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Tricritical behavior in a neural model with excitatory and inhibitory units

Joaquin Almeira ,1 Tomas S. Grigera ,2,3,4,5 Dante R. Chialvo,6,5 and Sergio A. Cannas 1,7,5

1Instituto de Física Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina
2Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET y Universidad Nacional de La Plata, B1900BTE La Plata,

Argentina
3Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina

4Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
5Consejo Nacional de Investigaciones Científcas y Tecnológicas (CONICET), 1425 Buenos Aires, Argentina

6Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y
Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, San Martín, 1650 Buenos Aires, Argentina

7Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina

(Received 2 September 2022; accepted 29 October 2022; published 16 November 2022)

While the support for the relevance of critical dynamics to brain function is increasing, there is much less
agreement on the exact nature of the advocated critical point. Thus, a considerable number of theoretical efforts
are currently concentrated on which mechanisms and what type(s) of transition can be exhibited by neuronal
network models. In that direction, the present work describes the effect of incorporating a fraction of inhibitory
neurons on the collective dynamics. As we show, this results in the appearance of a tricritical point for highly
connected networks and a nonzero fraction of inhibitory neurons.
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I. INTRODUCTION

A large repertoire of diverse spatiotemporal activity
patterns in the brain is the basis for adaptive behavior. Un-
derstanding the manner in which the brain is able to form
and reconfigure a large range of cortical configurations, in
a flexible manner, remains an unsolved challenge. A lead-
ing proposal interprets this large repertoire as the expected,
generic, large diversity of states near instabilities, which is
composed, by its own nature, of a mixture of ordered and
disordered patterns. In more technical terms, near the criti-
cal point of a second-order phase transition it is known that
the system exhibits the largest number of metastable states
which is only limited by the system size. In the brain, these
metastable states would correspond to cortical configurations,
or patterns of activation. In a nutshell, this is the basis of
the “brain criticality hypothesis,” suggested as the solution
to the above-mentioned challenge [1–3]. In that regard, sev-
eral key experimental works have demonstrated, over the last
decade, that brain dynamics at large and small scales meets
the requirements of critical dynamics, including finite-size
scaling of the correlation length [4–6], power-law distribution
of activation clusters [7], and dynamic scaling [8] among the
most significant findings.

Despite these advances, the exact nature of the advocated
critical point is not fully understood yet. Thus, most theo-
retical efforts are currently concentrated on what type(s) of
transition can be exhibited by neuronal network models as
well as in searching for falsifiable predictions able to identify
the correct model. In that direction, the present work general-
izes the results previously described [9] in a neuronal model

with excitatory interactions running on a Watts-Strogatz
topology. By investigating the effects of adding inhibitory
interactions we uncover the presence of a tricritical point
for a nonzero fraction of inhibitory neurons, in the regime
of high connectivity. The paper is organized as follows: In
Sec. II we describe the model as well as the simulation and the
finite-size scaling methods used. The results are presented in
Sec. III, and the relevance of the main findings is discussed in
Sec. IV.

II. MODEL AND METHODS

A. The model

In this work we use a generalization of the neural model
presented in Ref. [9] in which a fraction f of neurons are
inhibitory. To this end, we associate a variable εi = ±1 to each
neuron i, where ε = −1 represents an inhibitory neuron and
ε = +1 an excitatory one. The value of each of the variables
{εi} is chosen independently with probability f to be εi = −1
and 1 − f to be εi = +1. Those values are kept fixed during
the network evolution. The model runs over a small-world
network with a weighted adjacency matrix wi j . The network
topology is obtained following the usual Watts-Strogatz recipe
[10]. That is, we start from a ring of N nodes in which each
node is connected symmetrically to its 2m nearest neighbors.
Then, for each node each vertex connected to a clockwise
neighbor is rewired to a random node with a probability π

and preserved with probability 1 − π , so the average de-
gree 〈k〉 = 2m is preserved [11]. This algorithm provides a
nonweighted symmetric adjacency matrix Ai j = Aji = 0, 1.
Then, the weighted adjacency matrix wi j = wi j is obtained by

2470-0045/2022/106(5)/054140(7) 054140-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4406-3989
https://orcid.org/0000-0002-3165-4838
https://orcid.org/0000-0001-7331-3532
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.054140&domain=pdf&date_stamp=2022-11-16
https://doi.org/10.1103/PhysRevE.106.054140


ALMEIRA, GRIGERA, CHIALVO, AND CANNAS PHYSICAL REVIEW E 106, 054140 (2022)

assigning to every non-null link Ai j �= 0 a random real value
chosen from an exponential distribution p(w) = λ e−λ w with
λ = 12.5. This procedure mimics the weights distribution of
the human connectome [5,12].

