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Box scaling as a proxy of finite size 
correlations
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The scaling of correlations as a function of size provides important hints to understand critical 
phenomena on a variety of systems. Its study in biological structures offers two challenges: usually 
they are not of infinite size, and, in the majority of cases, dimensions can not be varied at will. 
Here we discuss how finite-size scaling can be approximated in an experimental system of fixed 
and relatively small extent, by computing correlations inside of a reduced field of view of various 
widths (we will refer to this procedure as “box-scaling”). A relation among the size of the field of 
view, and measured correlation length, is derived at, and away from, the critical regime. Numerical 
simulations of a neuronal network, as well as the ferromagnetic 2D Ising model, are used to verify such 
approximations. Numerical results support the validity of the heuristic approach, which should be 
useful to characterize relevant aspects of critical phenomena in biological systems.

Complex biological phenomena at all levels, including macroevolution, neuroscience at different scales, and 
molecular biology are of increasing interest. In some systems, the origin of such complexity has been traced to 
critical phenomena via models and  theory1–13. Nonetheless, the connection between complexity and criticality 
still needs to be established carefully in each case. Among others, a very distinctive indicator of the presence 
of critical phenomena is the observation of an increase in the correlation length as a function of the size of the 
system under  study14–17. Such observation exposes one of the hallmarks of criticality: a complex dynamics which 
lacks a characteristic  scale18,19. Less evident but equally relevant is the fact that at criticality the only scales are 
the ones “imposed” from outside, i.e., the finite size of the system and the limited time of system observation.

In most physical systems, criticality can be studied through the variation of system properties as some external 
parameter (say temperature) is changed. However this kind of tuning is usually off-limits in biological systems. 
Alternatively, one can in principle establish the lack of an intrinsic scale by demonstrating the size-scaling directly, 
i.e., by studying the correlation function in systems of increasing size. While this can be done with relative ease 
in numerical studies, it is much harder to achieve in  experiments20. This is especially true in biological systems, 
which in most cases can neither be cut in small pieces, nor can they easily be enlarged. The brain is a prototypi-
cal biological system for which critical dynamics has been suggested to hold the key to its core  functions3,4,6,12,13. 
The spatial extent of the correlations for ongoing and evoked brain activity was recently reported to depend 
in a unique way on the size of the observation  window4,12,21,22, as well as in other biological systems, such as 
proteins and cell  organelles7–9. However, there has been no systematic analysis on whether and how system-size 
correlation scaling can be approximated by varying the size of an observation window (without changing the 
system’s size), as Binder did with the order parameter  scaling23. We will refer to this latter approach as “box-
scaling”, since it resembles the fractal box-counting  algorithm24. The purpose of this article is to fill that gap, 
and characterize the kind of results that can be obtained when a box-scaling approach is used, as a function of 
system parameters and state. We show that the computation of a correlation function under box-scaling allows 
to discriminate critical from non-critical regimes in systems exhibiting critical behavior. Therefore, box-scaling 
can be used as a proxy of finite size scaling on experimental setups where system size cannot be varied, such as 
in several biological systems.
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The article is organized as follows. First the connected correlation function (CCF) is defined. Then the CCF is 
studied for a neuronal network model under two scenarios: in the first one we proceed in the standard manner, 
increasing the system size and determining its correlation behavior. In the second setting, the CCF is examined 
using a fixed system size (relatively large) while varying the size of the field of view (changing the observable 
window size). Motivated by currently available experiments on neuronal dynamics, we focus here on the case 
where the window is much smaller than the system size. After that, similar calculations are described in the 
ferromagnetic 2D Ising model. Finally, the collapse of all the CCF’s after rescaling is demonstrated for the two 
models. The article concludes with a discussion on the potential application of box-scaling to biological data, 
and a summary of the main results.

