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We analyze the neural dynamics and their relationwith the emergent actions of

a robotic vehicle that is controlled by a neural network numerical simulation

based on the nervous system of the nematode Caenorhabditis elegans. The

robot interacts with the environment through a sensor that transmits the

information to sensory neurons, while motor neurons outputs are connected

to wheels. This is enough to allow emergent robot actions in complex

environments, such as avoiding collisions with obstacles. Working with robotic

models makes it possible to simultaneously keep track of the dynamics of all

the neurons and also register the actions of the robot in the environment

in real time, while avoiding the complex technicalities of simulating a real

environment. This allowed us to identify several relevant features of the neural

dynamics associated with the emergent actions of the robot, some of which

have already been observed in biological worms. These results suggest that

some basic aspects of behaviors observed in living beings are determined by

the underlying structure of the associated neural network.
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1. Introduction

Understanding how the nervous system of living organisms encodes, organizes and

sequences behaviors is one of the fundamental questions in biology and science in general

(Branson and Freeman, 2015). Themain challenge resides in the ability tomonitor whole,

or almost whole neural systems while registering activity (Anderson and Perona, 2014;

Datta et al., 2019). With this goal in mind, many studies have focused on model animals

with small nervous systems, such as the fruit fly Drosophila melanogaster (Robie et al.,

2017), the zebrafish Danio rerio (Ahrens et al., 2013; Cong et al., 2017; Kim et al., 2017;

Symvoulidis et al., 2017), and the worm Caenorhabditis elegans (C. elegans) (Corsi et al.,

2015; Kato et al., 2015; Kaplan et al., 2020).
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The nematode C. elegans stands out in neuroscience studies

as the first animal whose complete connectome has been

mapped (White et al., 1986). Using serial electron microscopy

synapse-level neural maps have been constructed both for adult

male and hermaphrodite (White et al., 1986; Cook et al., 2019).

By adding the sizes of the synaptic connections between cell

pairs, and assuming that average synapse size is larger for

stronger connections than for weak ones, the map can be

represented as an adjacency matrix with weights that quantify

the amount of physical connectivity between pairs. This allows

for the description of the nervous system as a weighted graph.

The abstraction of a neural system into a set of nodes and

weighted edges allows for the development of a theoretical

framework to study the general organizing principles of the

neural structures. This approach has proven to be successful

(Sporns et al., 2004; Sporns, 2010; Fornito et al., 2016; Van den

Heuvel et al., 2016), revealing many non trivial topological

features, that are shared by nervous systems across species, such

as network motifs (Sporns et al., 2004), community structures

(Sohn et al., 2011), rich clubs (Towlson et al., 2013), and small

world network structure (Watts and Strogatz, 1998; Varshney

et al., 2011). Also, it establishes the first step in the study

of the relation between the network structure and function,

that is, on the dynamical processes that can run on these

structures. For example, the small world network structure is

characterized by a high clustering and a short distance between

nodes. This allows for the coexistence of a functional segregation

in well defined regions while also allowing for a fast transfer

of information consolidating global integration into coherent

states (Sporns et al., 2004).

The possibility of advancing beyond structural analysis,

incorporating experimental information on neural dynamics has

also been possible in C. elegans, thanks to calcium imaging

techniques (Schrödel et al., 2013) that allow simultaneous

recording of activity in a large fraction of neurons including

the head ganglia (Kato et al., 2015) and also the ventral nerve

cord and tail ganglia (Kaplan et al., 2020). These seminal

works permitted an exploration beyond isolated sensory to

motor pathways, allowing for whole brain recordings that reveal

many overlapping pathways embedded in the recurrent wiring

of the connectome. The experiments in Kato et al. (2015)

showed the presence of well defined clusters with synchronized

activity in the neural dynamics. By simultaneously registering

the locomotor behavior of freely moving worms using automatic

video tracking, they showed that these synchronized clusters can

be correlated with action sequences of the nematode, suggesting

that behaviorally relevant neural representations occur through

the coordination of neuronal activity patterns at the level of

global dynamics (Kato et al., 2015). Also, experimental results

in Kaplan et al. (2020) showed that the global neural dynamics

present a hierarchical structure across brain and motor circuits,

where slower dynamics constrain the state and function of faster

ones. Expanding the registration of the activity of the worm

to also include head and body postures they showed that this

hierarchy is used to coordinate behaviors across different time

scales (Kaplan et al., 2020).