The node dynamics of the neural model responds to the
Greenberg-Hastings cellular automaton [13], in which each
node i of the network has associated a three state dynamical
variable xi = 0, 1, 2, corresponding to the following dynami-
cal states: quiescent (xi = 0), excited (xi = 1), and refractory
(xi = 2). The transition rules are the following: if a node
at the discrete time t is in the quiescent state xi(t ) = 0
it can make a transition to the excited state xi(t + 1) = 1
with a small probability r1 or if

∑
j w ji ε j δ(x j (t ), 1) > T ,

where T is a threshold and δ(x, y) is a Kronecker delta
function; otherwise, xi(t + 1) = 0. If it is excited xi(t ) = 1,
then it becomes refractory xi(t + 1) = 2 always. If it is re-
fractory xi(t ) = 2, then it becomes quiescent xi(t + 1) = 0
with probability r2 and remains refractory xi(t + 1) = 2 with
probability 1 − r2. Following Refs. [5,9] we set r1 = 10−3

and r2 = 0.3.

B. Analysis of the dynamical transition

We focus on dynamical clusters of coherent activity,
namely, groups of simultaneously activated nodes (xi = 1)
which are linked through nonzero weights wi j . It is known that
for f = 0 the system presents a dynamical phase transition
separating a regime where the active clusters are isolated from
one where such clusters span across the whole system. The
transition can be continuous or discontinuous depending on
the values of the topological parameters 〈k〉 and π [9,14].
As we will show in the next section, varying f can also
change the transition from continuous to discontinuous at
fixed topological parameters. Here we explain the metrics
used to characterize the transition.

We simulate the model at several values of π , 〈k〉, and
f , and different network sizes N . Each simulation is started
from a random distribution of activated sites, and the system
is let to run 500 time steps before starting data collection. We
found this time interval to be enough for the system to reach
a stationary state for any system size and for any value of
the network parameters. We compute several observables to
describe a percolationlike transition as a function of T and
f . Specifically, we calculate the average size of the largest
(i.e., giant) cluster, 〈S1〉. For very large systems, this quan-
tity provides the standard percolation order parameter P∞ =
limN→∞〈S1〉/N , namely, the probability of an arbitrary node
to belong to the infinite percolating cluster. We also compute
the average size of the second largest cluster 〈S2〉, together
with the average cluster size (or susceptibility),

〈s〉 =
∑′

s s2Ns
∑′

s sNs
, (1)

where the primed sum runs over all cluster sizes except the
giant one and Ns is the number of clusters of size s [11,15].
We find that on varying the control parameter (T or f ), 〈S1〉
can change from zero to finite both continuously or discontin-
uously.

When the transition is continuous, we analyze it as in stan-
dard percolation. In this case both 〈s〉 and 〈S2〉 are expected to

exhibit (size-dependent) maxima for a certain pseudocritical
value of the control parameter (the threshold T or the fraction
f ), that scales with system size as [16] 〈s〉 ∼ Nγ /νd , S2 ∼
Nd f /d . Here γ and ν are the standard susceptibility and cor-
relation length critical exponents, d is the effective dimension
of the system, and d f the fractal dimension of the percolating
cluster.

To characterize transition in the discontinuous case we
used two different methods.

(a) Order parameter hysteresis analysis [14]. For fixed
values of N , 〈k〉, π , and f , we keep track of S1 as T is
slowly increased at a fixed rate from some initial value T0

up to some maximum value TF , and then decreased again
down to T0 at the same rate, without resetting the neuron
states when changing T . We set the rate of change of the
control parameter by changing T → T + �T every t1 steps.
The values of T0 and TF were chosen such that the loca-
tion of the maxima of 〈s〉 and S2 fall inside the interval
[T0, TF ]. As in the f = 0 case [14], we verified in many
cases the presence of well-defined hysteresis loops for val-
ues of T− < T < T+, where the border values T± depend
on 〈k〉, π , and f . In all the simulations we used �T =
5 × 10−4 and for every set of parameters we performed
several checks using values of t1 between 102 and 104. If
the values T± turned out to be independent of t1 in that
range (within errors) the transition threshold was estimated
as the average of the hysteresis loop, Tt = (T− + T+)/2.
When the hysteresis loop showed a strong dependency on
t1, we switched to the next method to estimate the transition
threshold.