Connected correlation function
The connected correlation function measures how a local quantity loses spatial correlation as distance is 
 increased25. Two important quantities are usually extracted from this function, the decay with distance and the 
correlation length. Following previous  work4,7,8,10,12,17,21 we compute it as,

where δ(r − rij) is a smoothed Dirac δ function (we have taken δ(x) = H(x + 0.5)H(0.5− x) , where H is the 
Heaviside function), selecting pairs of signals (i.e., pairs of spin values, neuron states, or some other position 
dependent variable) at mutual distance r; rij is the Euclidean distance from the site i to site j; δvi is the value 
of the signal vi of site i at time t, after subtracting the overall mean of signals V(t) = (1/N)

∑N
i vi(t) , i.e., 

δvi(t) = vi(t)− V(t) ; 1c0 is a normalization factor to ensure that C(r = 0) = 1 . Notice that, potential spurious 
long-range correlations introduced by common external fields or perturbations, are not entering in C(r) of 
Eq. (1) since V(t) is the instantaneous space average. This also implies that the correlation length can be directly 
calculated as the zero crossing of the function.

Equation (1) is defined as the space-averaged connected correlation function, which differs from the time-
averaged connected correlation function used to describe correlations between observables measured at different 
points in space,

where 〈vi〉 represents an average of vi over sufficiently long times (see e.g.26). In this case, the values of the correla-
tion length and the spatial decay are determined by regression and  fitting27. Thus, there is a subtle but important 
difference between Eqs. (1) and (2): the fluctuation δvi in C(r) is the difference between the local value of the 
signal vi and its instantaneous average over all the sample V at time t, while in Ctime , fluctuations are computed 
with respect to time average 〈vi〉 . It is straightforward to demonstrate (at least for equilibrium systems, for long 
time series, without external perturbations) the equivalence between both  quantities10,

i.e., they only differ by a constant. Thus, for experimental purposes averaged connected correlation function, 
Eq. (1) is preferred. To our knowledge, it was first used  in28, in the context of bird flocks, and was later used 
 in4,7,8,12,17,22, among others. Further details can be consulted  in10.

The correlation length ξ measures the scale at which two points start to become uncorrelated. In a critical 
system the correlation length is infinite, meaning that the decay of the correlation lacks a characteristic scale. In 
this case, the position of the zero of C(r) in Eq. (1) is a useful length scale, because then it increases proportion-
ally to the system size L (the CCF defined with instantaneous space averages subtracted must have a  zero10). This 
functional dependence, attesting scale invariance, suggests the presence of critical dynamics. However, it can not 
be used when the system size is fixed, as in the case of brain networks. Instead, we can subdivide the system in 
boxes of side W, (with W < L ), and define a characteristic scale r0 by the first zero of CW (r) , where CW (r) is the 
CCF, Eq. (1), computed for partial regions of the entire system, of size W. Thus, the implementation follows the 
same logic and limitations than the box-counting algorithm commonly used to compute the fractal dimension 
of a data set, image or  object24.

The hypothesis tested here is that the behavior of r0 when W is varied with L fixed is the same as would be 
obtained with W = L and varying L, at least when W ≪ L , namely

This behavior can be justified for physical systems in equilibrium by extending the arguments of (Sect. 2.3.3 of 
Ref. 10) to the box-scaling case (see Supplemental Material). In the cases we show next, we find that the relations 
in (4) hold for all W up to W ≃ L/2.

In the following, we will study the scaling behavior of the characteristic length r0 in two models: a 2D neuronal 
network, and the 2D ferromagnetic Ising model. In all simulations, C(r) and CW (r) were measured for all integer 
values of r. Subsequently, the smallest value of r for which C(r) [ CW (r) ] is negative, rm , was computed, and r0 was 
found as the zero crossing of the linear fit of C(r) [ CW (r) ] between r = rm − 1 and r = rm.

