
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17074  | https://doi.org/10.1038/s41598-022-14946-9

www.nature.com/scientificreports

Universal dynamics 
of mitochondrial networks: 
a finite‑size scaling analysis
Nahuel Zamponi1,7*, Emiliano Zamponi2,3,7, Sergio A. Cannas4,5,7 & Dante R. Chialvo5,6,7

Evidence from models and experiments suggests that the networked structure observed in 
mitochondria emerges at the critical point of a phase transition controlled by fission and fusion rates. 
If mitochondria are poised at criticality, the relevant network quantities should scale with the system’s 
size. However, whether or not the expected finite-size effects take place has not been demonstrated 
yet. Here, we first provide a theoretical framework to interpret the scaling behavior of mitochondrial 
network quantities by analyzing two conceptually different models of mitochondrial dynamics. 
Then, we perform a finite-size scaling analysis of real mitochondrial networks extracted from 
microscopy images and obtain scaling exponents comparable with critical exponents from models and 
theory. Overall, we provide a universal description of the structural phase transition in mammalian 
mitochondria.

The arise of mitochondria constitutes a milestone in the evolution of eukaryotes. Their incorporation into the 
proto-eukaryotic cell made possible a significant increase in genome complexity by allowing the cell to afford 
the energetic cost of a bigger proteome1. In most extant eukaryotes, mitochondria have evolved to become 
crucial organelles in energy metabolism, anabolism, and essential regulators of cell death2–5. Moreover, most 
mitochondrial genes were transferred to the nuclear genome, facilitating the emergence of complex regulatory 
networks that constantly match mitochondrial activity with the metabolic demands of the cell while maintaining 
the organelle’s autonomy6–8.

Inside cells, mitochondria arrange in intricate networks composed of clusters of different sizes (Fig. 1A and 
B)9,10. The size distribution of these clusters differs across cell types and is associated with the energetic state of 
each cell11,12. Mitochondrial clusters constantly break down and fuse through mitochondrial fission and fusion 
processes, favoring the assembly of oxidative phosphorylation protein complexes with the correct stoichiometry 
and maintaining the integrity of the mitochondrial DNA (Fig. 1C, D, and E)13–20. In addition, fission and fusion 
ensure mitochondrial network homeostasis by allowing damaged mitochondria to be either fused to healthy 
mitochondria and rescued by content mixing or, if the damage is irreversible, excised from the rest of the network 
and recycled in a process called mitophagy4,21–24.

In many mammalian cells, the size distribution of mitochondrial clusters is scale-free, suggesting that mito-
chondrial dynamics are poised at the critical point of a phase transition since the absence of any characteristic 
scale in the system’s variables is known to be a hallmark of criticality25. Moreover, the spontaneous emergence 
of a coherent ensemble in the form of a giant mitochondrial cluster from fission and fusion dynamics occur-
ring at the molecular level traces back to critical phenomena because it resembles the type of behavior found 
in critical dynamics in models and theory26–33. Several results support the notion that critical phenomena are 
relevant to mitochondrial structure and function34–40. Regardless of the importance of these findings, evidence 
demonstrating that the expected finite-size scaling behavior holds in mitochondria has not been provided yet.
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The theory states that the correlation length diverges at the critical point, and the system quantities become 
scale invariant25,32,41,42. For finite-size systems, this implies that the value of such quantities at the critical point 
will grow monotonically with the system’s size. Let us consider the size of the second largest cluster, which in 
percolating systems reaches its maximum size at the critical point43. At criticality, the prediction is that the size 
of the second largest cluster will increase with the size of the system following a specific scaling law. The tools for 
deriving all the relevant scaling laws and their associated critical exponents are known collectively as finite-size 
scaling analysis. Systems can be classified according to their critical exponents in different universality classes, 
i.e., sets of mathematical models that behave similarly at a large scale44,45.

We hypothesize that the fission-fusion dynamics that give rise to the characteristic networked structure 
found in mitochondria operate near criticality. In this context, the lack of a direct measurement of the expected 
scaling behavior is a major missing piece of evidence. Here we fill this gap by demonstrating scaling behavior in 
mitochondrial networks: 1) We identify the control parameter and determine how the relevant network quanti-
ties scale with the network’s size at the critical point in two different models of generic mitochondrial dynamics. 
Furthermore, the exponents obtained from these simulations let us identify the universality class the models 
belong to. 2) Utilizing a similar strategy, we characterize the scaling behavior of the same network quantities in 
real mitochondrial networks obtained from microscopy images. 3) We compare the exponents obtained from 
simulations and real networks with the theoretical ones and demonstrate that mitochondrial dynamics are critical 
and that they seem to belong to the 2D percolation universality class.

