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Similar local neuronal dynamics may lead to different collective behavior
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This report is concerned with the relevance of the microscopic rules that implement individual neuronal
activation, in determining the collective dynamics, under variations of the network topology. To fix ideas we
study the dynamics of two cellular automaton models, commonly used, rather in-distinctively, as the building
blocks of large-scale neuronal networks. One model, due to Greenberg and Hastings (GH), can be described
by evolution equations mimicking an integrate-and-fire process, while the other model, due to Kinouchi and
Copelli (KC), represents an abstract branching process, where a single active neuron activates a given number
of postsynaptic neurons according to a prescribed “activity” branching ratio. Despite the apparent similarity
between the local neuronal dynamics of the two models, it is shown that they exhibit very different collective
dynamics as a function of the network topology. The GH model shows qualitatively different dynamical regimes
as the network topology is varied, including transients to a ground (inactive) state, continuous and discontinuous
dynamical phase transitions. In contrast, the KC model only exhibits a continuous phase transition, independently
of the network topology. These results highlight the importance of paying attention to the microscopic rules
chosen to model the interneuronal interactions in large-scale numerical simulations, in particular when the
network topology is far from a mean-field description. One such case is the extensive work being done in the
context of the Human Connectome, where a wide variety of types of models are being used to understand
the brain collective dynamics.

DOI: 10.1103/PhysRevE.104.064309

I. INTRODUCTION

The animal brain is composed of billions of neurons, which
interact with each other through thousands of synapses per
neuron. The results of such interaction is the emergence of
complex spatiotemporal patterns of neuronal activity sup-
porting perception, action and behavior. A recent proposal
considers the brain as a network of neurons poised near a
dynamical transition [1–4], a view which is supported by
experimental results gathered from animals both in vitro [5]
and in vivo [6] as well as from whole brain neuroimaging
human experiments [7–9].

The potential existence of critical phenomena in the brain
motivated, during the last decade, the study of mathematical
models to explore better the large-scale brain dynamics. A
distinctive difference between the diversity of models is at the
microscopic level. Some models consist of networks of sim-
plified neurons, in which neurons themselves are represented
by a wide variety of approaches, ranging from two-state

particles [10] through discrete cellular automatons [11–14],
branching processes [6,15–18], neural masses [19], coupled-
maps [20–23], and coupled Kuramoto oscillators [24] up to
detailed equations describing the evolution and spiking of the
membrane potential [25–27]. Thus, a natural question arises
on how relevant the microscopic process (used to represent the
individual neuronal dynamics) may be, and how they affect
the dynamical collective repertoire exhibited by the network.

When focusing on collective properties, it is of course
reasonable to seek minimal models which, even orphan of re-
alistic microscopic rules, may reproduce relevant macroscopic
behavior. However, it is not straightforward to determine in
principle how general this assumption can be in the case of
neuronal networks. Our point is that even though the use of
realistic microscopic dynamics is not necessarily a prereq-
uisite to correctly describe universal macroscopic properties,
microscopic rules do matter and eventually can lead to dif-
ferent universal behavior. As a clarifying metaphor, consider
the Ising model. It is well known that algorithms with unre-
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alistic nonlocal moves (so-called cluster algorithms [28]) can
correctly describe the static critical behavior. However, if the
dynamic rule did not follow detailed balance, then the modi-
fied dynamics would fail to reproduce equilibrium behavior,
even if it could reproduce some sort of critical dynamics.
And of course, even with detailed balance, the dynamical
universality is altered by the nonlocal rule. A similar corre-
spondence among microscopic rules and system’s dynamics
appears when modeling brain dynamics, which is rarely con-
sidered, thus some extrapolations to real brain dynamics taken
from numerical simulations in the current literature, may be
hampered by the limitations of the microscopic details of the
neuronal models employed. We are purposely not considering
here a large chapter of models that include synaptic plasticity.