These experiments showed that organization of behavior

in the worm is encoded in a hierarchical structure of globally

distributed, continuous, and low-dimensional neural dynamics,

leading to the conclusion that the behavioral states are encoded

in the brain as an internal representation that emerges from the

neurons and their circuit interactions. These results highlight

the importance of studying the nervous system, the body and

the environment as a coupled system, in order to understand

the properties that emerge from their continuous dynamical

interaction (Chiel and Beer, 1997; Clark, 1998; Webb, 2000,

2002; Floreano et al., 2014). In this context the use of robots

appears as an attractive modeling tool, since it is possible

to access and have full control over the parameters and

dynamical variables that govern their behavior (Pfeifer et al.,

2007; Izquierdo and Beer, 2013).

Also, the physical implementation of a robot allows for

testing the performance of algorithms in a body that is subject

to the laws of physics and is immersed in real time in a

natural environment, thus avoiding the complex technicalities

of simulating the environment, a procedure that involves its

ownmodels and therefore addsmore variables, assumptions and

noise to the analysis. In turn, this allows us to focus directly on

the global dynamics that emerge from the connectome and how

it affects behavior.

In this work we use a robotic vehicle that is controlled by a

neural network numerical simulation based on the C. elegans

connectome (Busbice, 2014b). In the simulation the neurons

have the same firing threshold, and as a consequence have

identical dynamics as isolated units. In this way the changes

observed in their dynamics reflects their interactions through

the non-uniform distribution of synaptic connectivity. This

allows us to analyze the neural dynamics that emerges through

the connectome, and at the same time to study the interplay

between the neural dynamics and the actions of the robot.This

provides a methodology to check if circuit interactions are

enough to explain behavior or further assumptions are needed

(Jabr, 2012; Morgan and Lichtman, 2013).

We find that some basic features of the global neural

dynamics of the worm, such as the presence of clusters

of synchronized neurons (Kato et al., 2015), and a nested

hierarchical structure that couples slow and fast oscillating

neurons (Kaplan et al., 2020), can be explained just as an

emergent consequence of the connectome architecture, without

need of any other modulatory mechanism.

2. The robotic model

In our experiments we use a robot design that essentially

consists of a vehicle with two lateral motors connected to wheels
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and a distance sensor in the front [Supplementary Figure S1

(Industries, 2020b)]. This allows the vehicle to sense the

environment and move on the ground. The neural simulation

that controls the robot has elementary dynamical units

that represent the neural dynamics, and uses the biological

information of the connectome for their interaction. With

this stripped down approach Busbice (2014a,b) showed that

the robot presents emergent behaviors, which allow it to

spontaneously navigate when sensory neurons associated with

the presence of food are stimulated and to back up when

confronted with an obstacle and sensory neurons associated to

backing response are stimulated (see Supplementary Video S1).

At the same time, the experimental results of Kato et al.

(2015) show that the network dynamics interfaces with sensory

neurons as early as the first synapse, providing a robust scaffold

for sensory inputs to modulate behavior. Thus, the robotic

model constitutes an excellent platform to study the interplay

between connectome, neural dynamics and emergent behaviors.

However, up to now neither the global dynamics of the model,

nor its correlation with the underlying connectome and the

emergent actions of the robot has been analyzed. In this

work we fill this gap, as well as contrast, when possible, the

results obtained using the robot with those coming from recent

experiments on C. elegans.

We used two vehicles for our experiments. One of the robots

is the commercially available GoPiGo robot by Dexter Industries

(Industries, 2020b). The software that controls this robot is open

source and can be downloaded from Industries (2020a). This

allows for a straightforward reproduction of our experiments.

Since the hardware of the GoPiGO robot is not open, we decided

to build a custom robot with a similar design that can easily be

constructed with off the shelf components at a low cost. In this

way we provide an open hardware and open software alternative

to reproduce the experiments (see Supplementary material for

details). The numerical simulation was run in a Raspberry Pi

(Foundation, 2020) computer mounted in the vehicles, that

is also interfaced with the distance sensor and the motor

control boards.

