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Controlling a complex system 
near its critical point via temporal 
correlations
Dante R. Chialvo1,2*, Sergio A. Cannas3, Tomás S. Grigera4,5, Daniel A. Martin1,2 & 
Dietmar Plenz6

Many complex systems exhibit large fluctuations both across space and over time. These fluctuations 
have often been linked to the presence of some kind of critical phenomena, where it is well known 
that the emerging correlation functions in space and time are closely related to each other. Here we 
test whether the time correlation properties allow systems exhibiting a phase transition to self-tune 
to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D 
Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback 
from the autocorrelation function of the order parameter fluctuations shifts the system towards 
its critical point. Our results rely on universal properties of critical systems and are expected to be 
relevant to a variety of other settings.

The last decade has witnessed an escalating interest in complex biological phenomena at all levels including 
macroevoluction, neuroscience at different scales, and molecular biology. The observed complexity in nature is 
often traced to critical phenomena because it resembles the complexity found for critical dynamics in models 
and theory1–8. However, as discussed elsewhere, such resemblances are far from enough to attribute to criticality 
the mechanism behind all forms of natural complexity. Even though out of equilibrium generic scale invariance 
can arise without fine-tuning of control parameters9–12, it is often found that biological systems operate in special 
regions of control parameter space which are critical in the sense that they separate phases of different dynamical 
behavior3. More specifically, it seems that many biological systems reach a “sweet spot” where they attain maximal 
susceptibility, i.e., sensitivity to changes in the environment, while maintaining internal order. It is important 
to emphasize that at present it is not clear how such a critical state can be reached or even maintained. For a 
complex system like the brain, one might imagine that its control parameters be hard-wired genetically, selected 
by a long evolutionary process to a critical point that is biologically most advantageous for survival. However, 
the values the control parameters need to attain for the system to maximize its susceptibility depend on system 
size13, and thus for biological systems to take advantage of critical dynamics they would need to adjust the control 
parameter as systems contract or expand14. We exemplify this problem in Fig. 1 (inset) which sketches how the 
peak of the susceptibility, the property to be maximized, shifts as the system gets larger.

While some physical systems might be large enough that one can assume they are asymptotically near the 
thermodynamic limit, we note that most biological systems are of moderate size, and finite-size effects are in 
principle to be expected14. It has been argued that the critical point is the best (or only) functioning state for a 
given biological system. In order to attain it, Darwinian evolution instead of furnishing a set of specific values 
for the control parameter must allow for a control mechanism such that systems can reach and stay close to a 
critical point.
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We show that a system can be tuned to the vicinity of its finite-size “critical” (i.e. maximum susceptibility) 
point using the first autocorrelation coefficient AC(1) of the order parameter fluctuations (we define AC(1) as 
in time-series analysis as the time correlation of the order parameter at t = 1 ). Because AC(1) peaks at the same 
point as the susceptibility, yet does so more smoothly than the susceptibility, a control feedback seems straightfor-
ward. This behavior of AC(1) near criticality responds to the notion of critical slowing down in both equilibrium 
and non-equilibrium critical dynamics by which perturbations take longer to dissipate near criticality.

The existence of the maximum of AC(1) can be understood from dynamic scaling. The dynamic scaling form 
of the time correlation is15

where k is the observation wavevector, ξ is the correlation length, the function g is such that g(t = 0) = 1 , i.e. 
C0(k) is the static correlation function, and the characteristic time obeys

where g, Ŵ and � are unspecified scaling functions and z is the dynamic scaling exponent. Now

For a global quantity, k = 0 (see Suppl. Material) so that

where A > 0 is a time dependent constant. Hence, the normalized time correlation has a maximum at T = Tc , 
for fixed δt.

The main idea is demonstrated here by applying it to three well understood systems, namely the ferromagnetic 
Ising model, the Vicsek model of flocking and a typical neuronal small-world network. We remark that the results 
are general enough to be also expected in many other systems.

Ising model Figure 1 illustrates the typical behaviour of the 2D ferromagnetic Ising model at increasing 
temperatures. The system undergoes a second order phase transition at a critical temperature Tc , reflected in a 
steep change in magnetization as well as a sharp peak in susceptibility (Fig. 1A). Equally distinct changes are also 
demonstrated for the correlation properties of the model computed from appropriate system variables (Fig. 1B). 
A sharp increase in the average pairwise correlations is observed as the system approaches Tc , where the correla-
tion length matches the size of the system. The relatively sharp changes in the spatial correlations contrast with 
the relatively smoother changes in the temporal correlations, as reflected by the first auto-correlation coefficient 
AC(1) of the magnetization fluctuations around the mean, which at Tc approaches unity.