In this article, we illustrate the problem by studying the dy-
namics of two apparently similar neural network models: that
of Greenberg and Hastings [29] as described in Refs. [11,12]
and that of Kinouchi and Copelli [15]. The main difference be-
tween these two models is related to the microscopic rule that
propagates the activity: the first proposes (as many others of
the same kind) a neuronal interaction rule that depends on the
state of its presynaptic neighbors, while the second introduces
a rule that, regardless of the number of connections, maintains
a prescribed branching of activity on the target neurons. At
first sight the differences seem innocent-looking, but as it will
be shown, they lead to completely different behavior of the
network: the first model exhibits continuous or discontinuous
phase transitions depending on the network topology, while
the second is completely insensitive to it.

We remark from the outset that the article’s aim is not to
criticize any given model in particular, but to call the attention
on the consequences of using them ignoring the limitations of
the model’s original formulation, including possible misinter-
pretations. The article is organized as follows: in Sec. II we
describe both models and the observables that will be used
to characterize the dynamical regimes, in Sec. III we show
the results of the numerical simulations, and in Sec. IV we
discuss present results in the context of recent research and
we summarize the conclusions.

II. NETWORK, MODELS, AND OBSERVABLES

A. The interaction network

Both neuronal models are studied on an undirected Watts-
Strogatz small-world network [30] with average connectivity
〈k〉 and rewiring probability π . The network is constructed
as usual [30] by starting from a ring of N nodes (always
N = 20 000 in this report), each connected symmetrically to
its 〈k〉/2 nearest neighbors; then each link connecting a node
to a clockwise neighbor is rewired to a random node with
probability π , so that average connectivity is preserved. The
rewiring probability is a measure of the disorder in the net-
work: for π = 0 the network is circular and perfectly ordered,
while for π = 1 it becomes completely random.

In both models neurons are represented as nodes on a
weighted undirected random graph with an associated discrete
state variable, Si = 0, . . . , n, where i = 1, . . . , N identifies
the node and Si = {0, . . . , n}. State 0 represents a quiescent
(but excitable) neuron, 1 is the active state, and 2 . . . n are

refractory states. The links of the graphs are represented by
the N × N connectivity matrix W . Nonzero matrix elements
indicate the presence of a link with a given weight. Weights
are positive reals, so Wji � 0, and the connectivity matrix is
symmetric, Wi j = Wji, since the graph is undirected. In this
context, symmetric connections need to be interpreted as two
connections between any pair of nodes. Neither the connectiv-
ity nor the weights depend on time (i.e., we consider quenched
disorder). The dynamical evolution is given by a discrete-time
Markov process in which all sites are simultaneously updated,
and with transition probabilities for each site given by the
expressions below for each model.

1. GH model

This model was introduced by Greenberg and Hastings
[29] to mimic the excitable dynamics generically observed
in neurons, forest fires, cardiac cells, chemical reactions and
epidemic propagation. In the context of brain dynamics it
was used recently by Haimovici et al. [11]. Here we follow
closely the implementation of Zarepour et al. [12]. It is a
cellular automaton endowed of the three states common to
excitable dynamics: quiescent, active, and refractory state, and
the dynamics of site i is updated by

Pi,0→1 = 1 − [1 − r1]

[
1 − �

( kin,i∑
j=1

WjiδS j ,1 − T

)]
, (1a)

Pi,1→2 = 1, (1b)

Pi,2→0 = r2, (1c)

where Pi,a→b is the probability that site i will transition from
state a to state b, at time t + 1, Si is computed at time t ,
and the sum is performed over all j targeting i and kin,i is
the in-degree of node i. �(x) is Heaviside’s step function
[�(x) = 1 for x � 0 or 0 otherwise], δi, j is Kronecker’s δ,
and r1, r2, and T are control parameters which are set equal
to all sites in the present work. Thus, an active site always
turns refractory in the next time step, and a refractory site
becomes quiescent with probability r2. The probability for
a quiescent site to become active is written as 1 minus the
product of the probabilities of not becoming active through the
different mechanisms at work. In this model there are only two
activation mechanisms: spontaneous activation, which occurs
with a small probability r1, or transmitted activation, which
occurs deterministically1: neuron i will become active if and
only if it is in the quiescent state and the sum of the weights
of the links connecting i to its active neighbors exceeds a
threshold T [see Fig. 1(a)]. The nonnull weights are drawn
from an exponential distribution, p(Wji = w) = λe−λw, with
λ = 12.5 chosen to mimic the weight distribution of the hu-
man connectome [12]. For the simulations described here, we
use r1 = 0.001, r2 = 0.3 as in previous work [11,12] which
remain fixed in all simulations, while T is used as control
parameter.