The control of the robots was implemented in a custom

numerical simulation using the Python 3 programming

language, and is based on the original program developed by

Busbice (2014b) and the version implemented in the GoPiGo

robot (Industries, 2020a).

In order to allow the robot to run in real time the

program registers the neural states and then executes the output

commands at every time step. The firing threshold of the

neurons sets the time scale to the neural states, and the motor

control program uses a single parameter to set the time scale

for the motors to execute the output commands. In this way

the program allows for the whole set of neural signals and the

actions of the robot to be sampled once per second, setting the

upper bound to the frequency of every individual signal to be

ω = 0.5Hz. This is directly related to the physical scale of

the robot and how fast it can execute the commands received

(Busbice, 2014b). If the parameter for themotor control is set too

low, then the motors cannot execute the actions, as they have a

physical limitation on the time scale at which they can turn and

reverse. If this parameter is set too high the robot actions take

too long and there are no emergent behaviors to be observed in

real time.

The microscopic dynamical units of the model, the

neurons, evolve in a numerical simulation as oscillators.

Our choice of single neurons as oscillators is based on the

experimental evidence of Kato et al. (2015) and Kaplan

et al. (2020). These experimental works highlight the

oscillatory character of a number of C. elegans neurons.

In fact, using principal component analysis Kato et al.

(2015) show that the neural state’s time evolution is cyclical,

and that a large percentage of the full dataset variance

can be accounted for by these neurons. Advancing a step

forward, Kaplan et al. (2020) show that these oscillations

present a hierarchical structure, where nested neuronal

dynamics at different frequencies allow for multi-timescale

behavioral organization.

The neurons evolve in the numerical simulation with

discrete time steps. At each time step all the neurons

add their input signals up to a given threshold value

(h = 30). When a neuron Sj surpasses the threshold

it fires, distributing the signal to its Si neighbors, and

resetting its state to zero. The neurons are updated in the

following way:

Si(t + 1) =

{

Si(t)+
∑

jWij2
[

Sj(t)− h
]

if Si(t) ≤ h

0 otherwise
(1)

where Wij is the synaptic weight between neurons Si and Sj,

given by the connectome, and 2 is a step function.

If the threshold h is too low most of the neurons fire at every

time step, and there are no emergent behaviors. If the threshold

is too high, then almost no neuron fires, since many time steps

are required for the neurons to reach the threshold. However,

we observed that this value does not have to be precisely tuned,

and obtained the same qualitative results for thresholds ranging

between 10 and 100.

The neural network controlling the robot is based on the C.

elegans connectome, allowing for the construction of a directed

graph, where two connections to the same neuron represent

a synaptic junction and a gap junction (Busbice, 2014b). The

neurons in the nervous system of the worm can be divided

into three categories according to their neuronal structural and

functional properties: sensory neurons, interneurons and motor

neurons (White et al., 1986; Varshney et al., 2011). According to

a standard nomenclature every neuron has a name, that consists

of either two or three uppercase letters indicating class, and

corresponding number within a given class. If the neurons are

radially symmetrical, each cell has a three-letter name followed
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by L (left), R (right), D (dorsal), or V (ventral). A complete

list of C. elegans neurons, their lineage, and descriptions can

be found in the WormAtlas database (Altun et al., 2002–2021;

Altun, 2021).

In the robot, a laser distance sensor allows for very accurate

distance measures, with a range up to two meters with a

millimeter resolution. This sensor activates a number of sensory

neurons associated with avoidance behavior (WormAtlas, 2021)

when the distance from the robot to an obstacle is below a given

threshold (30 cm).

The outputs of motor neurons connected to the left and

right muscles of the worm involve both positive and negative

weights, representing excitatory and inhibitory connections.

They are accumulated into a value of either left or right,

and this value is then used to control the rotation of

the two wheels (Busbice, 2014b; Industries, 2020a). For a

complete list of all the neurons involved in the sensory

inputs and kinetic outputs see Supplementary data section

in the Supplementary material. With this setup we conducted

experiments where the robot was allowed to roam freely in

a room with random obstacles, simultaneously recording the

individual dynamics of all the neurons and also the actions of

the robot.