The paper is organized as follows. In the next section, the two models used in the study are introduced 
together with the approach utilized to extract network data from images of mitochondria. We then define the 
quantities measured from networks and the scaling relationships employed in the finite-size scaling analysis. The 
results section contains a detailed characterization of the models, including the behavior of the relevant quanti-
ties as a function of the control parameter and the finite-size scaling analysis. A similar description is provided 
for real mitochondrial networks extracted from microscopy images. The paper closes with a discussion on the 
relevance of the present results to understanding mitochondrial dynamics. Further details about the methods 
can be found in a dedicated section.

Simulated vs. real mitochondrial networks
Models of mitochondrial dynamics.  The only agent-based model of the mitochondrial network avail-
able was introduced recently38. In their original contribution, the authors demonstrated that the model exhib-
its a percolation phase transition as a function of one of the fission/fusion parameters and that the network 
configurations emerging at the critical point were consistent with the ones from real mitochondrial networks. 
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Figure 1.   Mitochondrial network structure and dynamics. (A) Mitochondrial network of a mouse embryonic 
fibroblast (MEF) expressing a mitochondria-targeted yellow fluorescent protein (mitoYFP). (B) Segmentation 
and identification of the most relevant clusters in the network shown in (A). (C) Live-imaging of a MEF 
expressing a mitochondria-targeted red fluorescent protein (mitoDSRed). (D) Projection of different time 
frames revealing regions in the network with slow (dark) and fast (light) mitochondrial dynamics. (E) Zoom-in 
of the inset in (D) highlighting specific fission and fusion events occurring in the network.
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This model, termed agent-based (AB) model (Fig. 2, top), assumes three types of nodes, namely, free ends of 
mitochondrial segments ( k = 1 ), bulk sites ( k = 2 ) and branching points ( k = 3 ). Links between nodes (edges) 
represent minimal mitochondrial fragments and define the scale of the network. The total number of edges Ne 
is kept fixed throughout the simulation. Model dynamics evolve through tip-to-tip and tip-to-side fission/fusion 
reactions of the type

where Xi ( i = 1, 2, 3 ) corresponds to nodes with degree i. Tip-to-tip reactions happen with association (dissocia-
tion) rate a1 ( b1 ) between a random pair of nodes with degree k = 1 (association) or a random site with degree 
k = 2 (dissociation). Tip-to-side reactions happen with association (dissociation) rate a2 ( b2 ) between a random 
pair of nodes with degrees k = 1 and k = 2 (association) or for a random site with degree k = 3 (dissociation)46. 
Following Sukhorukov et al., we take into account that only one type of fission is found experimentally and assume 
b2 = (3/2)b1 , and varied the relative rates ci = ai/bi

38,47. Notice that network edges are the model’s minimal 
(indivisible) elements, analogous to the smallest mitochondrial fragment found in nature, and fusion and fis-
sion processes correspond to network nodes’ transformations, analogous to the cellular machinery responsible 
for fusing and or excising mitochondrial segments. The AB model constitutes a mean-field approximation and 
therefore does not account for the positions of the nodes in space nor contains information on the distance 
between mitochondrial clusters (i.e., it has infinite spatial dimensions). However, mitochondria are embed-
ded in the cellular volume, which in most “flat” cells can be mapped to a 2-dimensional space (Supplementary 
Fig. 1)48–57. Therefore, to include this information in our simulations, we derived an additional model, termed 
spatially-explicit (SE) model (Fig. 2, bottom), inspired by the spatial orientation of mitochondrial fragments dur-
ing fission and fusion events58–60. In this model, nodes are embedded in a 2D lattice whose positions are fixed. In 
contrast to the mean-field equations ruling the evolution in the AB model, the SE model evolution is dictated by 
probabilities concerning the local connectivity of randomly selected nodes. Furthermore, the SE model assumes 
two types of neighbors (that imply two different types of bonds): near neighbors, comprising the two nearest 