1Although the transmitted activation rule is clearly deterministic,
we have decided to write it as a transition probability, to make a sim-
ilar description for both models. This is achieved using a Heaviside
function in Eq. (1a).
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FIG. 1. Rule for the propagation of activity in both models. (a) In
the GH model, a given neuron I will become active at time t + 1,
if the contribution of all active presynaptic neurons (here J1 and
J2), weighted by the interaction WJI surpasses the threshold T . At
each time step, this update is repeated for all quiescent neurons I .
(b) In the KC model a given active neuron J will activate at time
step t + 1 a given number of I neurons depending on the WJI and
σp value. Note that σp normalizes such probability by the number
of interactions 〈k〉. At each time step, this update is repeated for all
active neurons J . In both panels, triangles represent neurons and lines
synaptic interactions. Red filled triangles denote active neurons and
gray dashed ones inactive neurons, at times t and t + 1. A summation
term in panel (a) indicates that the outcome of neuron I depends on
the sum of the contribution of neurons J1 to Jn, while a dice in panel
(b) indicates that stimulated neurons are randomly chosen by J .

2. KC model

This model was introduced by Kinouchi and Copelli [15]
to show that a (Erdös–Renyi undirected) network of excitable
elements has its sensitivity and dynamic range maximized at
the critical point of a nonequilibrium phase transition. The
model resembles a branching process [31,32] in which the
transition probabilities for neuron i at time t + 1 are

Pi,0→1 = 1 − [1 − r1]
kin,i∏
j=1

[1 − pWjiδS j ,1], (2a)

Pi,1→2 = 1, (2b)

Pi,2→3 = 1, (2c)
...

Pi,n→0 = 1. (2d)

S j is evaluated at t , and the product is taken over all neurons j
pointing to i. The interaction matrix is symmetric, Wi j = Wji,
and nonnull elements are taken uniformly from [0,1]. The
interaction rule in Eq. (2a) contains two parameters: r1 which
(as in the GH model) determines the spontaneous activity
of any inactive neuron and p which controls the transmitted
activation probability [see Fig. 1(b)]. This rule makes the main
difference with the GH model. If the variance of the chosen
values for kout and W are relatively small (as in Ref. [15]),
and 〈k〉 is relatively large, each active neuron will excite, on
average σp := (〈k〉 − 1)p/2 neurons. Thus, σp is an approxi-
mate of the desired branching ratio. Similar to the GH model,
an active site always becomes refractory, but instead of recov-
ering randomly, here it becomes quiescent deterministically
after n − 1 time steps. We note that this difference has no
relevance for the present analysis.

It is known that, for a wide variety of conditions, critical
dynamics is expected for σp � 1 [31]. The critical value of
σp will be exactly 1 only in the limit of very large networks
(N → ∞), with homogeneous degree distribution, without
triangles (i.e., a clustering coefficient equal to zero), and
where the dynamics is in the limit of negligible spontaneous
activation (r1 → 0). For finite values of r1, several unrelated
activity (i.e., avalanches) may coexist. Under this situation,
the system may belong to a different universality class [33].
For a comprehensive analysis on the role of spontaneous
activation on modifying the universality class, and how it
may also shift the critical value of the branching ratio, we
refer the reader to Ref. [33] and references therein. In the
following, we will use σp instead of p as the control pa-
rameter. This choice does not affect the dynamics since both
quantities are proportional. Examples of the results as a func-
tion of p instead of σp can be found in the Supplemental
Material [34].

For the simulations, values of r1 = 0.001, and n = 4 (i.e.,
a fixed refractory period of three steps) are chosen, which
remain fixed in all simulations. In passing, please notice that
the interaction rule in the KC model is entirely stochastic
and that neurons behave independently (as long as the spon-
taneous activity is relatively low as dictated by the value of
r1 used here). Additional details can be found in Costa et al.
[35] and Campos et al. [36]. The numerical implementation
of the KC model admits a few variations which, nonethe-
less, do not change the present results (see the Supplemental
Material [34]).