We chose this particular design for our experiments due

to its attractive features. On the one hand, the design of

the robot allows for a straightforward construction that can

be easily reproduced with low cost. On the other hand,

the neural simulation that controls the robot has elementary

dynamical units, and uses the biological information of the

connectome for their interaction. With this stripped down

approach Busbice (2014a,b) showed that the robot presents

emergent behaviors, which allow it to spontaneously navigate

and avoid obstacles (see Supplementary Videos S1, S2). Thus,

the robotic model constitutes an excellent platform to study

the interplay between the connectome and emergent behaviors.

However, up to now neither the dynamics of the model, nor

its correlation with the actions of the robot has been analyzed.

The main objective of the present work is to fill that gap,

as well as to contrast, when possible, the results obtained

in the robot with those coming from recent experiments

on C. elegans.

3. Results

Emergent neural dynamics

Frequency and phase synchronization

We will begin by analyzing the correlation between the

global dynamics and the underlying connectome. It is worth

stressing that in the robotic model all the neurons have the same

firing threshold, and thus have identical individual dynamics as

isolated units. However, we expect their dynamics to reflect the

FIGURE 1

Neurons oscillate at di�erent frequencies. (A) Dynamics of three
ventral cord motor neurons, DB4 (top, red), VD1 (middle, blue),
and DA7 (bottom, green). The figure shows the neural signals as
a function of time in the same 60 s time interval. The horizontal
lines shows the threshold value h = 30 (B) Corresponding
Fourier transforms with sharp peaks, used to define the
characteristic frequency �.

non-uniform distribution of synaptic connectivity. For example,

neurons in a central position, with a large number of inputs or

receiving connections with large weights can reach the threshold

faster, and thus fire frequently. In fact, we found that AVAL,

AVBR, and AVBL, nodes with the greatest degree centrality,

and also with the largest in-closeness centrality (Varshney et al.,

2011) oscillate with high frequency. In contrast, nodes in a

peripheral position receive fewer inputs, and thus will take

longer to reach the threshold, leading to a slower dynamics.

In Figure 1A we plot the signals of three ventral cord motor

neurons in a fixed time interval showing oscillations at different

frequencies. We quantitatively characterize these oscillations by

performing a Fourier transform (FT; Figure 1B). We find that

the real value of the FT present sharp peaks, and thus define the

characteristic frequency of the neurons,�, as the highest peak in

the FT.

Clusters of neurons that present coordinated dynamics have

been registered experimentally in C. elegans by Kato et al.

(2015). With this idea in mind when we extend our focus from

individual to collective dynamics we observe that some neurons

are clustered in groups that share the same characteristic

frequency. Even more, in some cases the complete shape of their

FT, including smaller peaks, overlap. This allows us to define

synchronized clusters as groups of neurons with overlapping

FT. In Figure 2A we plot the average Fourier Transform of

neurons in three different frequency synchronized clusters. The
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FIGURE 2

Frequency synchronization. (A) Average Fourier transforms of neurons in three synchronized clusters for a full 15 min long experiment. (B)
Neurons sorted from lower to higher characteristic frequency. Dashed lines are shown as a guide to the eye to show the characteristic
frequency of the synchronized clusters that appear as horizontal lines. (C) Synchronized clusters are not observed in control experiments with
randomized versions of the connectome.

averaged Fourier transforms have sharp peaks, that allows us to

define the clusters � by their characteristic frequency (mean ±

standard deviation): �1 = 0.165 ± 0.002 Hz (green, bottom),

�2 = 0.332 ± 0.003 Hz (blue, middle) and �3 = 0.496 ±

0.004 Hz (red, top; see also Supplementary Tables S1A–C and

Supplementary Figures S2A–C for a complete list of neurons in

each cluster, their individual signals and corresponding FTs).

Notice that �2 and �3 are approximately integer multiples

of �1. While the origin of such apparent harmonic relation

remains unclear, having only three frequencies a random

coincidence cannot be excluded. Figure 2B shows in detail the

three synchronized clusters when the neurons are sorted from

lower to higher characteristic frequency. We use dashed lines

as a guide to the eye to show the characteristic frequencies

� of the synchronized clusters that appear as horizontal lines.

