
PHYSICAL REVIEW E 106, 054313 (2022)

Finite-size correlation behavior near a critical point: A simple metric for monitoring the state
of a neural network
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In this article, a correlation metric κc is proposed for the inference of the dynamical state of neuronal networks.
κC is computed from the scaling of the correlation length with the size of the observation region, which shows
qualitatively different behavior near and away from the critical point of a continuous phase transition. The
implementation is first studied on a neuronal network model, where the results of this new metric coincide
with those obtained from neuronal avalanche analysis, thus well characterizing the critical state of the network.
The approach is further tested with brain optogenetic recordings in behaving mice from a publicly available
database. Potential applications and limitations for its use with currently available optical imaging techniques
are discussed.
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I. INTRODUCTION

The study of critical phenomena in the brain [1–3] ben-
efited from different experimental approaches. The most
common by far is the statistical characterization of the so-
called neuronal avalanches, consisting of sudden increases in
the activity which exhibits power-law distribution of sizes and
durations [4]. This analysis has been reproduced over different
setups (i.e., tissues and experimental conditions, see, e.g.,
Refs. [5,6]), and in a diversity of numerical simulations. The
resulting statistics represent a long-term average estimation
over thousands of avalanches, spanning very long periods of
time, making the approach unsuitable for tracking fast dy-
namical changes. Several caveats, such as subsampling [7],
thresholding [8], or the artifacts introduced by the coexis-
tence of overlapping avalanches [9], as well as alternative
interpretations of the results [10] prompted the exploration of
complementary approaches.

One of them, which is very often documented on con-
tinuous phase transitions, is the behavior of the correlation
length ξ , which diverges with the size of the system at the
critical point (see, e.g., Ref. [11]), a fact that was shown
to be exhibited by the large-scale brain dynamics [12,13].
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More recently the same divergence of ξ was demonstrated
in the behaving mice brain [14,15]. These measures were
facilitated by the use of novel optogenetic techniques [16],
which allows for the recording of the individual activity of
a relatively large number of neurons. In that work, a proxy of
the standard finite-size analysis, named box-scaling, was used,
[17] in which the observation window, instead of the system
size, is varied. An estimate of the correlation length ξ was
found to grow linearly or logarithmically with window size
depending if the system is near or far from the critical state, re-
spectively. Based on these previous results, the purpose of this
Letter is to introduce a simple metric, describing the typical
finite-size behavior of the correlation length near criticality to
distinguish critical from noncritical dynamics. To this end, we
study a simple model of neuronal dynamics that can be tuned
toward and away from the critical point of a second-order
phase transition dynamics as the control parameter is varied.
We contrast the new metric with the most common analysis,
the avalanche size distribution statistics.

The paper is organized as follows: In Sec. II, we describe
the model and define the observables, first for the standard
metric of avalanches analysis and then for the finite-size corre-
lation based metric. In Sec. III, the main results are described
by contrasting the metrics in both numerical and experimental
data. The paper closes with a short discussion of the limita-
tions and potential applications is Sec. IV.
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II. MODEL AND OBSERVABLES

The model, previously described [13,17,18], is a cellular
automata based on the Greenberg and Hastings model [19],
running on a two-dimensional lattice of L × L neurons un-
der periodic boundary conditions. Each neuron j has k = 24
output connections chosen as follows: the closest k neurons
are initially connected, and then, to mimic a small world
topology, each of these connections is rewired with prob-
ability π = 0.01 to another, randomly chosen, postsynaptic
neuron within the whole system. The resulting k nonzero
connection weights are taken randomly from an exponen-
tial distribution p(Wi j = w) ∝ exp(−wλ) with λ = 12.5 (as
in Ref. [18]). The connection matrix is fixed and does not
need to be symmetric. Time is considered discrete and each
neuron i may be in any of the following three states: quies-
cent [Si(t ) = 0], active [Si(t ) = 1], or refractory [Si(t ) = 2].
At time t + 1 a quiescent neuron can become active due to
an external input with a small probability r1 (we have used
r1 = 10−5), or if the contribution of all active connections
at time t is larger than a threshold T (

∑
j Wi jδS j (t ),1 > T );

an active neuron will became refractory always, and a re-
fractory neuron will become quiescent with probability r2

(following Ref. [18], we have used r2 = 0.3 throughout the
text). The computer codes for numerical simulations and data
analyses can be found in Ref. [20]. An important remark
is that the results rely on universal behavior of the corre-
lation function in critical phenomena, thus they are model
independent.