(1)2X1 ⇋ X2,

(2)X1 + X2 ⇋ X3,
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Figure 2.   The two models of mitochondrial network dynamics used in this work. In the agent-based model, 
network nodes do not have explicit spatial coordinates. The final topology of the network emerges from the 
iteration of two types of events: tip-to-tip events, in which two k = 1 units are merged into a k = 2 unit (or vice 
versa), and tip-to-side events, in which a k = 1 unit and a k = 2 unit are merged into a k = 3 unit (or vice versa). 
In the spatially-explicit model, the network nodes are embedded in a 2-dimensional lattice with predetermined 
nearest neighborhood interactions. Interactions are anisotropic: a bond is established between a node and its left 
and right nearest neighbors with probability p1 (or destroyed with probability 1− p1 ) and with its side nearest 
neighbor with probability p2 (or destroyed with probability 1− p2).
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nodes within the same lattice row, and the side neighbor, referring to the nearest neighbor within the same lattice 
column. At any given time, a bond between a random node and its left and right neighbors is established with 
probability p1 (or destroyed with probability 1− p1 ). Similarly, a bond between the same random node and its 
side neighbor is established with probability p2 (or destroyed with probability 1− p2 ). Using these two models, 
we can determine the upper and lower boundary conditions for the universal behavior of real mitochondria, 
represented by network dynamics in spaces with infinite and two dimensions, respectively.

Real mitochondrial networks.  We obtained data from confocal images of MEFs infected with a lentivirus 
carrying a mitochondria-targeted yellow fluorescent protein (mitoYFP). Images were processed as described 
elsewhere to obtain pixel masses of individual mitochondrial clusters within each cell34. In addition, different 
intensity thresholds were used during image processing to account for the heterogeneity in mitoYFP distribution 
and out-of-plane illumination (see “Methods”).

Phase transitions
We hypothesize that the complex topology of mitochondrial networks emerges from the interaction of small 
mitochondria constituents at the critical point of a phase transition61. To simulate this, we identified the region 
in the parameters space of the models where the phase transition occurs by measuring the following quantities62: 
the average fraction of nodes in the largest cluster 〈Ng/N〉 , the average number of nodes in the second largest 
cluster 〈N2〉 , the average cluster size 〈s〉 and the complementary cumulative distribution function (CCDF) associ-
ated to ns , namely,

where the primed sum excludes the giant cluster.
〈Ng/N〉 is the order parameter of the transition since it informs when a giant cluster emerges in the network 

(i.e., when the transition from the disordered phase to the ordered phase takes place). In addition, the system’s 
susceptibility is expected to be maximal at the critical point, reflecting the presence of long-range correlated 
fluctuations. Here, 〈s〉 is our proxy for the system’s susceptibility and is calculated using the expression from clas-
sical percolation theory62–65, namely if Ns is the number of clusters of size s and ns = Ns/N , then

where the primed sums exclude the largest cluster in the network.

Finite‑size scaling and universality
The emergence of a coherent ensemble in the form of a dynamic giant cluster resembles the type of collective 
behavior characterizing many physical and biological systems in which correlations are amplified in the vicinity 
of the critical point66,67. However, the critical point is only sharply defined in the thermodynamic limit, away 
from which the (effective) critical value of the control parameter depends on the system’s size. Simply put, a 
value of the control parameter that is critical for a system of size N will be off for a larger system42. Consequently, 
quantities like 〈s〉 and 〈N2〉 are expected to exhibit size-dependent maxima following well defined scaling laws43,62

Here, γ and ν are the standard susceptibility and the correlation length critical exponents, respectively, d is the 
effective dimension of the system (equal to the spatial dimension D if D < dc (the upper critical dimension) or 
to dc , otherwise) and df  is the fractal dimension of the percolating cluster. The specific values of these parameters 
determine the universality class to which the system under scrutiny belongs68.

In addition, the cluster size distribution is expected to follow a power-law with a size-dependent exponential 
cutoff of the form

where τ corresponds to the Fisher exponent and the term e−s/s∗ corresponds to the exponential cutoff with 
s∗ ∝ N2

62,69.
In the following sections we will utilize these scaling exponents to determine the universality class to which 

mitochondrial dynamics belong.