B. Observables

To describe the state of the network, for both models,
we define an order parameter fS (t ) which corresponds to the
fraction of active neurons at time t ,

fS (t ) = 1

N

∑
i

δSi (t ),1. (3)

After any transient dies out, we also compute its variance,
σ 2

fS
= 〈 f 2

S 〉 − 〈 fS〉2, where 〈...〉 is a time average.
For the purposes of the present work, it is of partic-

ular interest the behavior of the (normalized) connected
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FIG. 2. Examples of the evolution of the activity as the respective control parameter (T or σp) is slowly varied. Left panels (a–c) correspond
to the GH model and right panels (d–f) to the KC model. Top panels: value of the control parameters [T in panel (a) and σp in panel (d)] as
a function of time t . Center panels: order parameter fS (t ) for both models as a function of time. Bottom panels: raster plots of 300 selected
neurons. Dashed lines in panels (a) and (b) mark the approximate values of T±, and their respective times. In both cases 〈k〉 = 30, π = 0.6.
For the GH model, �T = ±0.000025, and for the KC model �σ = ±0.00036.

autocorrelation of the order parameter fS ,

ρ(�t ) = 1

σ 2
fS

〈( fS (t ) − 〈 fS〉) × ( fS (t + �t ) − 〈 fS〉)〉, (4)

which estimates the linear correlation between the network
state at times t and t + �t , with ρ(�t ) � 1 for highly cor-
related consecutive configurations and ρ(�t ) � 0 when the
configurations quickly decorrelate. It is known that the au-
tocorrelation function is sensitive to the different dynamical
regimes: close to a continuous phase transition, the dynamics
undergoes critical slowing down, which implies that the au-
tocorrelation function decays slower than in the supercritical
or subcritical state [37]. For discontinuous phase transitions,
a similar effect takes place at the spinodal points [38]. Here
we focus on the autocorrelation at �t = 1, ρ(1), also called
first correlation coefficient, which has been shown to have a
maximum at the transition point [37].

C. Parametric exploration

In this work we are interested in exploring the extent of
the dynamical repertoire that each model is able to exhibit
under a very wide range of: (1) neuronal dynamics and (2)
topology of the underlying network. Thus, we proceed to scan
the control parameter of the given neuron model for differ-
ent network topologies (by varying 〈k〉 and π ). This implies
to explore three parameters while classifying the dynamical
regimes observed.

To identify and classify the dynamical regimes, we
track the behavior of ρ(1) as the control parameter (T or
σp) is increased and decreased. This is repeated for each

combination of network parameters 〈k〉 and π . The simula-
tions start at T0 (or σ0) (using a random initial condition for
each neuron) and then it is increased by �T (or �σ ) after a
given number of steps, up to a final value TF (or σF ), without
resetting the neuron states when changing the value of the
control parameter. This parametric exploration allows us to
determine the full repertoire of dynamical regimes which can
emerge from the microscopic activity propagation rules acting
on a given network topology.

III. RESULTS

A. Characterizing the transitions

Now we proceed to describe how the dynamical repertoire
of each model is determined from a parametric exploration.
An example is presented in Fig. 2 where panels on the left
correspond to results obtained from the GH model and those
on the right from the KC model. The figure shows that, as
expected, the rate of activity changes as a function of its
control parameter, but already demonstrating an important dif-
ference between the dynamical regimes exhibited by the two
models. For this particular choice of topology, 〈k〉 = 30 and
π = 0.6, the GH model undergoes a discontinuous transition
demonstrated by the abrupt change in fS (also noted in the
appearance of the raster plot) and the presence of hysteresis. In
contrast, in response to similar parametric scan, the KC model
exhibits a continuous transition and does not show hysteresis.
In addition, it is important to note that the GH model shows a
large increase in the variability of the order parameter fS near
the transition [see Fig. 2(b)], meanwhile the variance of the fS

fluctuations shown by the KC model is relatively constant [see

064309-4



SIMILAR LOCAL NEURONAL DYNAMICS MAY LEAD TO … PHYSICAL REVIEW E 104, 064309 (2021)