We run simulations for several values of the control pa-
rameter T which previous results [17] indicate produces
subcritical (for very high values of T ), supercritical (for
very low values of T ), or critical dynamics. To accumulate
enough statistics, we run 20 numerical simulations (lasting
105 time steps, discarding the initial 5000 time steps). For
each simulation we constructed a different network with the
same parameters k and π (i.e., the networks are stochastic
realizations each with different randomly chosen rewired con-
nections and connection weights). To mimic experimentally
relevant situations, we record the dynamics of the neurons
within a square window size of W × W neurons (with W �
L), see Fig. 1(a).

A. Metric based on avalanche size distribution

The standard procedure for avalanche analysis [4] focuses
on the estimation of the distribution of avalanche size and du-
ration. For that, the total activity of the neurons inside a given
(spatial) window is computed as a function of time, A(t ) =∑

i∈W ×W δSi (t ),1 [Si(t ) = 1 if neuron i is spiking at time t].
Notice that, in the standard procedure, it is usual to group the
activity on time bins approximately equal to the average of all
interspike intervals. The coarse grain scale of the model con-
sidered here (i.e., only three discrete states) determines that
we must compute A(t ) for each time unit, as mentioned above.
Also, since for the conditions in our case A(t ) very rarely
becomes zero, following Ref. [8], we need to define a nonzero
avalanche threshold c. Avalanche size s is defined then as the
total activity above c between two consecutive zeros of A(t ) −
c [i.e., s = ∑

t [A(t ) − c], where the sum is performed over
the avalanche duration], see Fig. 1(b). At criticality, avalanche

FIG. 1. System scheme. (a) A system of characteristic size L is
studied through boxes of side W . Only neurons inside the box are
recorded. (b) Example of the time series of A, the total number of
active neurons inside a window, as a function of time. An avalanche
(filled with gray) is defined as the total activity above a threshold
c, computed from the time at which A becomes greater than c to
the next time that it is becomes lower than c. Panel (c) shows the
cumulative avalanche size distribution function F (s) as a function of
avalanche size s for three different situations: subcritical (T = 0.33,
open blue squares), supercritical (T = 0.31, open red diamonds),
and close to criticality (T = 0.318 green filled circles). The dashed
line represents the theoretical expectation for the avalanche size
distribution expected at criticality, F NA(s). Curves were computed
for m = 10 values of s. (d) The connected correlation function of
a window of size W , CW (r), for several values of W , computed at
criticality. From left to right, W = 50 (violet line), W = 150 (cyan),
W = 250 (orange), W = 500 (light green). The characteristic length
r0 for W = 500 is marked with an arrow, as an example. (e) Charac-
teristic length r0 as a function of window size W at the critical state.
Results computed on a system of size L = 1000, k = 24, π = 0.01,
and T = 0.318. In panels (b) and (c), a window size W = 500 was
used.

size distribution P(s) is expected to have a power-law distribu-
tion, P(s) ∝ s−τ , where, in the mean field directed percolation
universality class, τ = 3/2 [4,21]. The value of c is chosen
to maximize the number of avalanches for each value of T
and W .

The goodness of fit of the neuronal avalanches size dis-
tribution to a power law has been considered as suggestive
for critical dynamics, which taken in isolation may call for
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caveats, precautions, and criticisms [22]. Nonetheless, when
used in conjunction with other measures it can overcome
some of its limitations [10]. In that regard, Shew et al.
[23] defined, from the observed cumulative avalanche size
distribution F (s), a metric κS , which is [23]

κS = 1 + 1

m

m∑

k=1

F NA(βk ) − F (βk ), (1)

where F NA(β ) = [1 − (smin/β )τ−1]/[1 − (smin/smax)τ−1] is
the theoretical distribution for the critical case, and βk are
m logarithmically spaced values ranging from smin = 50 to
smax = 50 000. We have used m = 10 as in Ref. [23]. An
example of F (s) and F NA is shown in Fig. 1(c). For power-
law avalanche size distributions with exponent τ = 3/2, the
cumulative avalanche size distribution F (s) will be equal to
F NA(s), then a value of κS = 1 is expected, while κS ≷ 1 for
super or subcritical conditions.

