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Scale-free correlations in the dynamics of a small (N ∼ 10000) cortical network
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The advent of novel optogenetics technology allows the recording of brain activity with a resolution never
seen before. The characterization of these very large data sets offers new challenges as well as unique theory-
testing opportunities. Here we discuss whether the spatial and temporal correlations of the collective activity of
thousands of neurons are tangled as predicted by the theory of critical phenomena. The analysis shows that both
the correlation length ξ and the correlation time τ scale as predicted as a function of the system size. With some
peculiarities that we discuss, the analysis uncovers evidence consistent with the view that the large-scale brain
cortical dynamics corresponds to critical phenomena.
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I. INTRODUCTION

The study of correlation functions is central to under-
standing critical phenomena throughout disciplines [1–4]. The
correlations of an infinitely large system poised near a critical
point will vanish at infinity as a power law, i.e. rather slowly.
In other words, the entire system seems to be correlated.
Conversely, away from criticality, correlations decay expo-
nentially fast following closely the (typically short-range)
interactions. If the system is critical but not infinite, the power
law is altered by the finite system size, but there is a char-
acteristic dependence of the correlations on system size at
criticality, which can be exploited [2] to establish whether the
system exhibits critical correlations. This finite-size behavior
has also been used as a proxy to determine if the brain exhibits
critical dynamics, including attempts at very large scale [5–7]
or on a relatively subsampled regime [8,9].

Time correlations, although less studied in the biological
case, also have a characteristic behavior at criticality, known
as dynamic scaling. Dynamic scaling means that space and
time correlations are intertwined. A basic statement of dy-
namic scaling is that the correlation temporal scale (of a
collective quantity) grows as a power law of the correlation
spatial scale.

In these notes we make an exhaustive exploration of cor-
relations, both spatial and temporal, as a function of size,
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analyzing a large collection of neurons recorded from the
visual cortex of mice using optogenetic techniques. Our anal-
ysis computes correlations inside boxes of increasing size
W , based on our recent demonstration that this approach
is equivalent to changing the system size L [10]. The ro-
bustness of spatial correlations was tested by using three
different methods: two for the connected correlation function
and one for the density correlation function. We similarly
study time correlations in boxes of different sizes, as well as
the relationship between characteristic correlation lengths and
times.

The paper is organized as follows: First, the data are de-
scribed. After that, a subset of data is used to introduce the
correlation methods. Next, we describe the main results start-
ing with the finite-size dependence of the spatial correlations
and followed by the temporal correlations. The two results are
combined to assess the presence of dynamic scaling, i.e., the
dependence of temporal fluctuations on the correlation length.
Finally, the correlation matrix is analyzed in terms of the scale
invariance of its eigenvalue spectra. The paper closes with
a discussion of the caveats and limitations as well as some
future work.

II. METHODS

A. Experimental data

The data analyzed here are freely available [11] and fully
described by Stringer et al. [12]. These authors have pro-
vided the activity time series of a set of approximately 10 000
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FIG. 1. Schematics of the experimental data. (a) Sketch of the
experimental setup: a head-fixed mouse is able to run on a spherical
treadmill while the brain activity is monitored via multiplane Ca2+

optogenetic imaging. (b) Examples of the S(t ) signal time series.
(c) Typical probability distribution of the S(t ) signal time series for
nine neurons, after normalization by its mean (μ). (d) Examples of
point process extracted from the S(t ) signal.

neurons in the visual cortex of several mice. Animals were
awake, head fixed but able to run freely over an air-floating
ball, and had been implanted with 3- to 4-mm cranial windows
centered over their visual cortex. Data were recorded in 11
planes of a region of ∼1 mm2 of the visual cortex, while the
mouse was not receiving any particular visual stimulation (it
was watching a dark screen). Neuronal activity was obtained
optically, and the data provided include the position (x, y, z)
of each neuron, and its activity sampled at a rate of 2.5 or
3 Hz during 21 055 frames. Recordings were performed using
multiplane acquisition controlled by a resonance scanner, with
11 planes spaced 35 µm apart in depth. The activity data
analyzed here correspond to the deconvolution of the raw
neuronal Ca2+ signal (called the “Fsp signal” in Ref. [12]),
hereafter denoted as S(t ), giving spike counts per time bin.
These data were obtained by the authors of Ref. [12] from
the Ca2+ images using SUITE2P [13], which performs motion
correction, cell detection, and neuropil correction. After that,
the online active set method to infer spikes (OASIS) spike
deconvolution algorithm was applied [14,15]. Full details on
the imaging methods and animal protocols can be found in
Ref. [12].