Now we asses how to control the Ising model to stay at the vicinity of the susceptibility peak. According with 
the discussion in the introduction, we must restrict ourselves to do it using only either local or global informa-
tion. In that sense, the time correlation evaluated by AC(1) meets such conditions, because it can be computed 
from a temporally delayed version of a global average of magnetization. In turn, magnetization can be assessed 
simply by averaging samples of a relatively large number of sites.

To demonstrate control we proceed by choosing an initial random temperature and simulate the dynamics 
for some large number of Montecarlo (MC) steps, which we denote as an “adaptation iteration step” indexed by 
i. We proceed by estimating the AC(1) of the fluctuations around the mean magnetization during the lapse of 
time corresponding to the adaptation iteration step i and monitor the change of AC(1) between two consecutive 
steps i, defining

so that d changes sign when a decrease in AC(1) is detected. We then use the gradient to its maximum value

to change the future temperature T(i + 1) (i.e., the control parameter) according to

where κ is a constant that determines how slowly the temperature is adjusted. Its exact value is not crucial for the 
present results. Successive iterations of Eqs. 5–7 demonstrate convergence of the temperature to the expected 
value at equilibrium Tc ∼ 2.3 . Fig. 2 illustrates typical results for various initial temperatures, which in all cases 
converge to the vicinity of Tc . We note that the successive values of the parameters (order, control and AC(1)) 
obtained during the adaptive simulations over-imposes well (i.e., matches) those obtained from equilibrium 
simulations.

Vicsek model We were also able to use the AC(1) function to control the Vicsek model16, the archetypal 
model for flocking behavior, towards its critical point. In this model, N self-propelled particles endowed with 

(1)C(k, t) = C0(k)g

(

t

τ0(k, ξ)
; kξ

)

,

(2)τ0(k, ξ) = k−zŴ(kξ ; ξ) = ξ z�(kξ),

(3)
C(k, t = δt)

C(k, 0)
≈1+ δt

1

C0(k)

dC(k, t = 0)

dt

= 1+ δtξ−z�−1(kξ)g ′(0; kξ).

(4)
C(k = 0, δt)

C(k = 0, t = 0)
∼ 1− A ξ−z ∼ 1− A (T − Tc)

zν ,

(5)di = d(i−1) sign[AC(1)(i) − AC(1)(i−1)],

(6)δi = (1− AC(1)(i))
2,

(7)T(i+1) = T(i) + δ ∗ d ∗ κ ,
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a fixed speed v0 move in d-dimensional space. At each time step, positions ri(t) and velocities vi(t) are updated 
according to

where Si is a sphere of radius rc centered at ri(t) . The operator Rη normalizes its argument and rotates it randomly 
within a spherical cone centered at it and spanning a solid angle η�d , where �d is the area of the unit sphere in 
d dimensions ( �2 = 2π , �3 = 4π).

The order parameter, which measures the degree of flocking, is the normalized modulus of the average 
velocity16,17,

ϕ ∈ [0, 1] , with ϕ = O(1/
√
N) ∼ 0 in the disordered phase and ϕ = O(1) in the the ordered phase. We choose 

�t = rc = 1 , noise amplitude η = 0.5 , the speed v0 and the number density ρ = N/V  , where V = Ld is the vol-
ume of the (periodic) box. Here, we choose N as the control parameter noting that similar results are obtained 
using noise amplitude η as control parameter for fixed N (see Suppl. Material). We apply Eqs. 5–7 to this model, 
using η as control parameter and keeping the density fixed. For comparison we over-plotted results from equi-
librium runs with values taken during adaptive control of the simulations (Fig. 3). The close match demonstrates 
that the technique is able to control the flock model near its critical size N ∼ 560.

Neuronal network model Successful control was further demonstrated for a previously described neural 
network model18 consisting of a network of interconnected nodes together with a dynamical rule. The model 
exhibits a second order phase transition20 on a region of parameters. The model matrix of interactions follows a 
small-world topology and each node exhibits discrete state excitable dynamics, following the Greenberg–Hastings 