B. Metric based on finite-size scaling of correlations

Following previous work [17], we computed the connected
correlation function on a window of size W , as the correlation
of the fluctuations of the neuronal activity, with respect to its
instantaneous spatial average [12–14,17,24–30]:

CW (r) = 1

c0

∑
i, j δviδv jδ(r − ri j )∑

i, j δ(r − ri j )
, (2)

where δ(r − ri j ) is a smoothed Dirac δ function selecting pairs
of neuron states at a distance r [in practice, we have computed
CW (r) for integer values of r, averaging all points at distances
(r − 0.5, r + 0.5] ]; ri j is the Euclidean distance from the site
i to site j; δvi is the value of the signal vi of site i at time
t , after subtracting the instantaneous spatial average of sig-
nals V (t ) = (1/N )

∑N
i vi(t ), i.e., δvi(t ) = vi(t ) − V (t ); and

1/c0 is a normalization factor to ensure that CW (r = 0) = 1.
We consider that vi = 1 if neuron i is in the active (Si = 1)
or refractory (Si = 2) state and vi = 0 otherwise. Although
CW (r) can be computed on a single snapshot [in contrast with
F (s)], to improve statistics, we average the result over several
time steps. We compute Eq. (2) once every 20 time steps
(i.e., we take information for 4750 [31] time steps for each
network), and then average the result over different time steps
and different networks. An estimate of the correlation length
can be calculated from Eq. (2) as r0, the first zero crossing
of the function [i.e., CW (r0) = 0]. An example of CW (r), for
different values of W is shown in Fig. 1(d), while r0 as a
function of W , is shown in Fig. 1(e). We remark that the
implementation of r0 estimates correlations computed inside
a window, after subtracting the instantaneous spatial aver-
age. This differs from the frequently considered connected
correlation function, computed from the fluctuations of each
variable with respect to their time average (although, for
systems in equilibrium thermodynamics, they are equivalent
[28]). This characteristic makes CW (r) in Eq. (2), immune to
global trends and hidden confounders, as discussed elsewhere
[17,29].

We measure CW (r) for several values of W ranging from
Wmin to Wmax. For equilibrium thermodynamic systems, the
behavior of r0 as a function of W , for fixed L, is known

FIG. 2. Avalanche size distribution computed on a window of
size W = 500, for different values of T in panel (a) and for T =
0.3180 � TC and several values of W in panel (b). The dashed lines,
in both panels, show a power law with exponent −3/2 as a guide to
the eye. All parameters are the same as in Fig. 1.

in the limiting cases: r0 ∝ W for W � L � ξ at criticality,
while r0 ∝ ξ ln(W/ξ ) for ξ � Wmin, where ξ is the standard
correlation length, see Refs. [17,28].

To estimate the distance to criticality, for each explored
window size Wi, we propose a linear relation between r0(Wi)
and Wi: r0(Wi) = ai × Wi, and extract the value of the slope
ai from the data [32]. Also, we propose a logarithmic growth
r0(Wi ) = r0(Wmin) + biln(W/Wmin). Similar to Eq. (1), we de-
fine

κC = CV 2
s

CV 2
c + CV 2

s

, (3)

where CVs is the coefficient of variation of {bi}, and CVc is the
coefficient of variation of {ai}, see Ref. [20]. Notice that 0 �
κC � 1, where κC = 0 is for a perfect logarithmic growth and
κC = 1 is for perfect linear growth. While more sophisticated
measures can be proposed, the definition of (3) is simple and
insensitive to changes in the spatial scale (r → λr).