We analyze correlations in neuronal activity both in the
S(t ) signal and in a derived point process (PP), constructed
by thresholding the S(t ) time series [Eq. (2) below]. Figure 1
shows a schematic of the animal setup [Fig. 1(a)] and ex-
amples of the signal S(t ) [Fig. 1(b)] and the derived point
processes [Fig. 1(d)]. Illustrative examples of the distribution
of S(t ) are given in Fig. 1(c). The analysis is done on nine
data sets from seven mice, which for simplicity we labeled
consecutively [16]. The field of view in each of the 11 planes
spans a range of x ∈ [4, 1010] µm and y ∈ [4, 1012] µm. The
neurons recorded are located, from the more superficial to the
deeper ones, at planes with coordinates z = 70, 105, 140, 175,
210, 245, 280, 315, 350, 385, and 420 µm, for planes 1–11,
respectively.

B. Correlation analysis

The exploration of the correlation properties is aimed at
establishing up to what extent the spatial and temporal cor-
relations are entangled, as in other systems exhibiting critical
dynamics. For that purpose suitable correlation functions [4]
in space and time need to be defined and computed.

a. Spatial connected correlation function. At the risk of
being redundant, let us remark that the connected correlation
function (CCF) has different properties than the (more usual)
Pearson correlation function computed between two or more
variables. Formally, the (space-averaged) CCF is

C(r) = 1

c0

∑
i, j uiu jδ(r − ri j )∑

i, j δ(r − ri j )
, (1)

where ri j is the Euclidean distance between the given pair
of neurons, δ is a Dirac delta selecting the pairs separated
by a distance r, ui(t ) = Si(t ) − s̄(t ), s̄(t ) = 1

N

∑N
i Si(t ), and

Si(t ) is the activity of neuron i at time t . Notice that the
mean s̄(t ) (often, in this context, called population mean) is
the instantaneous spatial mean, and is subtracted from each
signal at each time step. In that way, any confound common
to the two (or more) signals is canceled out. For instance, an
external drive to the entire neuronal population under study
can increase Pearson correlations for all neuron pairs, but will
not affect the value of C(r) in Eq. (1) (an illustrative example
is shown in Fig. 11). Thus, C(r) in Eq. (1) describes the decay
of correlations in space between the remaining fluctuations
around the mean, often called residual correlations. (Refer-
ence [4] discusses the properties of the CCF at length, as well
as the algorithms to compute it.)

b. Spatial point process. The time series S(t ) is extracted
via deconvolution of the Ca2+ fluorescence recordings. It
represents the spike count per time bin [i.e., S(t ) � 0] being
recorded at that particular area of the field of view, within
a given sampling interval. For completeness, here we also
consider a transformation of S(t ) into a point process (also
called a point field). The idea is to determine possible effects
of different signal-to-noise ratios by selecting only the most
significant neuronal events to compute correlations. In short,
we define

Pi(t ) =
{

0 if Si(t ) = 0
1 if Si(t ) > 0,

(2)

i.e., P(t ) is 1 if the neuron has fired during the observation
window, and 0 otherwise. We compute the CCF using the
same definition [Eq. (1)] with P(t ) in place of S(t ), which we
denote by Cp(r).

c. Spatial counting statistics. In addition to the previous
two ways of measuring correlations, we consider a counting
statistic approach. We calculate at each time step t the density
G(r) of spiking neurons (i.e., points) falling inside a thin
shell of radius r centered on a spiking neuron. The definition
of G(r) is closely related to the radial distribution function
commonly used to characterize the structure of liquids and
solids. After proper normalization, this counting statistic is
equivalent to Cp(r) since both are defined for the same point
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FIG. 2. Top: Examples of correlation and density functions as a function of distance for plane 4 of mouse 4c and different box sizes. Bottom:
The correlation length extracted for all planes from the three approaches: connected correlation function CCFr (left), connected correlation
function computed from the point process CCFp (center), and density function G(r) (right). Results are an average over nine rotations of the
box grid relative to the field of view.

process. G(r) is computed according to

G(r) = ρN

ρa(t )Na(t )

∑
i, j

Pi(t )Pj (t )δ(r − ri j )