(b) Order parameter histograms analysis. For fixed values
of N , 〈k〉, π , and f , we computed a histogram of the values
of the order parameter S1 along a single, long simulation run,
for different values of T . Close to a discontinuous transition,
one expects such distribution to show a two-peak structure
for long enough simulation times (i.e., for periods of time
such that the system evolution provides a good sampling of
both phases). The transition threshold can then be estimated
as the value of T for which both peaks are the same height.
This method is useful when the probability of jumping from
one phase to the other is relatively high (moderate system
sizes and/or close enough to a critical point), so that the
characteristic flip time between phases is small compared with
the simulation time. The histogram method is very well es-
tablished for studying first-order phase transitions in systems
under thermodynamic equilibrium [17]. The consistency of
our results shows that the method can also work in nonequi-
librium discontinuous transitions.

III. RESULTS

For f = 0, i.e., in the absence of inhibitory neurons, the
model corresponds to the case studied in Ref. [9]. It can
exhibit different dynamical regimes, including a percolation-
like phase transition between high and low activity regimes,
depending on the topological parameters of the underlying
network. Such transition can be of second order (i.e., critical)
for intermediate values of 〈k〉 and high enough values of π ,
or first-order-like (discontinuous) for large enough values of
〈k〉 [9].
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FIG. 1. Order parameter [panel (a)] and corresponding suscep-
tibility [panel (b)] for different values of f and system sizes N .
Different colors denote f values. Different symbols in panel (b) in-
dicate the system sizes. The results for all the system sizes are
overimposed and denoted by circles in panel (a). Network pa-
rameters: π = 0.6 and 〈k〉 = 16. The results are consistent with a
continuous phase transition for any value of f .

We started our analysis by considering the effect of in-
cluding inhibitory neurons in a network whose topological
parameters correspond to the second-order region for f = 0.
We found that the presence of inhibitory neurons does not
eliminate the continuous transition. On the contrary, f acts
as a new control parameter for the transition, as shown in
Fig. 1 for 〈k〉 = 16 and π = 0.6. In other words, the transition
can be observed (i.e., a size-dependent maximum of 〈s〉 at the
point where the order parameter almost falls to zero) either
by changing T for fixed f (see Fig. 1) or by changing f
for fixed T (not shown). Hence, we have a line of critical
points in the ( f , T ) space, whose universality class will be
analyzed later. Very similar results were obtained for other
values of (〈k〉, π ) in the critical region for f = 0 (see Fig. 4 of
Ref. [9]).

Next, we analyzed the influence of inhibitory neurons on
the dynamics when the topological parameters for f = 0 give
rise to a discontinuous transition. The typical behavior of
the order parameter and 〈s〉 as a function of T for fixed
f is shown in Fig. 2 for 〈k〉 = 30 and π = 0.6. We see
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FIG. 2. Order parameter [panel (a)] and corresponding suscep-
tibility [panel (b)] for different values of f and system sizes N .
Different colors denote f values. Different symbols in panel (b) in-
dicate the system sizes. The results for all the system sizes are
overimposed and denoted by circles in panel (a). Network parame-
ters: π = 0.6 and 〈k〉 = 30. The results are consistent with a change
in the type of transition (from discontinuous to continuous) as f is
increased.

that for small fractions of inhibitory neurons the transition
remains discontinuous, giving rise to a first-order transition
line. However, as f increases, the nature of the transition
changes smoothly to second order, where the maximum of
〈s〉 starts to exhibit a strong size dependency. This suggests
the presence of a tricritical point where the first- and second-
order transition lines meet. In order to better characterize this
phenomenon, we first performed a detailed calculation of the
first-order transition line, using the two methods described in
Sec. II B.