(8)vi(t +�t) = v0Rη





�
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
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Figure 1.   Autocorrelation peaks with susceptibility at Tc in the equilibrium Ising model. Panel A: The order 
parameter (magnetization; open circles) and susceptibility (filled circles) as function of temperature T. Panel 
B: Corresponding average pairwise correlation (CC; filled circles) and first autocorrelation coefficient (AC(1); 
open circles) of the magnetization fluctuations around the instantaneous mean. Dashed vertical line denotes 
Tc . (System size N = 322 , 104 MC steps). The inset shows a cartoon of the expected susceptibility as a function 
of the control parameter for three systems of increasing sizes, where arrows indicate the corresponding optimal 
points T1,T2,T3.
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model19. Briefly, each node is assigned one of three states: quiescent Q, excited E, or refractory R, and the transi-
tion rules are: (1) Q → E with a small probability r1 ( ∼ 10−3 ), or if the sum of the connection weights wij with 
the active neighbors (j) is higher than a threshold Th , i.e., 

∑

wij > Th and Q → Q otherwise; (2) E → R always; 
(3) R → Q with a small probability r2 ( ∼ 10−1 ) delaying the transition from the R to the Q state for some time 
steps. Parameters r1 and r2 , which determine the time scales of self-excitation and of recovery from the excited 
state, respectively, were kept fixed and Th was updated according to control Eqs. (5–7). The density of excited 
nodes, (i.e., in state E) in each time step was taken as the order parameter. As shown for the previous models, the 
feedback of the AC(1) of that order parameter was able to move and maintain the system near its critical point 
(here Th ∼ 0.16 ) (Fig. 4). It is important to remark, that the neurons excitability is adjusted not by the network 
rate of activity, but by the temporal correlations (i.e., AC(1)) of such activity fluctuations.

We have verified that the present results apply, with some small differences, to systems undergoing either 1st 
or 2nd order phase transitions. We note also that low dimensional dynamical systems exhibiting continuous or 
discontinuous bifurcations from fixed points to limit cycles which can be controlled, using the same idea, near 
the bifurcation point.

1 2 3 4
T 

0.4

0.6

0.8

1

A
C

(1
)

1 2 3 4
T

0

100

200

S
te

ps

0 100 200
Steps

0.4

0.6

0.8

1

A
C

(1
)

0

0.5

1

M
ag

ne
tiz

at
io

n

0 50 100 150 200
Steps

0

20

S
us

ce
pt

ib
ili

ty

A B

CD

E

Figure 2.   Adaptive control of the Ising model with temperature adjusted iteratively by the autocorrelation of 
the order parameter. The data illustrate, for a variety of initial temperatures, the convergence of the system to the 
vicinity of the expected critical temperature Tc = 2.3 . Panels A, C, D, E show, as a function of iteration steps, the 
first autocorrelation coefficient of the magnetization’ fluctuations, the magnetization, the susceptibility, and the 
temperature. As seen in Panel C, for any initial temperature the system converges to values near the equilibrium 
Tc and at the maximum of AC(1) (see panel A). Adaptation parameter κ = 0.04 , other parameters as in Fig. 1. 
Colors denote the evolution of variables toward the critical point starting from five different initial conditions of 
temperature T: 0.5 (black), 0.1 (red), 0.16 (light green), 0.2 (dark green) and 0.35 (blue).
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In conclusion we have demonstrated, in three paradigmatic cases, how to shift the system towards its critical 
point using a feedback loop between the control parameter and the first autocorrelation coefficient of the order 
parameter fluctuations. Our results build at least on two previous lines of work which come close to describe 
this control strategy. One is the view of self-organized criticality1 as a feedback between order and control 
parameters21. The other line relates to forecasting of an upcoming tipping point via the generic slowing down 
present at criticality22,23. The current results go beyond these previous approaches by demonstrating an alterna-
tive mechanism for the presence of criticality in some systems. Furthermore it provides a strategy of control 
amenable of practical implementations in different areas. For instance, in neuroscience, this approach could 
be implemented in conjunction with optogenetical targeting24 in behaving rodents to clamp cortical networks 
to any desired dynamical state, helping to predict its influence on perceptual performance during a given task.
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Figure 3.   3D Vicsek model at equilibrium and under adaptive control. Order parameter ϕ (Panel A, B), the 
first autocorrelation coefficient AC(1) of the polarization fluctuations around the mean (Panel C, D) and the 
susceptibility χ (Panel E, F) (computed as var(ϕ) ∗ N ) and as a function both of adaptation steps (left columns) 
and of the system size N (right columns). Notice the overlap between the equilibrium results (solid lines) and 
the values reached during the adaptive control (open circles) for different initial conditions which converge to 
the critical size Nc ∼ 560 denoted by the dashed line. η = 0.5 , v0 = 1 , L = 7.5 . κ = 800 and 104 MC steps per 
adaptation iteration step. Colors are used to identify the evolution of the variables toward the critical point, 
starting from five different initial conditions of size N: 200 (red), 300 (black), 400 (blue), 750 (light green) and 
1000 (dark green).
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