III. RESULTS

As a reference, we first characterize the behavior of the
avalanche size distribution, computed inside of a window of
size W = 500, for different values of T . The results are shown
in Fig. 2(a). In the subcritical state (T = 0.33), activity is
low, and there are no large avalanches, for any value of c. In
the supercritical case (T = 0.31), activity is very high, being
always larger than zero. The avalanche size distribution has
a hump for s ≈ 105. Hump position depends on c, showing
system-wide avalanches (commonly dubbed “dragon kings”)
for low values of c. In the critical case (T � 0.318), avalanche
size distribution follows closely a power law with exponent
τ = 3/2. Different values of τ , in the range [1.3–1.7], can
be estimated for different values of c. For the critical data
in the figure [line with circles in Fig. 2(a)], it can be seen
that, for small values of s (i.e., s < 100), there is an excess
of avalanches compared with the expected. This excess is
a consequence of subsampling and is not present for W =
L, while it is even larger for small values of W , such as
W = 125, see Fig. 2(b). This difference may be due to the
contributions of avalanches that enter or leave the window
from the rest of the system, as already discussed in the context
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FIG. 3. Characteristic correlation length as a function of window
size W obtained at various control parameter values T (indicated
in the legend). The same results are plotted on a linear scale in
panel (a) and on a linear-logarithmic scale in panel (b). All other
parameters are the same as in Fig. 1.

of avalanches in the quenched Kardar-Parisi-Zhang (qKPZ)
model, see Ref. [33].

Next, we turn to describe the correlation behavior on
the same data used to study avalanches. The characteristic
correlation length r0 as a function of window size W , for
Wmin = 30, Wmax = 500, is shown in Fig. 3. For the critical
value of the threshold (T = 0.318), there is a linear relation
between r0 and W , while for sub and supercritical regimes, r0

is smaller, and the growth of r0 with W is logarithmic. Slightly
subcritical and supercritical cases (plotted with triangles),
show intermediate results. Similar results can be found when
CW (r), Eq. (2), is computed for the whole system (W = L),
varying system size, as shown in Ref. [17] for the Ising
paramagnetic-ferromagnetic model and for a different neu-
ronal model [7].

The values of κS and κC , extracted from avalanche size
distribution and correlation length scaling, are shown in Fig. 4.
Avalanche analysis (κS), assuming τ = 3/2, yields expected
results: κS > 1 (<1) for the supercritical (subcritical) regime,
while κS is closest to 1 for the critical regime, T = 0.318
(marked with a green dot). For very subcritical values (high
T ), κS does not keep on decreasing, probably due to having
a short range of s values captured by P(s). The analysis of
characteristic length collapse, κC , shows compatible results,
see Fig. 4(b). The linear fit is better that the logarithmic fit
(i.e., κC > 0.5) only for 0.314 < T < 0.322, having its peak
at T = 0.318, i.e., the same value as in κS .

For completeness, in Fig. 4(c) we also show the first
autocorrelation coefficient of the activity, AC(1) which by

FIG. 4. Behavior of the different metrics (mean ±SD) as a func-
tion of T near the critical point of the neural model: κS in panel
(a) and κC in panel (b) and AC(1) in panel (c). All other parameters
are the same as in Figs. 2 and 3.

definition is always smaller than 1, and reaches a maximum
at criticality [34]. AC(	t ) is computed from the activity A(t )
on the largest window (W = 500) as AC(	t ) = 〈A(t + 	t ) −
〈A〉〉 × 〈A(t ) − 〈A〉〉/[〈A(t )2〉 − 〈A(t )〉2], where 〈. . .〉 stands
for temporal average. The critical value of T derived from
AC(1) = AC(	t = 1) also coincides with results from κC

and κS .
To compare the performance of κS , κC , and AC(1), in Fig. 5,

we show the metric’s behavior as a function of slow variations
of the control parameter T . In Fig. 5(b), we show how the
control parameter T is varied as a function of time, generating
a nonstationary activity time series [see the raster plot for a
few neurons in Fig. 5(a)]. The values of κS , κC , and AC(1),
computed on time segments of n = 2000 steps, are shown in
Figs. 5(c) and 5(d). It can be seen that, close to criticality (i.e.,
T = TC), the variability in κC is lower than the variability in
κS . We also show the first autocorrelation coefficient of the
activity, AC(1) [see Fig. 5(d)], which shows a low variability
in the critical (and supercritical) regime.

To study this observation in depth, we run four independent
simulations on the same network (with different annealed
noise), at fixed T = TC , for 40 000 steps each. Using all these
data (i.e., all the time frames from all the runs), we compute
the expected values κ∗

S , κ∗
C , and AC(1)∗. Next, we compute

κS , κC , and AC(1) using several short segments of the time
series, of length n (from n = 400 to n = 40 000). We define
the Error as the average distance (computed as the absolute
difference) of these values to the expected values κ∗

S , κ∗
C , and

AC(1)∗. For all observables, the Error decays with the number
n of samples used [see Fig. 5(e)]. For samples with n > 1000,
we find that the Error in κC [and AC(1)] is lower than the
Error in κS . More important, the error of κC and AC(1) decay
as ≈1/n, faster than for κS .