δ(r − ri j )
, (3)

where N and ρ are respectively the total number and average
density of neurons, and Na(t ) and ρa(t ) the same quantities for
active neurons at time t , i.e., such that Pi(t ) = 1. The over-
line indicates average over all time frames. In other words,
G(r) is the ratio of active pairs over total pairs at distance r,
normalized to obtain 1 when both populations correspond to
uncorrelated Poisson processes.

d. Box scaling and correlation length. The correlation
length is an indicative measure of the spatial extent of cor-
relations. There are several possible procedures to obtain in
practice a correlation length from an experimental space cor-
relation function, but the important point is that when trying
to establish whether correlations are scale-free one needs to
study the dependence of the experimental correlation scale
with system size, or with observation scale [10]. In our case it
is clearly impossible to consider systems of different size, so
we use the box-scaling procedure, measuring the correlation
functions within a spatial observation window, or box, of
linear size W . In practice, we computed Eq. (1), considering
only neurons within a square box of linear size W , and time
averaged over all time frames to decrease statistical error:

CW
μ (r) = 1

c0μ

∑
i, j∈Wμ

uiu jδ(r − ri j )∑
i, j∈Wμ

δ(r − ri j )
, (4)

where the sum includes all pairs of neurons that belong to the
μ-th box of the space grid of size W , and ui is the fluctuation
of neuron i signal with respect to the instantaneous spatial
average activity in the box, Wμ. After that, we averaged over
as many nonoverlapping boxes as possible. A similar proce-
dure is performed for the spatial counting statistics [Eq. (3)].

We use the notation C(r,W ), Cp(r,W ), G(r,W ) to indicate
the correlation functions restricted to a box. In this case it
is convenient to define, for the S(t ) signal, a length ξ0(W )
such that C(ξ0,W ) = 0, because ξ0(W ) will grow linearly
with W if the system is scale-free [3,4,10]. Similarly, for the
P(t ) signal we use Cp(ξ0p,W ) = 0 and G(ξ0G,W ) = 1 for the
spatial counting case.

Figure 2 shows examples of the three approaches (for
mouse 4c). The top row illustrates the functions (for a single
plane) from which the ξ0 are extracted. The top left panel
corresponds to the connected correlation function vs distance
r for different box sizes computed from the S(t ) signals,
where the arrow denotes ξ0 for W = 300, as an example. The
top center panel shows the connected correlation function for
the point process, and the top right panel the results for the
density function G(r). Results from all planes in this mouse
are condensed in the bottom row. Shown are the scaling of the
correlation length ξ0 with box size W for each of the 11 planes
using each of the three approaches. To prevent a possible
bias given by the inhomogeneous distribution of the neurons’
spatial locations the boxing of the sample was performed over
nine different rotations of the box grid relative to the field of
view.

e. Time correlations. Time correlation functions are a
measure of how correlations in a time series decrease as one
compares two signals measured at increasing time intervals.
To assess how time and space correlations are intertwined, one
studies the time correlations of spatially extended quantities.
We define

SW
μ (t ) =

∑
i∈Wμ

Si(t ), (5)

where the sum includes all neurons that belong to the μ-th box
of the space grid of size W . The connected time correlation is
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FIG. 3. Correlation time analysis. (a) Examples of the time corre-
lation functions computed from the activity in on plane as a function
of box size W . (b) Correlation time τ as a function of box size W
for all planes (data from mouse 4c, the functions in (a) correspond to
plane 5).

then

C(c)(t,W ) = 1

NW

∑
μ

1

T − t

T −t∑
t ′=0

δSW
μ (t ′)δSW

μ (t ′ + t ), (6)

where δSW
μ (t ) = SW

μ (t ) − (1/T )
∑T

t ′=0 SW
μ (t ′) and NW is the

number of boxes of side W .
From the decay of each time correlation function one

can extract a characteristic time scale, or correlation time
τ . Rather than using a threshold, we found that the spectral
relaxation time of Eq. (6) is less prone to noisy fluctuations. It
is given as the solution of∫ ∞

0

dt

t

C(c)(t )

C(c)(t = 0)
sin

(
t

τ

)
= π

4
(7)

(see Appendix A and Ref. [17] for the rationale behind this
definition).

An example of the correlation functions C(c)(t,W ) and
associated correlation times for one mouse is shown in Fig. 3.

f. Computer code. The code used for the computation of
the quantities defined above can be obtained from GitHub [18]
or Zenodo [19].