FIG. 3. Evolution of the order parameter 〈 fS〉 and its autocorrelation ρ(1) as a function of the control parameter T in the GH model.
(a) Fraction of active neurons vs threshold T . (b) First autocorrelation coefficient ρ(1) vs threshold T . In both panels the transition points, T−
and T+, are marked with vertical dashed lines. Simulations were performed in a network with 〈k〉 = 30 and π = 0.6. Simulations started at
T0 = 0 and neurons in a random state. T was slowly increased by �T = 0.0025 every 105 time steps up to TF = 0.9, then it was decreased
back to T0 in the same way.

Fig. 2(e)], regardless of the value of the control parameter σp.
These observations point to important dynamical differences
between the two models, as will be expanded in the next
sections.

The behavior of the autocorrelation function of the order
parameter helps to identify the type of phase transition be-
cause it is known to peak near a transition. We compute ρ(1)
for each value of the control parameter, and define T+ as the
value that maximizes ρ(1) in a run when T is being increased,
and T− as the value that maximizes ρ(1) when decreasing T .
An example for the GH model is presented in Fig. 3. For
the KC model, we defined in the same way σp+ and σp−,
although we never observed discontinuous transitions in that
model. Results for the KC model for the same conditions and
network topologies as in Fig. 3 are shown in the Supplemental
Material [34].

Thus, according to the shape of the curves of ρ(1) versus
control parameters, we can classify the dynamical behav-
ior: If ρ(1) is monotonic, then there is no phase transition,
corresponding to the cases in which the network, after a tran-
sient, goes quiescent. For network topologies in which |T+ −
T−| � 2�T (or |σ+ − σ−| � �σp) the transition is consid-
ered discontinuous and continuous otherwise. In other words,
after exploring a reasonable range of values of the control
parameter, the existence of a maximum in the ρ(1) curve
indicates (under the present context) a phase transition, which
is considered continuous if there is no noticeable hysteresis or
discontinuous otherwise.

An example of the behavior of ρ(1) in the case of a con-
tinuous transition is shown in Fig. 4. This type of transition is
observed in both models for a wide range of 〈k〉 and π values,
as will be described in the next section. It can be seen that
a change of the control parameter on a range of values near
the critical point is reflected on a nonmonotonic change of
the ρ(1). The plots in the bottom panels illustrate the typical
autocorrelation function of the order parameter fS . For control
parameter values larger than Tc (or smaller than σc) the activity
correlation vanishes quickly as indicated by the green triangle
data points. In the other extreme, for control parameter values
smaller than Tc (or larger than σc, i.e., data points plotted as
blue circles) the function shows an oscillatory pattern. The

first zero crossing of the function is dictated by the duration
of the refractory period of the neuronal models which is one
of the determinants of the collective oscillation frequency.
Finally, for values sufficiently close to Tc (or σc) the function
ρ(�t ) decays very slowly (as a power law) as shown in the
figure by the data points plotted with red squares.

B. Models’s dynamical repertoire on parameter space

Here we describe the results of a systematic exploration of
the collective dynamics as a function of network topology in
each model. For each value of 〈k〉 and π , we computed 5 re-
alizations of Watts-Strogatz graphs. In each case we classified
the regimes as a function of the control parameter, according
to the behavior of ρ(1) as explained above. The dynamical
regimes found include transients to no-activity, continuous
phase transition or discontinuous phase transition (from no-
activity to collective oscillations).

The results in Fig. 5 show the regions of parameters at
which each regime was observed. In brief, both models ex-
hibit no-transition for network topologies with 〈k〉 = 2 and
connectivity disorder π > 0 (red zone with squares in Fig. 5).
For π = 0 the same regime extends to 〈k〉 < 6 in both models.