Hereafter we will focus on the 〈k〉 = 30 and π = 0.6 case.
For small enough values of f (i.e., up to f ≈ 0.25) we observe
well-defined hysteresis loops (namely, independent of the rate
of change of T ) as shown in Fig. 3. We also observe that
the area of the hysteresis loops shrinks as f increases and
tends to disappear for f ≈ 0.3, giving a first estimation of
the tricritical point location. However, a strong dependency
on the rate of change of T emerges for f > 0.25 and the
method loses accuracy in that region. As we depart from the
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FIG. 3. Hysteresis loops of the order parameter and two (fixed)
fractions of inhibitory neurons: f = 0.05 in panel (a) and f = 0.15
in panel (b). The threshold T is changed T → T + �T with �T =
5 × 10−4, every t1 simulation steps. Empty black symbols correspond
to t1 = 100 and filled red symbols to t1 = 104. The network parame-
ters are π = 0.6, 〈k〉 = 30, and N = 2 × 104.

tricritical point by further increasing f , we can estimate the
transition line through the finite-size scaling of the maxima of
〈s〉 and/or S2, for large enough system sizes. Actually both
quantities do not peak at the same value, but the difference
becomes negligible for system sizes larger than N = 2 × 104.
An example for f = 0.8 is shown in Fig. 4.

We summarize all the previous results in the phase diagram
in ( f , T ) space shown in Fig. 5. We see that both transition
lines (first and second order) meet at the tricritical point (in-
dicated by a star) with equal slope within numerical errors,
as expected [18], showing the consistency of our original
assumption.

To further assess the behavior close to the tricritical point
we use the order parameter histogram method described in
Sec. II B. Although this method works very well to charac-
terize discontinuous phase transitions, its usage very close to
a critical point presents some subtleties because of a partic-
ular type of finite-size effects. This is illustrated in Fig. 6.
Relatively far away from the critical point and close to the
first-order transition point, the two-peak structure of the his-
togram becomes more marked as the system size increases. In
other words, the location of the peaks converge to well-defined
distinct values and the minimum between them tends to zero.

FIG. 4. Finite-size scaling for 〈k〉 = 30, π = 0.6, f = 0.8. The
insets show the scaling with N of the maxima of the correspond-
ing quantities. Continuous lines are convenient fitting functions to
estimate the maxima. Panel (a): 〈s〉 vs T . Numerical fitting of the
maxima gives γ /νd = 0.37 ± 0.01. Dashed line corresponds to the
scaling relation between T at the peak susceptibility and system size
N : 〈s〉 = A ∗ (Tc − T )−γ . Fitting the location of the 〈s〉 peaks, we
found A = 0.22, Tc = 0.101, and γ = 0.66. Panel (b): 〈S2〉 vs T .
Numerical fitting of the maxima gives df /d = 0.70 ± 0.02.

The fact that the minimum goes to zero for N → ∞ corre-
sponds to the existence of two well-defined and distinct phases
in the thermodynamic limit. An example of such behavior
(although weak due to the closeness of the tricritical point) is
illustrated in Fig. 6(a). On the other hand, close to the tricrit-
ical point (but on the continuous side), both maxima and the
minimum tend to collapse into a single maximum when N →
∞, as shown in Figs. 6(b) and 6(c). Such pseudo-first-order
behavior has already been observed in the two-dimensional
Potts model with q = 4 [19]. We estimated the tricritical point
location as that where the above-described change in finite-
size behavior occurs.

Finally, we consider the universality class of the second-
order transitions, by estimating the critical exponents γ /νd
and d f /d from the finite-size scaling behavior of the max-
ima of 〈s〉 and 〈S2〉. An example is shown in the insets of
Fig. 4 for 〈k〉 = 30, π = 0.6, and f = 0.8. We found that all
along the continuous transition line of Fig. 5 the exponents
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FIG. 5. Phase diagram in ( f , T ) space for 〈k〉 = 30 and π = 0.6.
Blue symbols correspond to the continuous phase transition while
red points correspond to a discontinuous one. Circles correspond to
first-order transition points estimated by order parameter hysteresis
cycles for N = 2 × 104. Triangles correspond to second-order transi-
tion points estimated by the location of the 〈s〉 peak for N = 2 × 104.
Squares correspond to transition points (both first and second order)
obtained through the finite-size behavior of the order parameter
histograms.

are compatible with the mean-field percolation universality
class γ /νd = 1/3 and d f /d = 2/3, as observed for f = 0
and smaller values of 〈k〉 [9]. We observed the same behavior
even for values of f relatively close to the tricritical point,
i.e., down to f = 0.359 (although fluctuations become larger
as we approach the tricritical point, thus increasing the error
bars), so we were not able to clearly detect a crossover to a
different set of exponents. To further check the consistency
with the mean-field percolation universality class we also an-
alyzed the associated behavior of the cluster size distribution
(CCDF) P(s) ≡ Ns/N at different critical values T = Tc( f ).
Figure 7 shows that the associated behavior of the cumula-
tive cluster size distribution exhibits the expected behavior
Pc(s) ≡ ∑′

s′�s P(s′) ∼ s−(τ−1) exp(−s/S∗), with an exponent
τ ≈ 5/2 and S∗ ∝ 〈S2〉 (thus satisfying the scaling law τ =
d/d f + 1). A similar analysis with similar results was per-
formed for points along the second-order line for k = 〈16〉
and π = 0.6.