Results
Critical exponents of the AB model deviate from mean‑field percolation universality 
class.  Figure 3 illustrates the typical behavior of the AB model as a function of c234,38. The system undergoes a 
second order phase transition at a pseudo–critical value of the control parameter c∗2 , reflected in a steep change in 
the normalized size of the largest cluster (order parameter), as shown in Fig. 3A43. Concomitantly with the emer-
gence of a giant cluster, the size of the second largest cluster 〈N2〉 peaks at c∗2 (Fig. 3B). Equally distinct changes are 

(3)Nc(s) =

′
∑

s′≥s

ns(s
′),

(4)�s� =

∑′

s s
2ns

∑′

s sns
,

(5)�s�|max ∼ Nγ /νd
,

(6)�N2�|max ∼ Ndf /d .

(7)Nc(s) ∼ s−(τ−1) e−s/s∗
,



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17074  | https://doi.org/10.1038/s41598-022-14946-9

www.nature.com/scientificreports/

also demonstrated for the system’s susceptibility computed as 〈s〉 (Fig. 3C). The peak in 〈s〉 implies that fluctua-
tions are correlated over longer distances at the critical point. Gray regions highlight that the emergence of the 
largest cluster and the peaks in 〈N2〉 and 〈s〉 coincide.

At finite size, the effective critical value of the control parameter depends on the system’s size42. Moreover, as 
stated in the previous section, quantities such as 〈s〉 and N2 are expected to show size-dependent maxima. To char-
acterize the universal properties of the AB model, we performed a finite-size scaling analysis of relevant network 
quantities, namely Nc(s) , 〈s〉 and 〈N2〉 . As shown in Fig. 4A, the system’s susceptibility exhibits a series of maxima 
at pseudo–critical values of the control parameter c∗2 as a function of the system’s size Ne . As Ne increases, 〈s〉 peaks 
become sharper and c∗2 decreases as c∗2 ∼ 1/Ne (not shown), approaching the bulk critical point. Moreover, the 
magnitude of �s�|max (i.e., its value at c2 = c∗2 ) follows a power-law with exponent γ /νd ≈ 0.7 ± 0.01 (Fig. 4B). 
To further determine the finite-size behavior of the system, we studied the cluster size distribution at the critical 
point. Figure 4C shows the CCDF of cluster sizes at the pseudo–percolation threshold for different values of Ne . 
At variance with the expectations for a percolation based model, namely a power-law with an exponential cutoff 
for large sizes, the CCDF for the AB model is consistent with cluster size distribution with two cutoffs

where τ corresponds to Fisher exponent, the term e−s/s∗ corresponds to the exponential cutoff for large sizes 
with s∗ ∝ N2 and s0 is a small-size cutoff (here θ(x) is the Heaviside step function, namely θ(x) = 1 if x > 0 
and θ(x) = 0 otherwise). We see that, for intermediate an large scales, n(s) develops a power-law behavior with 
exponent τ = 2.38 ± 0.04 followed by a cutoff at size s∗(Ne) . As shown in the inset of Fig. 4C, s∗ and s0 scale as a 
power-law with the system’s size with exponents 0.8 ± 0.2 and 0.5 ± 0.1 , respectively. The cutoff s∗ is equivalent 
to �N2�|max , and therefore, both quantities are expected to scale as N

df /d
e  . 〈N2〉 displays a growing maximum at 

c∗2 that goes zero in the thermodynamic limit (not shown). Figure 4D shows the scaling of �N2�|max as a function 
of Ne . In agreement with the exponent obtained for the scaling behavior of s∗ , the power-law fitting of the data 
in Fig. 4D gives df /d = 0.82 ± 0.01.

The presence of a small-size cutoff is a strong finite-size effect that disappears for large enough system sizes 
but has a strong impact on the estimation of the critical exponents at the scales of interest for mitochondria. For 
instance, for feasible simulation sizes, the estimated values of τ ≈ 2.4 and the cutoff exponent df /d = 0.82 ± 0.01 
are consistent with the standard percolation mean-field values τ = 5/2 = 2.5 and df /d = 2/3 ≈ 0.67 , an expected 
result in an infinite-dimension system62. However, the estimated value of the exponent γ /νd = 0.7 ± 0.01 (see 
Fig. 4B) is not consistent with the mean-field value γ /νd = 1/3 , which might be a direct consequence of the 
finite-size effect mentioned above.