(1)C(r) =
1

c0

∑

i,j δviδvjδ(r − rij)
∑

i,j δ(r − rij)

(2)Ctime(r) =

∑

i,j(vi − �vi�)(vj − �vj�)δ(r − rij)
∑

i,j δ(r − rij)

(3)c0C(r) = Ctime(r)−
〈

[V − �V�]2
〉

,

(4)r0 ∼

{

ξ log(W/ξ), ξ ≪ W < L,
W , ξ ≫ L ≫ W .
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2D Neuronal network model
We study a neuronal network described  previously29,30. In short, the model is a cellular automata network on 
a square lattice, in which each neuron can be in one of three states at each time step: 0 for resting, 1 for active 
(lasting one time step), and 2 for refractory (lasting two time steps). Each neuron connects to K other neurons 
(here, K = 16 always), in which Euclidean nearest neighbor neurons are favored by an exponential decaying 
function of the distance r between them (fixed here to rd = 5 ). To ease the interpretation we imposed a cutoff 
in the interaction probability by preventing neurons to be connected at distances r greater than a given value 
(called here interaction length I, fixed here at I = 20).

The network overall rate of activity is set by a very small ( h = 10−7step−1 ) independent Poisson perturba-
tion to each neuron. We have verified that the results are robust over a wide range of h values (e.g., h = 10−9 to 
10−4step−1 ). The model includes a control parameter σ = K × T , in which T is the probability that an active 
neuron (i.e., in state 1) can excite one of the K neighbors that are connected to it. Therefore, as shown  previously29, 
for any given value of K, the model can be made critical by changing the transmission probability T such that 
σ ≃ 1 . We study two different scenarios: in the first we compute the CCF of the neuronal activities collected 
from systems of increasing sizes, from L = 40 up to L = 640 . In the second case, a system of (fixed) large size 
( L = 1000 , i.e., L× L neurons) was simulated, from which the activity of each neuron inside of windows of sizes 
smaller than L (from W = 40 up to W = 640 ) were extracted for the correlation analysis. Since we are interested 
on situations where system size, although finite, is much larger than window size, we considered periodic bound-
ary conditions. Results presented below correspond to averages of twenty or more realizations lasting 2.5× 104 
steps for each parameter value.

There are four scale lengths to consider in this model: The first is the interaction length I, it is the scale at 
which neurons interact via direct connections. The second is the system size L. The third is the size of the obser-
vation window ( W < L ) which determines the subset of neurons selected to compute the CCF. The last scale is 
the characteristic length r0 which will be determined from the CCF.

Figure 1 shows the connected correlation functions computed for various system and window sizes, consider-
ing v = 1 in Eq. (1), if neuron is active or refractory, and 0 otherwise, and three values of the control parameter 
σ . Computation of Eq. (1) was used for all pairs of neurons, taking one snapshot every 100 time steps, on the 
last 80% of the data (i.e., after 5000 equilibration steps). Only one window of each size was considered at each 
snapshot. Similar results can be found if Eq. (1) is calculated only for pairs of neurons on the same line, taking one 
snapshot at each time step (not shown). The results correspond to representative values of the control parameter: 

Figure 1.  Connected correlation function of the neuronal network model. Curves in panels (a–c) for different 
system sizes L and those in (d–f) for different window sizes W computed on a system of size L = 1000 . Results 
are for three control parameter values corresponding to sub-critical ( σ = 0.64, panels a,d), critical ( σ = 1.024, 
panels b,e) and super-critical ( σ = 1.6 , panels c,f) regimes of the model. Arrow in panel (b) illustrates the value 
of r0 for L = 640.
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sub-critical σ = 0.64 , super-critical ( σ = 1.6 ) and critical ( σ ∼ 1 ) as indicated in the legend. Top panels (a, b 
and c) correspond to computations from increasing system sizes. Bottom panels (d, e and f) correspond to CCF 
computed using various window sizes from a system of size L = 1000 . It can be seen that the functions obtained 
when changing system size L or changing window size W are qualitatively very similar. In particular we note 
that, as expected from (4), for both sub-critical and super-critical values of σ (panels a, d and c, f respectively) 
correlations do not grow much beyond the model interaction length I = 20 . At criticality, on the other hand r0 
increases when either the system itself (panel b) or windows increase in size (panel e).