At this point it is worth stressing that the emergence of

synchronized clusters does not seem to depend on the particular

topography where the robot moves. This is due to the fact

that the sensory neurons associated with avoidance behavior

are only stimulated when the distance sensor measures a

distance below the threshold, and given that then the robot

responds by backing up, the time interval in which the sensory

neurons are stimulated is usually very short. As a consequence,

the global neural dynamics quickly converges again to a

global attractor.

Figure 2B strongly resembles the formation of synchronized

clusters in Kuramoto oscillators with a broad distribution of

natural frequencies (Manrubia et al., 2004). In this case however,

the nodes have identical dynamics, as all the neurons have

the same firing threshold, and the heterogeneity arises from

the complex network of interactions given by the C. elegans

connectome. A direct comparison of the list of sensory inputs

and kinetic outputs with the neurons in the synchronized

clusters reveals that it is not a trivial effect of direct stimulation

(see Supplementary data section in the Supplementary material).

To test that the emergence of synchronized clusters is not

an epiphenomenon, we analyzed the dynamics in randomized

versions of the connectome where the degree distribution

and weight distributions are conserved. That is, the random

networks have exactly the same in and out degree and

weight distributions randomly assigned to the nodes and

links (Milo et al., 2002; Azulay et al., 2016). In all cases we

found that the emergent actions of the robot are lost (see

Supplementary Video S2), and no synchronized clusters are

observed (see Figure 2C).

Kato et al. (2015) used calcium imaging techniques to record

neural activity with single cell resolution in all the head ganglia

and some ventral cord motor neurons. In these experiments

∼ 100 neurons were scanned three times per second in 20

min long runs, generating high dimensional datasets. Using
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principal component analysis (Jolliffe and Cadima, 2016) for

dimensional reduction they were able to cluster neurons with

correlated signals. In particular, they produced neuron weight

vectors (PCs), showing that clusters with opposite signs in their

PCs oscillate in antiphase, and according to their weight vector

sign are correlated with either forward or backward behavior of

the worm.

Following the same procedure we also performed a similar

principal component analysis. As in Kato et al. (2015), each of

the neural time series was normalized using the mean value (s)

and the standard deviation (σs):

s′(t) = (s(t)− s(t))/σs(t) (2)

so that the new time series have now zero mean and unit

standard deviation. Then, principal components were calculated

based on the covariance structure of the normalized data (Kato

et al., 2015; Jolliffe and Cadima, 2016), producing neuron weight

vectors (PCs) for the neural time series of all the neurons in the

robot. This allowed us to advance further in the quantitative

characterization of the frequency synchronized clusters. In

Figure 3 (top) we plot the characteristic frequencies the three

frequency synchronized clusters �1 (green), �2 (blue), and

�3 (red) already presented in Figure 2B. The neurons have

now been sorted according to their first principal component

weight (PC1; Figure 3 (bottom), i.e., the leftmost neurons have

the highest positive value, while the rightmost have the lowest

negative PC1. Note that all the synchronized clusters involve

neurons including both positive and negative PC1 values. The

cluster with lower frequency, �1, presents a broad distribution

of neuron weights. For higher frequencies the neurons present

a stronger segregation toward extreme PC1 values. In fact, both

�2 and �3 are clearly divided into two smaller subclusters: one

with only positive and another with only negative PC1 values.

This segregation reflects differences in the firing times of the

neurons. In each cluster the firing times of the neurons are

proximal. In contrast, when one compares the signals of neurons

between clusters a shift in their relative phase is observed. The

largest shift occurs for extreme PC values, when the neurons in

the different subclusters of the same frequency oscillate mostly

in antiphase (see Supplementary Figure S8).

Nested neuronal dynamics

We analyze now how the collective oscillations in the

frequency synchronized clusters are also coupled between

themselves. In Figure 2A we show the average Fourier

transforms of neurons in three frequency synchronized clusters.

Note that the average FT of the cluster with the lowest

frequency,�1, also has two smaller peaks, that coincide with the

characteristic frequency of the other clusters: �2 and �3. As a

guide to the eye we indicate with dashed lines these frequencies

in the three panels. This reveals a coupling between the different

frequency synchronized clusters.