Critical exponents of the SE model are consistent with the 2D percolation universality 
class.  The previous model recapitulates the universal dynamics found in many physical and biological sys-
tems near criticality without the need for any spatial information. Moreover, the AB model can produce net-
works that are structurally identical to real mitochondrial networks, raising the question of whether or not the 
spatial distribution of mitochondrial fragments within the cell is relevant for mitochondrial complexity34.

To answer this, we characterized the universal properties of the SE model, in which the association between 
mitochondrial units is constrained by their position in a 2D array (Fig. 2, bottom). As shown in Fig. 5A, the 
SE model exhibits a percolation-like phase transition as a function of p1 , evidenced by a sudden increase in the 
normalized size of the largest cluster at a pseudo–critical value p∗1 (notice that p1 is roughly equivalent to c1 in 
the AB model). Accordingly, both 〈N2〉 and 〈s〉 peak at p∗1 , as shown in Fig. 5B,C (gray region is centered at p∗1 
for p2 = 0.6 as reference).

We then studied the scaling behavior of relevant quantities as done for the AB model. Figure 6 illustrates the 
behavior of such quantities as we vary the system’s size. As shown in Fig. 6A, the system’s susceptibility exhibits 
a series of maxima at pseudo–critical values of the control parameter p∗1 as a function of N. 〈s〉 peaks become 

(8)Nc(s) ∼ θ(s − s0) s
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sharper as N increases, following a power-law with exponent γ /νd ≈ 0.86 ± 0.02 (Fig. 6B). To further character-
ize the scaling behavior of the model, we computed the cumulative distribution function of cluster sizes at p∗1 for 
different values of N. Figure 6C shows that the CCDF of cluster sizes exhibit the expected power-law behavior

where τ corresponds to Fisher exponent and the term e−s/s∗ corresponds to a exponential cutoff at large cluster 
sizes with s∗ ∝ N2 . n(s′) develops a power-law behavior with exponent τ = 2.0 ± 0.1 , followed by a cutoff at 

(9)Nc(s) ∼ s−(τ−1) e−s/s∗
,
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size s∗(N) . In agreement with the presence of a finite-size cutoff, �N2�|max scales as function of N with exponent 
df /d ≈ 0.91 ± 0.02 (Fig. 6D).

In the case of the SE model, we can see that the estimated values of τ ≈ 2.0 , γ /νd = 0.86 ± 0.02 and 
df /d = 0.91 ± 0.02 are all consistent with the 2D percolation critical exponents τ = 187/91 ≈ 2.055 , 
γ /νd = 43/48 ≈ 0.896 and df /d = 91/96 ≈ 0.94862,69.

Critical exponents from MEFs’ mitochondrial networks are more consistent with the 2D per‑
colation universality class.  Our hypothesis implies that mitochondrial networks are dynamically tuned 
near the critical point of a phase transition. This is because mitochondrial mass fluctuates constantly, and as 
demonstrated in the previous sections, different system sizes require different pseudo–critical values of the con-
trol parameter to stay in the critical region42. We have shown that network quantities such as 〈s〉 and 〈N2〉 display 
size-dependent maxima at the critical point. Therefore, a testable prediction from our hypothesis is that the 
values of these network quantities computed from real mitochondrial networks of different sizes should behave 
similarly. In other words, if real mitochondrial networks are constantly tuned to their critical point, their net-
work configurations should be equivalent to the ones found in the models at the critical point, and therefore, 
finite-size effects are expected66.

In the following, we will use the mitochondrial mass (i.e., the number of pixels that show fluorescence) as a 
proxy of network size (N). We first studied the behavior of ns and its associated cutoff s∗ as a function of mass. 
Then, we ranked the networks based on their mass and divided them into five groups with increasing average 
mitochondrial mass 〈N〉 . The CCDF of ns (Eq. 3) for each group of networks is shown in Fig. 7A, from which 
two different regimes can be distinguished: i) a power-law regime that spans almost two decades with exponent 
τ ′ ≈ 2 , and ii) a mass-dependent exponential cutoff (arrows), suggesting the presence of both scale invariance 
and finite-size effects.