The values of r0 extracted from the curves in Fig. 1 (as well as two other σ values) are plotted in Fig. 2. Here 
the same data is presented using different axis formats to visualize the different functional dependency near and 
away the critical point. Dashed lines in panels b and e are a guide to the eye illustrating the expected logarithmic 
behavior of r0 for sub-critical and super-critical regimes (open circles). The dashed lines in panels a and d denote 
the linear dependence expected for r0 (filled circles) in the critical regime. Finally, the same data is plotted in 
log-log axis in panels c and f to reveal the crossover behavior for W values close to and smaller than the interac-
tion length ( I = 20 ), denoted by the deviation from the asymptotic linear dependency for large W. Also it is 
worth to notice the small deviation of the linear scaling observed at criticality when the value of W approaches 
the system size L ( W = 640 in panel d of Fig. 2). This deviation is expected from the theory, as discussed in the 
Supp. Material. In brief, r0 depends on both W and L. If W ≪ L , then r/L ≪ 1 and the dependance of r0 on L 
does not need to be considered. On the other hand, for small L, r0(W , L) grows with L, for fixed W, having it’s 
minimum for W = L.

Overall, these results show that the scaling of the characteristic length r0 follows a similar functional depend-
ence with either the box-scaling or the system-size.

2D ferromagnetic Ising model
The results obtained from the neuronal model were replicated in numerical simulations of the ferromagnetic 2D 
Ising model on a square lattice, using periodic boundary conditions, with Hamiltonian H = −

∑

�i,j� sisj , where 
si = ±1 and 〈i, j〉 stands for sum over nearest-neighbors. Similar to the previous model, the simulations used 

Figure 2.  Characteristic Length r0 of the neuronal network model. The zero crossings of the CCF shown in 
Fig. 1 are plotted in linear–linear (left), log–linear (middle) and log–log (right) axis. Top three panels correspond 
to different system size L and bottom three panels to different box length W. Different symbols correspond 
to the values of the control parameter σ denoted in the legends. Dashed lines are visual aids to emphasize the 
predicted logarithmic behavior for both sub-critical and super-critical regimes (open circles) and the linear 
dependence expected for the critical regime (filled circles). Open triangles are used to denote results obtained 
for intermediate values of σ . In all cases, error bars are omitted, since error estimates are smaller than symbol 
size.
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two scenarios: in the first the CCF was computed in the standard way from a model running on square lattices 
of increasing sizes from L = 16 up to L = 512 . In the second setup, a relatively large L = 600 square lattice (i.e., 
600× 600 spins) was simulated, and the CCF was computed from square window of smaller sizes from W = 16 
up to W = 512 . Results are computed using v = s in Eq. (1). They correspond to averages of five realizations 
each one lasting at least 5× 106 Monte Carlo steps, under the same conditions as in the neuronal model (the 
first 20% time steps are not considered, after that, one snapshot is taken every 100 MC steps, all pairs of spins are 
considered in Eq. (1), and only one window of each size is taken). In all cases we considered periodic boundary 
conditions. Similar results can be found using open-boundary conditions, see the Supp. Material.

Figure 3 shows representative results for the two scenarios at three different temperatures: sub-critical 
( T = 2.0 , Panels a and d), critical ( T = 2.27 , Panels b and e) and super-critical ( T = 3.0 , Panels c and f). The 
top panels represent results computed for increasing system sizes and the bottom panels for a fixed lattice size 
and various window sizes. Note that, as already seen in the simulations of the neuronal model, the computation 
of the CCF by changing system size L or by changing window size W produces very similar results.

The dependence of r0 with system and window size is shown in Fig. 4 using the same format as in Fig. 2 for 
the neuronal model. It is clear that the results obtained from varying the system or the window size show a strik-
ing similarity, suggesting that for this system the approximation is also valid. Notice the small deviation from 
linearity observed at criticality for W = 512 in panel d of Fig. 4 which is similar to that exhibited by the neuronal 
model for W sizes near the value of L.