For networks with relatively large values of 〈k〉 both mod-
els exhibit a continuous phase transition as in the example
featured already in Fig. 4 (black zone with circles in Fig. 5).
The main difference between the models is found for rel-
atively high values of degree and disorder. At this region
of parameters, the GH model shows a discontinuous phase
transition (blue zone with triangles), while the KC model
presents a continuous one. The inset in Fig. 5(a) shows the
border continuous and discontinuous regions, as a function of
network parameters, in a double logarithmic scale. A straight
separation line, similar to the one observed by Zarepour et al.
[12] in the context of cluster size distribution, is observed.

Close to the border between the continuous transitions and
the continuous transitions region, there is a narrow range of
〈k〉 values for which some realizations of KC model show
continuous transitions, while other realizations show dis-
continuous transitions. In those cases, the reported kind of
transition was determined by the most frequent result. We
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FIG. 4. Behavior of the first autocorrelation coefficient and the autocorrelation function for network parameters resulting in a continuous
phase transition. Top panels: first autocorrelation coefficient ρ(1) vs the control parameter, T for the GH model (a) and σp for the KC model
(b). Bottom panels: Autocorrelation function ρ(�t ) vs time lag �t , for three values of the control parameter, in the supercritical, critical, and
subcritical phases, for the GH model (c) and the KC model (d). Dotted lines in panels (a) and (b) denote the critical point and symbols indicate
the values of the control parameters used to compute the data in panels (c) and (d). Network parameters: 〈k〉 = 10, π = 0.6.

have added error bars to Fig. 5(a), whose width is half of the
range of 〈k〉 values for which this coexistence was observed.
We did not observe a similar effect at the boundary between
no-activity to continuous transition regions.

The results in Fig. 6 are representative examples of the
behavior of ρ(1) as a function of the control parameter for
selected values of 〈k〉 and π . For the GH model, the largest
values of 〈k〉 and π show clear hysteresis, with the peaks
for the case of increasing T at a higher value than the peak
found when is decreased. In most cases, the increasing and
decreasing sweeps of control parameter yield the same curve,
with a maximum value of ρ(1) close to 1. For π = 0, the
(single) peak tends to be rather broad. Finally, for 〈k〉 = 2
and any value of π , and for k = 4, π = 0, ρ(1) behaves
monotonically, which is indicative of no phase transition. The
KC model shows less variation among the curves, with only
a narrow range of monotonous curves, and most of the 〈k〉, π

plane yielding continuous transitions, presenting very similar
ρ(1) curves as a function of σp.

Finally, the results on Fig. 7 show examples of the spiking
patterns observed as the control parameter is increased, for
the same selected values of 〈k〉 and π illustrated in Fig. 6.
The patterns were obtained by varying the control parameters
from 3% below Tc (or T+ in the discontinuous case) to 3%
above (or from 3% above to 3% below the critical value of σp

for KC model), and recording the spikes of 300 neurons along
300 time steps. We have used T = 0 or σ = 2 for networks
showing no phase transition. For the GH model, there are

several cases (blue raster plots) of discontinuous transitions
where there is a sharp decrease of activity after crossing
T+. Continuous transitions with large 〈k〉 (such as 〈k〉 = 20,
π � 0.4), show bursts of synchronized activity that disappear
for T slightly above Tc (black raster plots). Smooth changes
in neuron activity are observed for continuous transitions with
smaller values of 〈k〉. Finally, for π = 0 the network topology
corresponds to a circle (or to a torus for larger 〈k〉 values),
so that neurons spiking at time t + 1 are close neighbors of
those spiking at time t , leading to linear wave-like propa-
gation. Similar to what is observed in the previous figure,
KC results show a reduced variety of behavior, where neither
discontinuous transitions, nor bursts of synchronized activity
are observed close to the critical point.