Then, we investigated the behavior of 〈N2〉 as a function of the average mass 〈N〉 . We sorted all networks from 
smallest to largest (mass) and applied a sliding window of size n to calculate the average mass of the second larg-
est cluster and the average total mass of the networks. As shown in Fig. 7B and Supplementary Fig. 2, 〈N2〉 grows 
monotonically with the system’s size following a scaling law of the form �N2� ∼ Nω1 , where ω1 = 1.01 ± 0.06.

We also computed 〈s〉 (Eq. 4) using the same sliding window approach. As shown in Fig. 7C and Supplementary 
Fig. 3, this quantity also follows a power law as a function of mass of the form �s� ∼ Nω2 , with ω2 = 0.82 ± 0.08 . 
As mentioned earlier, 〈s〉 is a proxy for the system’s susceptibility computed using the cluster size distribution62. 
Alternatively, the susceptibility can be computed from the fluctuations in the order parameter as
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Figure 7D and Supplementary Fig. 4 show that �χ� ∼ Nω3 , with ω3 = 0.8 ± 0.23 , confirming our previous 
results. Note that, in agreement with theoretical expectations, both 〈s〉 and 〈χ〉 seem to follow the same scaling 
law since ω2 ≈ ω3.

In short, we have confirmed the presence of finite-size effects in real mitochondrial networks and obtained a 
set of exponents that inform on the underlying mitochondrial network dynamics. With some reservations, the 
following equivalencies can be established62,68

therefore allowing for a comparison with critical exponents from models and theory.

Discussion
Results from simulations and experiments suggest that the networked structure of mitochondria emerges at 
the critical point of a percolation-like phase transition, where the control parameter is a function of fission and 
fusion rates34,38. Ideally, one should corroborate this by experimentally determining how the control parameter 
approaches the “bulk” critical point (i.e., the critical point for an infinitely large system) as the mitochondrial 
mass increases42. However, this would require imaging mitochondria at high spatial and temporal resolution for 
prolonged periods without causing significant cellular damage, something extremely challenging despite recent 
advances in super-resolution imaging techniques. Furthermore, the morphological features of the organelle make 
the identification of the smallest mitochondria constituents virtually impossible. Here, we circumvented this 
issue and determined near-criticality in mitochondrial dynamics by demonstrating the existence of finite-size 
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large-size cutoff increases as a function of 〈N〉 . (B) Log-log plot of 〈N2〉 as a function of 〈N〉 , where the solid red 
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mitochondrial mass estimated from images, used here as a proxy for network size. Symbols correspond to mean 
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effects in some relevant quantities of mitochondrial networks and identifying the associated critical exponents 
that describe the system’s behavior independently of its fine-grain details.

Using models, we illustrated how the complex structure of mitochondrial networks arises from the interac-
tion between small mitochondria constituents at criticality. More precisely, a dynamic ensemble in the form 
of a networked structure composed of clusters, equivalent to the “default” mitochondrial network, emerges 
when the control parameter is tuned to its critical value (Figs. 3 and 5). If the value of the control parameter 
is set below the critical threshold, mitochondrial clusters remain segregated, and a giant cluster never reaches 
a critical mass to be stable. On the other hand, if the control parameter is set above the critical threshold, all 
mitochondrial clusters tend to merge into a single fully connected, more static network. In between these two 
extremes, we observe a dynamic regime that seems to be compatible with the structural properties found in real 
mitochondrial networks34,38,40.

Then, we showed that relevant network quantities become scale invariant at the critical point in both models 
by demonstrating that the magnitude of these quantities grows monotonically with the system’s size, as shown 
in Figs. 4 and 6. It is only at the critical point that this characteristic power-law behavior is observed since it 
stems from the divergence of the correlation length known to take place in the vicinity of a phase transition42,62. 
Although we found a similar scaling behavior in both models, the exponents of the power-laws, the critical 
exponents, were sufficiently different, indicating that they correspond to different universality classes.

Finally, we took advantage of the typically occurring fluctuations in mitochondrial mass and performed a 
finite-size scaling analysis in networks extracted from microscopy images of MEFs expressing a mitochondria-
targeted fluorescent protein. Note that we use mitochondrial mass here as a proxy for the system’s size. Using a 
large set of high-resolution images, we covered a broad range of mitochondrial masses to quantify how network 
quantities behave as a function of mass. As shown in Fig. 7, these quantities scale with the mass following a 
power-law relationship, confirming that “healthy” mitochondrial dynamics lead to network configurations that 
are equivalent to the ones obtained from models at the critical point34,38.