CCF rescaling and data collapse
The box-scaling analysis presented here can be considered as a variant of the finite-size scaling (FSS) 
 method15,19,20,31,32 used extensively in a broad range of situations, including dynamic parameters such as viscos-
ity or coalescence point (see for  instance33,34), or time decaying functions (i.e., dynamic  scaling35,36).

FSS often allows to expose the scale invariance observed close to a critical point by the successful collapse 
of some observable, using the system size, the correlation length, and some universal critical  exponents20. In 
analogy with FSS, using box-scaling we show in Fig. 5, the collapse of c0CW (r)Wη as a function of r/r0 for both 
Ising and neuronal model (see the Supp. Material for a derivation). For the Ising model, we find that the best 
collapse is for η ≃ 0.25 in accordance with results for standard FSS collapse.

For the neuronal model, we lack of any previous estimate of η . Empirically, we found that η ≃ 0.4− 0.7 
gives good collapse results for CW (r) in the range of r > I . For distance values r < I collapse of CW (r) is not 
expected, since within this range the correlations are dominated by the interactions rather than by the collective 

Figure 3.  Connected correlation function for the ferromagnetic 2D Ising model. Typical results for three 
temperatures T = 2.00 (panels a,d); T = 2.27 (panels b,e) and T = 3.0 (panels c,f) and various lattice and 
window sizes. Curves in the top panels computed from different system sizes L and those in the bottom panels 
computed on a system of size L = 600 using the window sizes W indicated in the legend.
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Figure 4.  Characteristic length r0 of the ferromagnetic 2D Ising model. The zero crossings of the computed 
CCF are plotted in linear–linear (left), log–linear (middle) and log–log (right) axis. Top three panels correspond 
to different system sizes L and bottom three panels to different window lengths W. Different symbols 
correspond to the values of the temperature T denoted in the legends. Dashed lines are visual aids to emphasize 
the predicted logarithmic behavior for both sub-critical and super-critical regimes (open circles), and the linear 
dependence expected for the critical regime (filled circles). Open triangles are used to denote results obtained 
for intermediate values of temperature indicated in the legend. In all cases, error bars are omitted, since error 
estimates are smaller than symbol size.

Figure 5.  Correlation collapse after rescaling for the ferromagnetic 2D Ising and the neuronal model at 
criticality. Panel (a) 2D Ising model rescaled CCF as a function of W with fixed L (same same data as in Fig. 3e, 
with L = 600 , W < L , T = 2.27 ), collapsed as c0 CW (r)×W

η v.s. r/r0 , with η = 0.25 . Panel (b) Collapse for 
neuronal model, using exponent η = 0.54 . For each value of W, points with r < I are shown with a dashed line 
of the same color. Panels (c,d) relative collapse error as a function of critical exponent η for the Ising and the 
neuronal model, respectively. All simulation parameters are as in previous figures.
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phenomena. Finally, results for W = 640 were not considered since the condition W ≪ L is not fulfilled. The 
critical exponent values used to rescale were chosen based on the minimization of the relative collapse error 
(Fig. 5c,d), defined in the Supp. Material. Notice that for both cases, the error is two orders of magnitude smaller 
than the observable values.

While it is not the main focus of this work, scaling and collapse can be demonstrated for other observables, 
including magnetization |�m�| , where m(t) = 1

W2

∑

i si(t) , and its related susceptibility, χ = W2

T [�m2� − �m�2] in 
the Ising model. Box-scaling data can be collapsed using the same values of critical exponents ν = 1 , β = 1/8 and 
γ = 7/4 used in FSS, just replacing system size L by window size W (see Supp. Material). Analogous results can 
be obtained for the neuronal model (see Supp. Material). It need to be noted that the formal connection between 
the box-scaling studied here and FSS could be traced back to Binder’  work23 who described spin distributions, 
fluctuations and other observables in the equilibrium Ising system as a function of window size.