IV. DISCUSSION

Summarizing, we have revisited two simplified models of
neuronal activation to show that subtle differences in the local
dynamical rules may result in very different collective dynam-
ics when embedded on networks. We found that the KC model
dynamical repertoire includes, as a function of its control
parameter, only continuous phase transitions being, by design,
insensitive to the network topology. This is at odds with the
GH model, in which each neuron outcome is influenced by
its connectivity degree and therefore by the overall network
topology.
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FIG. 5. Classes of collective dynamics emerging at different net-
work topologies for both models [GH model in panel (a), KC model
in panel (b)]. The graphs summarize the dynamical regimes observed
for a wide range of network parameters (average connectivity 〈k〉
and degree of disorder π ). Blue regions (triangles denote the values
tested) indicate those values for which the networks exhibited dis-
continuous phase transitions to collective oscillations. Black regions
(with circles) indicate continuous phase transitions, and red regions
(with squares) transient dynamics to inactivity without a phase tran-
sition. The inset in panel (a) depicts a portion of the same data plot
in the main panel in log-log scale.

We have used the first autocorrelation coefficient ρ(1)
of the order parameter fluctuations and the presence or
absence of hysteresis to identify whether a dynamic transition
is present, and to distinguish continuous from discontinuous
transitions. This observable is sensitive enough to system’s
state: it can be used to tune a system towards criticality [37].
None of the present results depend on the use of the autocorre-
lation to track the dynamics. The presence of phase transitions
and hysteresis in these models has been studied with other
observables, such as the fraction of active sites fS , the variance
of activity fluctuations σ 2

fS
, or cluster quantities such as the

size of the largest or the second largest cluster (S1, or S2) as in
Refs. [11,12], yielding similar results. We used ρ(1) because
its computation is straightforward and easy to replicate, it is

almost parameter free, therefore very convenient for compar-
ing two different models.

The key difference between the two models is in the rule
that determines how the activity propagates from a given
neuron to its connected neighbors. The GH model mimics a
discrete integrate-and-fire process taking place in real neu-
rons. There, the “decision” to fire is post-synaptic, based
on the amount of total depolarization, on a small patch of
membrane, produced by the contribution of hundreds to thou-
sands of impinging neurons [notice the sum in Eq. (1a)].
Disregarding the spontaneous activation term, the rule in the
GH model is completely deterministic. In fact it is equivalent
to a discretized partial differential equation, where the state
SI (t + 1) of a post-synaptic neuron I at time t + 1 depends
only on local quantities: it is determined by the previous
state of that neuron, SI (t ), the contribution of all other presy-
naptic neurons J1 to Jk at time t , the weights Wji of the
connections, and the excitation threshold, i.e., SI (t + 1) =
f [SI (t ), SJ1 (t ), . . . , SJk (t ),WJi=1..k ,J , T ].

In contrast, in the KC model the propagation rule is a prob-
abilistic [notice the product Eq. (2a)] contagion-like process
[31], where a single excited neuron determines, according to
a prescribed value of σp, how many of all of the neurons that
connects to will fire next time. Thus, here the decision of
how many neurons will be activated is presynaptic: a spik-
ing neuron J excites on average σp post-synaptic I neurons,
independently of the state of the other neurons connected to
the same I neuron. Since σp accounts already for the average
out degree of the network, the rule in Eq. (2a) determines,
for each J neuron independently, the probability that such
active neuron will have no-descendants, one, or more than one
descendant. It is then rather unsurprising that the KC model is
insensitive to the network topology.

While GH model exhibits a wealth of possible behaviors as
a function of network topology, such as synchronized activity
close to the critical point, a critical region for a broad range
of control parameters, or the existence of discontinuous tran-
sitions, the same is not observed in KC model. An important
ingredient for having such behavior is the existence of a deter-
ministic activation rule: In the Supplemental Material [34] we
show results for a probabilistic postsynaptic model, inspired
by the model in Ref. [39], that may be tuned from discontin-
uous to continuous transitions as the degree of randomness in
the transmitted activation rule is increased. Also, to gain an
insight on the source of the differences among this models, a
simplified, mean-field version, of KC and GH models (where
there is no refractory period, nor spontaneous activation) is an-
alytically solved in the Supplemental Material [34]. It can be
seen that the simplified stochastic presynaptic model has only
one stable solution for each value of the control parameter
σ , while the simplified deterministic postsynaptic model may
have several solutions for the same value of T , as a function
of the initial conditions.