Table 1 summarizes the critical exponents obtained from both models and mitochondrial images. Our results 
indicate that the AB model, besides some finite-size deviations, belongs to the mean-field universality class, 
while the SE model does so to the standard 2D percolation universality class. Interestingly, though the AB model 
generates more “realistic” topologies compared to the SE model, the exponents obtained from real networks are 
more consistent with those of the 2D standard percolation universality class, suggesting that the spatial structure 
of the intracellular milieu might represent a constraint for the universal properties of these networks. Of note 
is that the critical exponents from real networks are much closer to the ones from 2D percolation than to the 
ones from 3D percolation, consistently with the idea that mitochondrial networks in “flat” cells are embedded 
in a 2-dimensional space.

Finally, our results support the idea that cells adjust mitochondrial fission and fusion (the control parameter) 
dynamically in response to mitochondrial mass fluctuations (the order parameter), similar to what has been 
reported in other biological systems42,66.

Methods
AB model.  The agent-based (AB) model follows closely the implementation described in Ref.34.

SE model.  We implemented the SE model on a square lattice of size N = L2 . With certain probability, two 
types of links are established: what we call “left/right links” and “side links”. In a two coordinates system, the 
right and left nearest neighbors of the i-est node (with coordinates (i, j)) would be nodes at positions (i + 1, j) 
and (i − 1, j) , respectively (Fig. 2, bottom). Similarly, the side neighbor of the i-est node is the node located at 
position (i, j ± 1) . Notice that these definitions of left/right and side links are made only out of numerical and 
algorithmic convenience. Two parameters specify how links are established independently: p1 is the probability 
for a node to be linked with both its left and right neighbors and 1− p1 is the probability for the links between 
the i-est node and both its left and right neighbors to be destroyed (analogous to tip-to-side reactions in the AB 
model). In parallel, p2 is the probability for a link between the i-est node and its side neighbor to be created and 
1− p2 is the probability for the link between the i-est node and its side neighbor to be destroyed (analogous to 
tip-to-side reactions in the AB model).

Table 1.   Critical exponents determined using models and real mitochondrial networks. The exponents 
obtained using data from images of mitochondrial networks are more consistent with those of the 2D 
Percolation universality class. Theoretical exponents were extracted from Ref.62.

τ γ/νd df /d

Mean-Field Percolation 5/2 = 2.5 1/3 ≈ 0.33.. 2/3 ≈ 0.66..

AB model 2.38 ± 0.04 0.70 ± 0.01 0.82 ± 0.01

3D Percolation 2.15 0.67 0.84

2D Percolation 187/91 ≈ 2.055 43/48 ≈ 0.896 91/96 ≈ 0.948

SE model 2.0 ± 0.1 0.86 ± 0.02 0.91 ± 0.02

MEFs 2.01 ± 0.01 0.82 ± 0.08 1.01 ± 0.06
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Cell culture.  We abide by the ARRIVE 2.0 guidelines70. Mice were housed in cages and had access to food 
and water ad lib at all times. Every effort was made to ameliorate animal suffering. All animal work was con-
ducted in accordance with a protocol approved by the Institutional Animal Care and Use Committee at Weill 
Cornell Medical College. Mice used for experiments were between 8-14 weeks of age. Mouse embryonic fibro-
blasts (MEFs) were obtained as previously described71. Briefly, 13.5 days pregnant female C57BL/6 mice were 
sacrificed by CO2 inhalation followed by cervical dislocation. Uterus was removed and embryos harvested, 
rinsed with PBS and placed on a petri dish. The head and red organs were discarded and the remaining tis-
sue was chopped with razor blades and trypsinized for 15 min at 37◦ C. Trypsin reaction was quenched with 
Dulbecco’s Modified Eagle Medium (DMEM - GIBCO) supplemented with 10% FBS (GIBCO) and the mixture 
was centrifuged for 5 min at 2000 rpm. The cellular pellet was resuspended in DMEM supplemented with 10% 
FBS, 1% L-Glutamine (Sigma Aldrich), 1% Sodium Pyruvate (Sigma Aldrich), 1% HEPES (Sigma Aldrich) and 
1% Penicillin/Streptomycin (GIBCO). Cell pellets from 4 embryos were seeded on 175 cm2 culture bottles and 
allowed to grow for 48 h in a 5% CO2 and 37◦C atmosphere.

