steps before starting to collect data. We found that time
interval to be enough for the system to reach a stationary
state for any system size and for any value of the network
parameters. Then we recorded data every five time steps, to
avoid artifactual correlation effects. For each data set we com-
puted several measures to describe a percolationlike critical
phenomenon as a function of the control parameter T [4].
Specifically, we calculated the average sizes of the largest, i.e.,
giant, cluster S1, which can be considered the order parameter,
and we also computed the average size of the second largest
cluster S2, together with the average cluster size

〈s〉 =
∑′

s s2Ns
∑′

s sNs
, (1)

where the primed sum runs over all cluster sizes except the
giant one and Ns is the number of clusters of size s [12,13]. In
some cases we also computed the cumulative complementary
distribution function (CCDF) of cluster sizes. Depending of
the case, averages were computed both over data obtained
along the same simulation run and over different networks.

If the system presents a percolationlike critical point,
both 〈s〉 and S2 are expected to exhibit a (size-dependent)
maximum for a certain pseudocritical value of the control
parameter (the threshold T in the present case) that scales
with the system size as [14] 〈s〉 ∼ Nγ /νd and S2 ∼ Nd f /d .
Here γ and ν are the standard susceptibility and correlation
length critical exponents, respectively. In addition, d is the
effective dimension of the system, namely, it equals the spatial
dimension D if D < dc (dc being the upper critical dimension)
and it equals dc otherwise. The latter applies in the present
case since it is known that the global dimension of a WS graph
is always infinite [15]. Further, d f is the fractal dimension of
the percolating cluster. Also at the critical point it is expected
that [14] P(s) ∼ s−τ exp(−s/S∗), where S∗ ∝ S2.

III. RESULTS

As already mentioned, the distribution of cluster sizes of
activity can be informative of the different dynamical regimes
of the model. We computed such measures as a function of
the threshold T for models of increasing sizes N and different
topologies by varying the average degree 〈k〉 and rewiring
π . The model dynamics can be explored by inspecting the
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FIG. 1. Finite-size behavior for π = 0.6 and 〈k〉 = 5 correspond-
ing to the segregated regime of the model where phase transition
is absent for any T . (a) Order parameter S1/N . (b) Second largest
cluster relative sizes. Notice that they are of the same order of
magnitude as the largest clusters shown in (a) and also that S2/N →
0 ∀ T when N → ∞. (c) Average clusters size 〈s〉 as a function of the
threshold T for different sizes N .

clusters’ finite-size scaling behavior as a function of these
three parameters. Figures 1–3 correspond to the three typical
behaviors found at well-defined regions in parameter space,
which we will describe in detail now.

At relatively low average degree 〈k〉, the example of Fig. 1
is typical. We see that S1/N goes to zero for any value of T
as N → ∞. Also, both S2/N and 〈s〉 display a monotonic
decrease (no peak) for any value of the system size N .
Thus, for those small-world topologies only a few small and
uncorrelated clusters are present at any time for any value of
the threshold T , resembling what Tononi et al. [16] describe
as a segregated regime, which per se is incompatible with
normal brain functioning. Increasing the value of 〈k〉 results in
a change of the model dynamics. For such a case, as shown in
Fig. 2, the cluster analysis reveals the characteristic finite-size
scaling behavior exhibited by percolation phenomena [14].
There we observe the existence of a critical threshold Tc below
which the order parameter converges to a finite value when
N → ∞, while it goes to zero above the critical threshold
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FIG. 2. Finite-size behavior for π = 0.6 and 〈k〉 = 10, corre-
sponding to the critical regime (MFC). (a) Order parameter. (b) Sec-
ond largest cluster size S2. The inset shows the maximum of S2 as
a function of N , where the solid line is a power-law fitting giving a
critical exponent df /d = 0.67 ± 0.02. (c) Average clusters size 〈s〉.
The inset shows the maximum of 〈s〉 as a function of N , where the
solid line is a power-law fitting giving a critical exponent γ /νd =
0.35 ± 0.02.

[Fig. 2(a)]. This means the existence of a dynamical phase
transition, where the system develops long-range order in the
form of a macroscopic correlated cluster of simultaneously
active nodes, which resembles the correlations associated with
the brain resting state networks (RSNs) described in [4]. Also
both S2 and 〈s〉 exhibit a sharp peak around T = Tc [see
Figs. 2(b) and 2(c)] that diverges as a power law when N →
∞, thus exhibiting well-defined critical exponents. Hence, for
the associated topologies, the dynamical phase transition is
indeed a second-order or critical one.

A very different transition happens for large enough values
of both parameters (π, 〈k〉). Indeed, in that region both the
order parameter and the fluctuation measures S2 and 〈s〉
exhibit an apparently discontinuous behavior at the transition
point, as illustrated in Fig. 3.