Novel optogenetic imaging techniques allow for the si-
multaneous recordings of the activity of hundreds of neurons
[16], an optimal setting to compare the statistical measures.
Figures 6 and 7 show the behavior of the proposed metrics
to characterize the dynamics of a selected dataset from the
Allen Institute’s Brain Observatory [35], recorded (at 30 Hz
for 114 099 time frames) from a conscious mouse. The data
corresponds to the inferred spike probabilities of 295 neurons
inside a field of view of 400 × 400 μm in the VISp area.
These data set were selected because its experimental design
includes the presentation of different visual stimuli. We ex-
pected that the stimuli shall induce variations on the neuronal
network state large enough to be reflected consistently on
the metrics described here. Previous analyses on rat visual
cortexes [36], subject to monocular deprivation, and turtles
subject to visual stimulation [37] showed that the stimulation
changes the dynamical state in ways that were measurable by
using computations related to avalanche size distribution and
other proposed observables.

First we explored the behavior of the metrics as a function
of the number of samples (i.e., frames). Figure 6 a shows
the box-scaling results, calculated from the spike time series
extracted from [35]. A linear relation between W and r0 is
observed for all W � 100 μm, while this relation breaks at
shorter distances. From this observation, we estimate a char-
acteristic interaction length of the order of 100 μm, which
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FIG. 5. Numerical simulations demonstrating the behavior of the metrics in response to a slow change in the network excitability, here
simulated by ramping up and down the model parameter T . Panel (a) shows the raster plot of a subset of 100 neurons as T is varied. Panel
(b) shows the evolution of T as a function of time t . Panel (c) shows the estimated mean (± SD) κS and κC , computed over time segments
of n = 2000 steps. For κC , we used spatial windows W � 300. For κS an average of ≈95 avalanches (range 14–280) were detected in each
run and each temporal window. Panel (d) shows the first autocorrelation coefficient AC(1) of the population rate fluctuations within the same
windows. Panel (e) shows the errors of the estimators, computed as the average distance between the measured and the expected value, κ∗

S , κ∗
C ,

and AC(1)∗, as a function of the number n of steps at T = 0.3180 � TC . Results in each panel are from four independent realizations of the
numerical simulations. For avalanche analysis, since n is variable, we considered smin as 10 times the smaller avalanche size observed, and smax

as 0.1 of the largest observed avalanche size.

is slightly shorter than (but comparable to) the experimental
neuronal connection lengths [38]. The same data are plotted
on a log-linear axis in the inset of that figure to emphasize
its nonlogarithmic scaling (compare with results in Fig. 3).
Figure 6(c) shows the avalanche size distribution computed
from the same spike time series. The results approximate the
expected power-law distribution for about two decades. The
values of κC and κS , for different sampling length, are shown
in Figs. 6(b) and 6(d). Note that, as expected, the range of κC

and κS observed values broaden for shorter time series.
Next, we explored up to which degree the fluctuations,

spontaneous or introduced by the visual stimuli, may be
reflected on the proposed metrics. Figure 7 shows the re-
sults of analyzing the temporal fluctuations of the metrics
computed in eight nonoverlapping temporal segments, each
one corresponding to different visual stimuli. According to
the analysis, throughout the segments the dynamics remain
slightly subcritical, with variations depending on the type of
stimulus. In consequence, the relative fluctuations of each
metric are directly proportional to each other, as shown in
Figs. 7(f)–(h). Note that the population rate [i.e., Fig. 7(b)],
in this context, shall be considered as a pseudo-order
parameter [34].