Discussion
We presented results for a correlation function well suited for out of equilibrium experiments. We have stud-
ied the behaviour of the CCF as a window length is varied for two models: the Ising model, which represents 
an equilibrium material, and it’s dynamics are governed by a Hamiltonian, and the neuronal network model, 
which represents (a piece of) living matter, whose elements are cellular automatons, and their dynamics may 
be modified by external perturbations. Both models present critical dynamics and in both cases, box-scaling 
reproduces finite-size scaling results. The most relevant difference between them, in the context of box-scaling, 
is that in the Ising model, interaction length is much smaller than any considered window, while it is smaller 
but comparable to smallest windows for the neuronal model. This difference is noticed, for instance, from the 
bending of r0 v.s. W in Fig. 2.

Regarding the feasibility of box-scaling on experimental setups, where system size cannot easily be varied, it 
needs to be noticed that the method is affected by the same limitations as other approaches for biological data: 
inhomogeneities, non-stationarity, and, in most cases, finite length of the data. However, we should stress that 
this approach has already been shown to be practical in some  settings4,7,8,12,22. In Supp. Material (see Supp. Fig. 4) 
we reproduce results for characteristic length as a function of window size from already  published12 human fMRI 
data (where the already mentioned limitations are present), and we find that critical dynamics is unambiguiously 
distinguished from sub or super critical, using the same scaling as in Fig. 2d–f of Fig. 4d–f.

Relatively small windows may be affected by inhomogeneities such as the local fluctuations in the number of 
elements (i.e., neurons). This effect is present on a variety of situations whenever a portion of a system is assumed 
to represent the whole. While it may not be easy to account for all inhomogeneity effects, it is straightforward to 
estimate it’s contribution. For instance, several small non-overlapping windows may be taken from the largest 
available window, and box-scaling analysis can be performed on each of them, measuring to what extent the 
result on one of them is representative of the whole group.

Regarding non-stationarity, it should be stressed that box-scaling computes the space-averaged connected 
correlation function, where the instantaneous average is subtracted to each signal. This correlation function 
differs from the more frequently used time averaged correlation function, or the Pearson correlation (where 
time averages are subtracted). Thus the calculation can be performed independently on different snapshots, and 
box-scaling analysis can be performed as a function of time.

Indeed, box-scaling does not require a large amount of data: as an example, we have successfully reproduced 
the results for the Ising model using 1% of the data shown in Figs. 3 and 4 (see Supp. Material), entailing few 
hundreds of samples. The reason behind this is that system state is not derived by a single value of r0 (which may 
be noisy in some experimental conditions), but it is derived from the whole r0(W) curve, which shows a linear/
logarithmic dependence for systems at/away from criticality. Moreover, the scale-invariance typical of criticality 
was well captured by the data collapse after rescaling demonstrated in Fig. 5, remarking that at odds with zero-
crossing, the collapse takes information from all recorded data points.

Finally, we would like to point out that an analysis similar to box-scaling method has recently been proposed 
in the context of scale-free  networks37. There, a scaling hypothesis for finite size scale-free networks is proposed 
and tested over several naturally occurring networks.

In summary, the results obtained from a neuronal network model and from the ferromagnetic 2D Ising model 
show that the finite-size scaling of the correlation length ξ can be approximated—near the small-size limit—by 
the dependence of the characteristic length r0 on window size. Results are derived from CCF where instantane-
ous averages are considered, in such way that the result is insensitive to inhomogeneous distribution of signals 
or external perturbations on the whole window. The results are particularly relevant at the experimental level in 
neuroscience, in which techniques to map different areas of the brain cortex are now  available38, while changing 
system size is not feasible. In that direction, the present analysis is fully consistent with the experimental observa-
tions being reported using optogenetic  tools21 and also multi-electrode  arrays22. It should also be straightforward 
to apply box-scaling to in vitro results, where both system and window sizes may be  changed39.

Received: 22 September 2020; Accepted: 20 July 2021
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