By analyzing the finite-size scaling of any of the three
quantities S1/N , S2, and 〈s〉 in the large-N limit we esti-
mated the frontiers in the (π, 〈k〉) space between the regions
where the system may or may not exhibit a dynamical phase
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×

FIG. 3. Finite-size behavior for π = 0.6 and 〈k〉 = 30, corre-
sponding to the discontinuous regime. (a) Order parameter. The inset
shows the autocorrelation function of the average total activity AC
close to the critical value Tc. (b) Second largest cluster size S2. The
inset shows the maximum of S2 as a function of N , where the solid
line is a power-law fitting giving a critical exponent df /d = 0.29 ±
0.02. (c) Average clusters size 〈s〉. The inset shows the maximum
of 〈s〉 as a function of N , where the solid line is a power-law fitting
giving a critical exponent γ /νd = 0.05 ± 0.02. The inset shows the
autocorrelation function of the average activity for three values of T
very close to Tc.

transition, as well as the nature of the transition (see Fig. 4).
The frontier between the segregated and mean-field critical
(MFC) regimes was obtained by analyzing whether there is a
Tc > 0 such that S1/N converges to a finite value for T < Tc

when N → ∞. The frontier between the MFC and nonuni-
versal critical (NUC) regimes was identified by analyzing
whether or not the difference between critical exponents γ /νd
and d f /d (obtained from the finite size scaling extrapolation)
and the corresponding percolation mean-field values exceeds
the associated error bars. The frontier between the NUC and
oscillatory regimes was estimated by analyzing whether or not
there is a discontinuity in the order parameter at the transition
in the large-N limit.

At relatively low average degree 〈k〉 there is no transition
(the region labeled NT in Fig. 4). When present, the nature of
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FIG. 4. Parameter space for the network topology values (π, 〈k〉)
in the large-N limit. As a function of the node threshold T , the system
can exhibit a percolationlike dynamical phase transition for param-
eter values above the black line. Below the black line there is no
dynamical phase transition (NT). Between the black line and the red
dashed line (MFC) the behavior becomes scale invariant, at a certain
critical threshold T , with exponents consistent with the mean-field
percolation universality class. Farther above, in the region denoted
by NUC, the behavior can be still scale invariant and critical, i.e.,
the transition is still second order, but without universal exponents.
Finally, above the green dash-dotted line, the transition becomes
discontinuous (Disc.) and the dynamic is short-range correlated and
oscillatory. The triangle, circle, and star at π = 0.6 correspond to the
parameter values used for the statistics presented in Figs. 5(a), 5(b),
and 5(c), respectively. In the inset the same data are plotted in on
a double logarithmic axis to best denote the relative sizes of each
dynamical regime.

the dynamical phase transition can be different depending on
the topology of the network, as depicted in Fig. 4.

For relatively small values of 〈k〉 and/or small enough
values of π , the behavior is critical and the corresponding
critical exponents are consistent with the universality class of
mean-field (or Bethe) classical percolation, namely, γ /νd ≈
1/3 and d f /d = 2/3 (corresponding to an upper critical di-
mension d = 6, d f = 4, ν = 1/2, and γ = 1). An example is
the case shown in Fig. 2.

To get further insight into the nature of the dynamical phase
transition in the previously mentioned region, we analyzed the
associated behavior of the cluster size distribution (see Fig. 5).
For the critical dynamics, consistently, the cumulative clus-
ter size distribution exhibits the expected behavior Pc(s) ≡∑′

s′�s P(s′) ∼ s−(τ−1)exp(−s/S∗), with an exponent τ ≈ 5/2
and S∗ ∝ S2 (thus satisfying the scaling law τ = d/d f + 1) as
shown in Fig. 4, corresponding to the region in the (π, 〈k〉)
space denoted by MFC.

For even larger values of π and/or 〈k〉, a wide region
of the parameter space results in critical exponents changing
continuously with the topological parameters, until they seem
to saturate (see Fig. 6). On the other hand, the power-law
increase of values of S2 [see Fig. 3(b)] at both sides of the
discontinuity with an exponent close to 1/3 implies a roughly
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FIG. 5. (a) The CCDF of the cluster size distribution for 〈k〉 =
10, π = 0.6, and different system sizes. The dashed line corresponds
to a linear fitting of the central part of the distribution with a power
law ∼s−1.58. The inset shows the cutoff S∗ as a function of N ; the
solid line is a power-law fitting giving an exponent 0.62 ± 0.05.
(b) The CCDF of the cluster size distribution for 〈k〉 = 15, π = 0.6,
and different system sizes. The dashed line corresponds to a linear
fitting of the central part of the distribution with a power law ∼s−1.54.
The inset shows the cutoff S∗ as function of N ; the solid line is a
power-law fitting giving an exponent 0.60 ± 0.03. (c) The CCDF
of the cluster size distribution for 〈k〉 = 30, π = 0.6, and different
system sizes.

two-dimensional percolating cluster (d f ≈ 2), assuming an
effective dimension d = 6.