IV. CONCLUSIONS

At first sight, the effects of changing the interaction sign
on a fraction of neurons could be interpreted as nothing more
than a trivial rescaling of the excitability control parameter
(i.e., the threshold T ). In fact, as shown in Fig. 5, this holds
only for relatively small fractions of inhibitory neurons: the
discontinuous transition as a function of increasing numbers
of inhibitory neurons occurs now for relatively smaller values
of T . However, for f ∼ 0.35 a novel dynamics appears; as the
parameter f is increased the line meets the tricritical point and
then continues as a second-order phase transition.

To interpret its biological relevance, it may be important
to recall that the condition for the tricritical point to appear is
(besides a large enough fraction of inhibition) that the network
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FIG. 6. Order parameter histograms for a network with 〈k〉 = 30,
π = 0.6 for three f values (denoted in the legend) close to the tricrit-
ical point. The threshold values were chosen so that both peaks have
approximately the same height. Panel (a): For larger sizes the two
peaks at the transition are progressively better defined, corresponding
to a discontinuous transition. Panels (b) and (c): At small sizes the
transition looks discontinuous, but on going to larger sizes it is clear
that the two peaks are fusing into one, thus showing that the transition
is actually continuous.

connectivity is very large (i.e., high k). For such highly
connected networks, in the absence of inhibition there is typ-
ically an explosion of highly synchronous bursts in which a
very large number of neurons is active, even in response to
very small perturbations. This dynamics, corresponding to a
first-order phase transition, has no behavioral or cognitive
value since high synchrony impedes any information pro-
cessing or storage. Since the connectivity of cortical neurons
is typically in the thousands, a given fraction of inhibitory
neurons can prevent such synchrony. It is intriguing that the
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FIG. 7. CCDF for 〈k〉 = 30, π = 0.6, different values of N and
f . All the curves were calculated T = Tc( f ) (obtained from extrapo-
lation of the 〈s〉 maxima). Dashed lines correspond to a power law
s−τ+1 with τ = 5/2. The insets show the cutoff S∗ as a function
of N . (a) f = 0.5 with Tc = 0.204 ± 0.001. Cutoff fitted exponent
df /d = 0.8 ± 0.2. (b) f = 0.8 with Tc = 0.103 ± 0.002. Cutoff fit-
ted exponent df /d = 0.60 ± 0.06.

percentage of inhibitions is usually set around 20%, but prob-
ably such quantity cannot be predicted without accounting

for the more complex topology of the real brains compared
with the simple Watts-Strogatz network topology studied
here.

In summary, these results demonstrate that the addition
of inhibitory neurons enriches the dynamical phase diagram
observed in Greenberg-Hasting neural models defined on
small-world networks [9]. The present work adds to the
plethora of dynamics exhibited by extended excitable media,
including the tricritical behavior reported recently in related
models (see Refs. [20,21]). The fraction of inhibitory neu-
rons acts then as an alternative control parameter (in addition
to the usual activation threshold) for the dynamical phase
transitions between a low activity phase and a percolated,
highly active one. Moreover, we observed that the presence
of inhibitory neurons allows the emergence of a tricritical
point in highly connected networks, i.e., a critical region in
parameter space where a second-order (i.e., critical) transition
hypersurface and a first-order (i.e., discontinuous) transition
one join smoothly. We found evidence that, both for large and
low values of the connectivity 〈k〉 the second-order surface
belongs to the mean-field percolation universality class. On
the other hand, we were not able to observe a crossover to a
different set of exponents on approaching the tricritical point
for large values of 〈k〉, due to a large increase in fluctuations,
which make an accurate estimation difficult. This scenario
suggests the existence of a tricritical fixed point associated to
the tricritical surface (in the sense of renormalization group)
located far away from the region here analyzed in the param-
eters space.
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