While inferring the dynamical state of the network is rel-
evant on its own, another important question, in the context
of brain dynamics, is how the dynamical state may affect the
system’s response. To address this question, we study how the

neurons’ response depends on the network state. We define
the response to a given stimulus as the firing rate change
when the stimulus is turned on, compared with the rate im-
mediately before, divided by the summed rate: Response =
(Rs − Rb)/(Rs + Rb), where Rs is the rate when the stimulus
is present, averaged over all considered neurons and stimulus
presentations, and Rb is computed over the same neurons,
for time windows of the same duration, immediately before
the stimulus onset. For static gratings, we say that a neuron
responds to a given angle if the response is larger for that
orientation than for gratings in any other direction. Similarly,
we say that a neuron responds to a given natural image if the
rate increase is larger for that image than for any other natural
image.

Figure 8 shows the change in network responses for dif-
ferent network states, evaluated with different metrics. The
results show that the response for static gratings is mostly
insensitive to the changes in the dynamical state, while the
response for natural images became larger when the state
approaches criticality. We have limited the analysis to the
eight natural images that generate the largest responses. The
analysis is a pilot demonstration of two aspects that deserve
to be better explored: on one side it shows the well-known
fact that the response of the visual cortex is stronger for
natural images, and on the other side, that when the metric
indicates that the network is closer to criticality it maximizes
its responses [23].
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FIG. 6. Experimental recordings. Analysis of neuronal spike data
inferred from two-photon imaging from the Allen Institute database
[35]. Panel (a) shows box-scaling results for the entire data with
empty symbols and with lines for the segments of 1/8 of the time
series. The inset shows the same data in log-linear axis. In panel
(b) the symbols show κC for different time windows as a function
of the number of frames used, while the black lines show the mean
± standard error. Panel (c) shows the avalanche size distribution
of the same data, for all time frames with filled symbols (17 155
avalanches), and for segments of 1/8 of the points [as in panel (a)]
with lines. Panel (d) shows the κS in the same format used in panel
(b). For each time segment, κC was computed from windows of size
100 μm or larger, while κS was computed using avalanche sizes
ranging from twice the minimum observed avalanche size to half of
the largest observed avalanche size.

IV. DISCUSSION

It is known that the status of cortical networks changes
following spontaneous fluctuations in excitability, arousal,
sleep, vigilance or in response to sensory inputs or anes-
thetic agents. A simple approach to track these changes is
the computation of the pair-wise mutual correlations, which
at the critical state exhibits scale invariance. A motivation for
the present work is to develop practical methods for track-
ing these changes in the global correlations of a network,
under the assumption that such quantification may help to
understand cortical responses under a variety of changing
circumstances.

New methods shall take advantage of the novel optogenetic
techniques which not only provide data from a very large
number (hundreds to thousands) of neurons but also provide
spatial information. In contrast, the avalanche analysis only
relies on counting the number of neurons firing at any given
time, not profiting from the abundance of spatial information
offered by optogenetic techniques. The metric proposed here,
based on the computation of the connected correlation length,
is performed from instantaneous snapshots of the system. By
construction, this feature gives the approach some important

FIG. 7. Dynamical changes in response to visual stimuli exhib-
ited by the experimental recordings according with the different
metrics (same data as in Fig. 6). Panel (a) shows the raster plot,
and panel (b) shows the average rate (number of spikes per frame)
computed over time blocks related to different visual stimuli. Panels
(c) through (e) show κS , κC , and AC(1), respectively, for the same
time blocks. These points are replotted in the right panels where
panel (f) shows κC as a function of AC(1) and panels (g)–(h) show κS

as a function of AC(1) and as a function of the rate, respectively
(r values correspond to linear regression coefficients). The visual
stimuli, labeled in panel (a) and denoted by the vertical dashed lines,
consisted of a sequence of 8 min. of static gratings (ST) followed
by interstimulation period of gray screen, 8 min. of natural images
(N), 5 min. of spontaneous activity (Sp), 8 min. of natural images,
interstim gray screen, 8 min. of static gratings, interstim gray screen,
5 min. of natural movie (NM), 9 min. of natural images, and 9 min.
of static gratings. The symbols in panels (f)–(h) correspond to the
different stimuli kinds [colored as the labels on top of panel (a)].
Results computed from Ref. [35].