Human Embryonic Kidney (HEK) 293T and Cos-7 cells (ATCC) were cultured in DMEM supplemented with 
10% FBS, 1% L-Glutamine, 1% Sodium Pyruvate, 1% HEPES and 1% Penicillin/Streptomycin in a 5% CO2 and 
37◦C atmosphere. U2-OS cells (ATCC) were cultured in McCoy’s 5A Medium supplemented with 10% FBS and 
1% Penicillin/Streptomycin in a 5% CO2 and 37∘C atmosphere.

Plasmids, transfection, and lentiviral infection.  The mitochondria-targeted YFP plasmid was pur-
chased from OriGene. The ORF containing both the mitochondrial targeting sequence and the YFP was sub-
cloned into the lentiviral plasmid pLV-eGFP to yield pLV-mitoYFP. pLV-eGFP (Addgene plasmid #36083; http://​
n2t.​net/​addge​ne:​36083; RRID: Addgene_36083) and pLV-mitoDsRed (Addgene plasmid # 44386 ; http://​n2t.​net/​
addge​ne:​44386; RRID:Addgene_44386) were a gift from Pantelis Tsoulfas. Human Tom20 cDNA (NM_014765) 
was cloned into a pAcGFP-N1 vector (Clontech) using NheI and AgeI restriction sites to produce Tom20-GFP. 
Cells were transfected with designated plasmids using Lipofectamine 2000 (Invitrogen) following the manu-
facturer’s instructions. Briefly, the transfection reaction was assembled in two tubes containing Opti-MEM 
(GIBCO), one with Lipofectamine and the other with the DNA mixture. After 5 min of incubation at room 
temperature, tubes were mixed and incubated for an additional 20 min at room temperature before being added 
to cells. Next, cells were incubated with the transfection mixture for 3 h, after which normal growth media was 
restituted. Lentiviral particles carrying the pLV-mitoYFP construct were produced as described before72. Briefly, 
HEK 293T cells were seeded onto 10 cm dishes, grown to ∼ 80% confluence, and co-transfected as described 
above with a polymerase-coding vector (pREV), a packaging vector (pRRE), an envelope vector (pVSV-G), and 
the shuttle vector carrying the sequence of interest. Media was collected at 48 h and 72 h, pooled and centrifuged 
for 5 min at 3000 g to pellet cell debris. The supernatant was aliquoted in 1.5 mL eppendorf tubes and spun down 
at 16000 g for 2 h at 4 °C to pellet lentiviral particles. The supernatant was discarded and dry lentiviral pellets 
were stored at − 80°C until use. Nuclei were visualized using DAPI (4′,6-diamidino-2-phenylindole) staining.

Imaging.  Images were collected on a Zeiss LSM 880 microscope equipped with the AiryScan detector using 
a 63x/1.4 NA Plan-Apochromat Oil DIC M27 objective lens (Zeiss) and an Edge 5.5 sCMOS camera (PCO). 
YFP was excited with a 488 nm Argon laser (5% power, ∼ 60µW ) and collected with a 500/550 nm emission 
filter. Gain was set to 800. Scan mode was set to Frame with optimal frame size (3812x3812 pixels) resulting in 
an image pixel size of ∼ 35.29 nm and a lateral resolution of ∼ 140 nm. Speed was set to 8 ( 2µs Pixel Dwell time) 
and the Bit depth at 16 bits. Prior to image analysis, raw .czi files were processed into deconvoluted Airyscan 
images using the Zen software with default settings.

Image analysis.  Data extraction from images was performed using a custom-written MATLAB code that 
extracts network quantities from .czi files produced by the ZEN software. The script first converts raw images 
to binary data by performing image thresholding. Subsequently, individual clusters are identified as groups of 
pixels connected by at least one of the eight nearest neighbors. These procedure yields a cluster distribution for 
each network analyzed from which all the relevant quantities used in this study can be obtained. Note that in this 
case the skeletonization step from Ref.34 was skipped to better estimate the mass of each cluster.

Code availability.  Codes and data are available at https://​github.​com/​nahue​lzamp​oni/​mtmod​els.
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