Although this is not the focus of the present report, it
is worth to mention that the KC model rule is biologi-
cally implausible. As explained above, the actual activation
mechanism of a given neuron involves a myriad of influ-
ences (thousands in mammalian brains) over a very small
area. In addition, one has to consider that the output of
an active neuron, after propagating trough its axon from
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FIG. 6. Representative examples of the typical behavior of ρ(1) as a function of the control parameter for diverse topologies in both
models [GH model in panel a, KC model in panel (b)]. Simulations where run for 5 × 104 time steps for each value of T or σp, increasing
(black circles) or decreasing (red lines) by �T = 0.005 or �σ = 0.05. For the GH model, x-axis range is [0 : 0.3], for 〈k〉 = 2, 4, and 10,
and [0.2 : 0.5] for other 〈k〉 values. For the KC model, x-axis range is σp = 0.5 to σp = 2. y-axis range is ρ(1) = 0.25 to ρ(1) = 1 for both
models. A thick blue dash over the upper x-axis marks a ±3% range of the control parameter, about its critical value (or T+ for discontinuous
transitions). The boxes remarked with dashed lines correspond to the parameters used in Figs. 2–4.
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FIG. 7. Typical rasters of activity for networks with diverse
topologies, while varying the control parameter around the critical
value, for both models [GH model in panel a, KC model in panel
(b)]. The dots in each box denote activity of a subset of 300 neurons
(ordered in the y axis), for 300 time steps (x axis), as the control
parameter is changed continuously about the critical point. Other
network parameters as in Fig. 6. Dot color matches the regions of
Fig. 5. The dotted black lines indicate the limits of the parameters
that exhibit phase transitions. The boxes remarked with dashed lines
correspond to the parameters used in Figs. 2–4.

hundreds of microns to millimeters, will stimulate all its con-
tacts roughly equally. Thus, in order to excite a given number
of neighbors, a given presynaptic neuron would actually have
to have information on the number and state (active, refrac-
tory or silent) of the post-synaptic neurons and also of other
presynaptic neurons attempting to excite the same neuron.
This is biologically highly unrealistic, because the involved
neurons may be centimeters away from each other, without a
direct connection among them. Moreover, such hypothetically

very well informed J neuron will have to selectively cancel
its stimulation strength with certain I neurons, as dictated
by the value of σp, a requirement completely impossible for
biological neurons.

Of course, the discussion above is not affecting the valu-
able points made in Ref. [15] where the KC model was
introduced to show that a network of identical excitable el-
ements achieves maximum dynamic range at criticality. Since
the simulations in Ref. [15] where made on fixed topology
networks (Erdös-Renyi) the present results are not affecting
any of its conclusions which, is worth noticing, were repli-
cated in many other models as well as in experiments. Less
clear are the results in other cases, when the KC model was
used to study the dynamics of non random topologies. These
include the deviations from mean-field behavior found in scale
free networks, as reported by Copelli and Campos [40] or
Mosqueiro and Maia [41]. We note in passing that there are
multiple instances in which the KC model was (mis)named as
“Greenberg and Hastings stochastic model,” somewhat con-
fusing according to the present results, as in the reports by
Copelli and Campos [40], Wu et al., [42], Asis and Copelli
[43], Mosqueiro and Maia [41], to name only a few.

It is worth to note that the crucial influence of topology
on the type of dynamics exhibited by excitable models has
been discussed earlier by Kuperman and Abramson [44] in
the context of epidemics. They found that the network degree
and disorder determines the conditions at which endemic or
epidemic situations occur.

To conclude, the point here is not that one needs super-
realistic microscopic rules to build a valid model, but that
microscopic rules do matter, and may lead to different col-
lective behavior. In particular, we have shown that the KC
model exhibits only one type of transition, independent of a
large variation in the network topology. The observation that
topology has an influence on the dynamics of certain models
is fundamental at the present time, where several large-scale
international scientific collaborations are devoted to map and
study the consequences of features of the human brain connec-
tome [45–47]. Examples include the numerical simulations
using simplified models over derived connectomes, in order
to understand brain functioning [10]. However, not all neural
models are the same, and special care should be taken on
the biases and limitations introduced by the applied models,
before drawing conclusions on real brains.
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