FIG. 8. Changes in the level of response to natural images (N)
and static gratings (ST) stimuli as a function of the network state,
estimated by the three metrics. Panel (a) corresponds to κS , panel
(b) to κC , and panel (c) to AC(1). For static gratings, the response
was computed on the 5 most responsive neurons on each orientation
(total: 30 neurons). For natural images, the neurons for the eight nat-
ural images with most responsive neurons were considered (natural
images 45 with 20 responsive neurons; 85, with 14 neurons; 41, 115,
and 108, with 10 neurons; 69 and 36, with 8 neurons; 86 with 7
neurons, total: 87 neurons). All other parameters are the same as in
Fig. 7.
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advantages, for instance, more immunity to spurious collec-
tive effects (noncritical) from a trivial driving by a hidden
variable. This cannot be singled out by standard avalanches
analysis. In addition, box-scaling should not be affected by
subsampling artifacts [7] or overlapping avalanches [9], since
the value of CW (r) is computed from the activity of pairs of
observed neurons at a distance r.

Regarding the sensitivity of the different observables com-
puted here, we should stress that the definition of κS , Eq. (1),
computes the signed distance to the expected power-law
distribution (instead of, for example, the absolute distance)
in such way that positive and negative deviations from the
ideal cumulative distribution [as seen in the critical curve of
Fig. 1(c), for low and high values of s] compensate. While this
makes κS robust in the absence of enough data, it also makes it
less sensitive. Also, notice that the actual value of κS depends
on different parameters (such as bin length or threshold c).

AC(1) has a broad peak about the critical point, which
makes it an excellent observable for directing the system
towards criticality, as discussed already in Ref. [34]. While
this feature is shared with the κC approach, the latter re-
quires much more information (i.e., to compute from all
pairs). Since both peak at the critical point, they cannot be
used to distinguish subcritical from supercritical regimes, and
some other observable, such as rate or κS , has to be used
in conjunction to disambiguate. Nevertheless, it should be
stressed that supercritical regimes are infrequent in neuronal
data.

Notice that, similar to κS , AC(1) is computed from the time
series of the population activity, which means that it may be
subject to external biases and nonstationarities and that they
do not profit from spatial information. On the other hand, κC

can be computed from single time frames, but it cannot be
calculated if the neurons’ positions are unknown, or in sys-
tems where positions are ill defined. Also, as in the numerical
results of Ref. [14], we have found in experimental data that
the linear relation between r0 and W at criticality breaks down
for very small windows, an observation that deserves further
research efforts, and has to be taken into account if κC is
intended to be used on very-small system sizes.

Overall, numerical simulation results show that the value
of the control parameter Tc (i.e., for critical behavior) inferred
via avalanche-size distribution is very close to the value that
maximizes the correlation length. Thus, the long-term state of

the system can be monitored from either method, although the
computation of the correlation length should be more sensitive
to dynamic changes, and less dependent on parameters. The
analyzed experimental data support this picture.

Many of the results on neuronal activity (including those
studied here [35]) on behaving animals are nowadays obtained
from optogenetic recordings [16], in which the spike of a
neuron (lasting about 1 ms) generates an optical response,
related to the displacement of calcium within the neuron, that
decays on larger timescales (in the order of a few hundred of
milliseconds). Typically, neuronal spikes are inferred through
the deconvolution of that signal. However, it has been recently
proposed that some analyses, related to different kinds of cor-
relations among pairs of neurons, may be performed without
requiring a deconvolution [39]. Although it is not the objective
of the present work, the computation of κC from minimally
preprocessed (i.e., normalized or z scored) calcium data yields
results qualitatively similar to those presented above from the
inferred spike data. This is a promising avenue for an approach
that does not depend on the intricacies of the deconvolution
algorithms. The relation between κC results obtained from
raw calcium signals and from spike data deserves further
research, and would likely benefit from the analyses proposed
in Ref. [39] (see also Ref. [40]).

In summary, we have explored ways to estimate changes in
a network status and introduced a simple metric κC describing
the typical finite-size behavior of the (instantaneous) spatial
correlations of neuronal activity. By construction, κC is able to
distinguish critical from noncritical dynamics and compares
well with avalanche analysis which estimates the distribu-
tion of the space-integrated activity. In a given experimental
situation, the observation of large κC values indicating long-
range spatial correlations is consistent with the simultaneous
observation of large values for the temporal correlations, as
shown previously [34]. Results presented here suggest that
the correlation length computations using box-scaling are well
suited as a complement or a substitute of neuronal avalanche
analysis as a useful tool for monitoring criticality on diverse
experimental conditions.
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