FIGURE 3

Frequency synchronization sorted according to principal
component analysis. Average Fourier transforms of neurons in
three synchronized clusters (top) for a full 15 min long
experiment sorted according to their first principal component
PC1 (bottom). The analysis reveals the presence of subclusters
with opposite signs in their principal component weight.

In order to quantitatively study the coupling between

oscillations at different frequencies, we analyzed the signals of

neurons in a given cluster when the signal of a neuron in

another cluster with a lower characteristic frequency reaches

its maximum (Jensen and Colgin, 2007). If there is a coupling

between the oscillations, then we expect that the signal of the

neuron with highest frequency could present small fluctuations

around the same mean value every time the maximum with

lowest frequency is reached. On the contrary, if there is no

coupling, then the signal is expected to vary randomly. In

Figure 4 we plot the signals of neurons in �2 and �3 when

a neuron selected from the cluster with lower characteristic

frequency �1 reaches its maximum. In particular, we focuse our

attention in the neurons with the highest positive PC1 weight

in each of the synchronized clusters. Figures 4A, B show that

these neurons are coupled, as the same mean value persists in

extended time intervals. Also, to visualize this result we plot in

Figure 4E the signals of these neurons in a fixed time interval,

using vertical dashed lines as a guide to the eye. The figure

clearly shows a nested hierarchical relation between oscillations

at different frequencies. In Figures 4C, D we plot the signals of

the neurons that have the lowest negative PC1 weights. In sharp

contrast to neurons with positive weights, the signals are not

correlated, and fluctuate throughout the whole experiment.
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FIGURE 4

Nested neuronal dynamics. We plot the signals of neurons in clusters �2 and �3 when a neuron selected from cluster �1 reaches its maximum:
(A) VA8 signal (red) from cluster �3 and (B) VA11 (blue) from cluster �2, when DA7 from cluster �1 reaches its maximum. Coupling between
neurons in these clusters appears as regions characterized by signals with small fluctuations around a mean value. In contrast, when there is no
coupling the signals present large fluctuations, as shown for example for the signals of (C) VD7 (red) from cluster �3 and (D) VD6 (blue) from
cluster �2, when AVAL from cluster �1 reaches its maximum. (E) A 60 s time interval from the data presented in (A, B) shows the hierarchical
relation. The signals correspond to VA8 (red), VA11 (blue) and DA7 (green). The vertical dashed lines are a guide to the eye showing the time
when DA7 reaches its maximum.

Neural dynamics and robot actions

In this section we analyze the correlation between the

emergent neural dynamics and the actions of the robot. The

robotic model is well suited for this study, since it allows for

recording of neural dynamics while simultaneously registering

actions. To determine if there was a correlation between a given

action and the activity of specific neurons, we contrasted the

time series of the neural dynamics with the time series of robot

actions. First, we registered all the action events in a 20 min

long experiment. Then, we analyzed which actions the robot was

executing when a given neuron had fired, that is, when its value

was reset to zero. Finally, we contrasted the fractions of events in

this two time series to see if there were significant variations.