For comparison, we also calculated the clusters size dis-
tribution for a set of values in the NUC region, as shown
in Fig. 5(b). The power-law distribution is indeed consistent
with critical behavior. On the other hand, the data in Fig. 5(c)
show that the cluster size distribution for large values of
(π, 〈k〉), for large enough system sizes (N > 104), exhibits an
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(a)

(b)

FIG. 6. Critical exponents obtained by finite-size scaling analy-
sis as a function of 〈k〉 for the range of the rewiring probability π

values given in the legend. (a) Critical exponent of the maximum
of S2. The dashed line corresponds to the mean-field value df /d =
2/3. (b) Critical exponent of the maximum of 〈s〉. The dashed line
corresponds to the mean-field value γ /νd ≈ 1/3.

exponential decay, which excludes critical behavior. Hence,
we can conclude that in such a region the system exhibits a
first-order or discontinuous dynamical percolation transition.
In this region the analysis of the autocorrelation function
of the mean activity [see the inset in Fig. 3(a)] reveals that
the dynamics exhibits a finite timescale corresponding to
an oscillation whose period is a function of the topological
parameters π and 〈k〉 as well as T .

The results of the scaling analysis are summarized in
Fig. 6, which shows the computed critical exponents both
for the maximum of S2 [Fig. 6(a)] and for the maximum
of 〈s〉 [Fig. 6(b)]. The data show the two behaviors already
discussed: the universal (mean field, denoted by closed cir-
cles) and that for the cases in which there is a continuously
changing exponent depending on the value of π .

IV. DISCUSSION

The main results of the present work illustrate how the
large-scale correlated activity depends on the topological de-
tails of the underlying structural network. The results show
that the correlated patterns exhibiting scale invariance seen
in the brain RSNs need a certain minimum of connectivity
conditions. In other words, using the terminology of Tononi
et al. [16], for relatively low average degree 〈k〉 and fraction

of network shortcuts π , the neuronal activity is too segregated.
In the other extreme, for very large values of 〈k〉 and π , the
activity is too integrated, exhibiting a first-order or discon-
tinuous phase transition. This is most unexpected, because
in conventional static percolation on small-world networks
the transition is second order, belonging to the mean-field
universality class for any value of the rewiring probability π

[17]. Hence, the present effect is due entirely to dynamical
correlations. In between these two extremes we found a
regime that seems compatible with the functional magnetic
resonance imaging brain data. There, two different dynamical
regimes are found which are characterized by different kinds
of dynamical phase transitions as the threshold controlling
the neuronal activation is varied. For certain values the phase
transition is universal and for other, larger values, while the
scale invariance persists, the universality is lost, i.e., the ex-
ponents change continuously. Such regions could correspond,
with some differences, to the equivalent to the Griffiths phases
[18] already described in another context [19,20]. We refer
the reader to some recent results in the context of the brain
connectome [21,22].

It is worth noting the presence of standard percolation
critical exponents, considering that this kind of dynamical
phase transition could be expected to belong to the directed
percolation (DP) universality class [23]. Just for comparison,
the mean field DP exponents are [24] γ /νd = d f /d = 1/2
(which come from γ = 1, β = 1, ν = 1/2, and the hyperscal-
ing relation d f = d − β/ν, with an upper critical dimension
d = 4). The reasons for the absence of DP critical exponents
in the present case are not clear. Among the possibilities are
disorder [25] and the presence of a spontaneous activation
probability r1, which rules out the possibility of an absorbing
inactive state, considered a main property needed to observe
the DP universality class [23].

From the neuroscience point of view, the relevant finding is
that the critical regime in this class of networks spans a wide
region in the parameters space, corresponding to intermediate
values of networks topologies; those that are too connected
or too disconnected are not able to exhibit critical dynamics,
regardless of the values of the other two parameters (system
size and the node’s threshold). In other words, from the point
of view of neural architecture, a minimum of connectivity
needs to be predetermined (perhaps via evolution) in order for
the dynamics to achieve the dynamical features of criticality
(via modulation of excitability or the threshold). On the other
hand, the discontinuous percolation that appears only for
extremely connected networks might constitute pathological
conditions observed in real nervous systems. Hence, critical
fluctuations emerge as a robust characteristic of variations in
the anatomical network topology, which is consistent with
the expectations of criticality described for the spontaneous
fluctuations of brain dynamics.

It is well known that Watts-Strogatz networks are too short
to describe all the features of the interactions of real brains,
such as modular structure and topological dimensionality.
Nonetheless, the present results show that even in the absence
of such higher-order features of the interactions there is a rich
diversity of dynamics. Future work should shed light on the
impact over the dynamics when such higher-order properties
of the interaction graph are included.
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