In the experiments the robot moves mostly forward and

backward, while the turnings are usually short events where the

robot only changes its direction, so we focus mainly on forward

and backward events. These events correspond to the network

response to the stimulation of sensory neurons (WormAtlas,

2021). As observed in the worm, the stimulation of chemotaxis

neurons promotes sustained roaming, and makes the robot

to move forward, while the stimulation of sensory neurons

that promote avoidance makes the robot to move backwards

(Busbice, 2014a,b). At this point it is worth stressing that these

action responses are emergent and not trivial, in the sense that

only a small fraction of all the dynamical units is stimulated,

and thus the responses correspond to a modulation of the

global dynamics.We found that the neurons in the synchronized

clusters with the largest positive PC1 weights promote forward

events, while the neurons with the lowest negative weights

promote backward events. Figure 5 shows the fraction of events

registered when the neurons with the largest positive and lowest

negative PC1 weights in the synchronized clusters fired (see also

Supplementary Table S2). The colored bars correspond to: �1

(green), �2 (blue), and �3 (red). In each figure, the results are

contrasted with the fractions of events for the whole experiment

(gray bars). Note that a significant increase in forward events

is observed when the neurons with the largest positive PC1

fire (first columns in Figures 5A, C, E), while a reduction is

observed in the neurons with the lowest negative PC1 (first

columns in Figures 5B, D, F). At the same time, an increase in

backward events is observed when neurons with negative PCs

fire (dashed columns in Figures 5B, D, F), while a decrease in

the fraction of backward events is observed in neurons with

positive weights (dashed columns in Figures 5A, C, E). These

results reveals the role that the segregation of the neurons in

the synchronized clusters plays in promoting different actions to

be executed by the robot. Interestingly, in C. elegans, Kato et al.

(2015) noted that neurons that promote opposing behaviors,

such as backward and forward crawling, also have opposing

signs of their PC1 weights.

4. Discussion

The nematode C. elegans is a model organism that allows for

an integrated viewwhere the continuous interaction between the

nervous system, the body and the environment can be studied as

a coupled dynamical system. In two seminal works Kato et al.

(2015) and Kaplan et al. (2020) showed that organization of
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FIGURE 5

Correlation of neural dynamics with robot actions. Fraction of
forward and backward events registered when the selected
neurons fired. (A) DA7, (C) VA11, and (E) VA8 correspond to the
neurons with the largest positive PC1 in the synchronized
clusters �1, �2 and �3, while (B) VD7, (D) VD6, and (F) AVAL
correspond to the neurons with the lowest negative PC1 in
these clusters. The gray bars correspond to the fraction of
forward and backward events in a 20 min long experiment. A
chi-square test (statistically significant, ***p-value < 0.00001)
show that the opposing e�ects of all these neurons in the
actions of the robot are significant.

behavior in the worm is encoded in a hierarchical structure of

globally distributed, continuous, and low-dimensional neural

dynamics. These results led to the conclusion that the behavioral

states are encoded in the brain as an internal representation

that emerges from the neurons and their circuit interactions.

Our analysis of the neural dynamics and its correlation with

the actions in a robotic model based on the connectome of the

nematode C. elegans allowed us to test this hypothesis, at least

as a first approximation. At this point it is worth stressing that

our goal was not to establish a one-to-one comparison between

the robotic vehicle and the worm. In fact, we chose to build

robots following the idea proposed by Busbice due to its stripped

down design, that allows for a complex system approach, where

the interaction of extremely simple dynamical units through

the complex network defined by the connectome allows for the

emergence of a global dynamics. With this approach we have

shown a number of emergent characteristics which are also

observed in the worm, such as the emergence of synchronized

clusters of neural activity that can be correlated with actions.

Surprisingly, we also observed the emergence of a nested

hierarchical structure. In the worm, Kaplan et al. (2020)

showed that the presence of a hierarchical structure in the

neural dynamics allows for the coordination of behaviors across

different time scales. This include head movements, body

undulations, and also forward and reverse bouts. It is worth

stressing that the simple design of the robot we use does not

allow for the execution of some of this behaviors. Nevertheless,

Kaplan et al. (2020) observed that the hierarchical structure

persisted even when the animals were immobilized, concluding

that it is an intrinsic property that emerges from the neurons

and their circuit interactions. The results obtained with the robot

highlight this conclusion, i. e. that the presence of a nested

dynamics is an emergent property of the interactions of the

neurons through the connectome.

Summarizing, we have shown that a number of

characteristics observed in the neural dynamics of C. elegans

can be attributed to the complex network structure of the

connectome. We expect that some of our conclusions can

be extended to other connectomes, as a number of common

principles have been identified in the comparison of the

topological layout of nervous systems across species (Van den

Heuvel et al., 2016). At the same time, differences in the results

can shed light in understanding the effects of variations that are

species specific. As larger neural networks and ever increasing

detail on their dynamics are registered, the complexity and high

dimensionality of the data will set new challenges for analysis

and interpretation. For example the Drosophila hemibrain

connectome involves ∼ 25,000 neurons, including regions

involved in functions such as associative learning, fly navigation

and sleep (Scheffer et al., 2020). Simple robotic models as the

one we analyzed here can provide a useful tool to test behavioral

hypothesis relating neural structure and function.
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