III. RESULTS

a. Spatial correlations. From the three measures of cor-
relation it follows that the more correlated a pair of neurons
is, the closer in space the members of the pair tend to be.
This observation is not entirely trivial, since the fact that
neurons can develop very long axons (up to several hundred

times the size of the neuron’s soma) makes it possible that
the interaction develops with many nonlocal contacts in a way
that allows direct transmission of information to extremely far
away neurons, making the Euclidean distance irrelevant. On
the other hand, it is clear that developing a longer axon carries
a larger energy cost, so that the Euclidean distance should play
a role, even if indirect, after all. In fact the three correlations
C(r), Cp(r), and G(r) show clearly that this is the case. Ad-
ditional support for distance decay of correlations is obtained
through the reverse procedure of picking the pairs of neurons
within a range of a given value of correlation and computing
their average distance. The results of these computations are
fully consistent with the correlations already commented (see
examples of these calculations in the Appendixes). Thus, each
of the strategies used here confirms that there is a distance
dependence of the correlations. This is in contrast with the
interpretation of the Pearson pair correlation results for the
same data given in Ref. [12].

We proceed now to measure the spatial scale of the cor-
relation decay, i.e., the correlation length (from now on we
focus on C(r) since the other correlation functions yield
similar results). We compute C(r;W ) and ξ0(W ), given by
C(ξ0(W );W ) = 0, on boxes of side W ranging from 300 µm to
1 mm for each plane of each mouse (ξ0 vs W averaged over all
planes is shown for all mice in Fig. 4). We find that ξ0 grows
linearly with W : this observation is crucial, because it implies
that the system is scale-free [3,4], i.e., that the correlation
length is larger than the system size, with the consequence
that the scale for decorrelation is given by the system size, or
by the observation window W . If there was a correlation scale
smaller than the system size one would have logarithmic,
rather than linear, growth of ξ0, which is not what we observe
(Fig. 4, inset).

At this point, we should consider potential artifacts, such as
head motion and changing levels of animal arousal, which are
known to confound the calculation of the usual pairwise Pear-
son correlations. In contrast, we are able to demonstrate that
the types of correlations reported in this work are completely
immune to these artifacts. The reason is related to the fact that
the connected correlation function used here is computed from
the fluctuations around the instantaneous spatial average of
activity [Eq. (1)], thus eliminating common drives produced,
for example, by motion-induced optical artifacts or by slow
trends in excitability or by behavioral changes. We illustrate
the robustness of these calculations in Appendix D by con-
ducting a series of numerical simulations, using the neuronal
network model of Ref. [20] (a network of cellular automaton
neurons defined in Ref. [7], running on a two-dimensional
lattice). There we show that signal noise (i.e., mimicking
motion), time binning, or changing levels of arousal do not
change significantly the behavior of the scaling of the corre-
lation length with window size, providing confidence on the
robustness of the present results.

b. Time correlations. In physical systems near critical-
ity, the dynamical behavior displays specific characteristics
alongside the scale-free properties of the static correlations.
To assess to what extent the phenomenology of neuronal
systems can be described with a formalism similar to that
of equilibrium critical systems, we study time correlations of
single neurons and of the collective signal SW (t ) in the same
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FIG. 4. Size dependence of correlation length and correlation time. (a) Characteristic correlation length ξ0 vs box size W , averaged over
all planes for each mouse. Windows smaller than W ≈ 300 µm yield values of ξ0 less than the soma size and are therefore excluded. The
curves are compatible with a linear growth of ξ0 with W . This is evidence that the correlations of neuronal activity fluctuations are scale-free.
The inset shows, on a semilogarithmic plot the same data as in the main panel, exhibiting a steeper increase of ξ0 for larger W , indicative of
a nonlogarithmic relation. (b) Correlation time τ for the SW (t ) vs box size W for each mouse. Correlation functions were averaged over all
boxes in the grid and over nine rotations of the grid relative to the field of view, then the correlation time was averaged over all planes. Inset:
Correlation time of a single neuron τs vs its own mean activity (spikes per second). Plotted is τs averaged in the corresponding activity bin of
width 10 s−1, using all neurons from all mice and planes.

boxes we used for the space correlations. For each mouse and
plane we computed C(c)(W, t ) and extracted a correlation time
as described in Methods. We have observed that the correla-
tion time of a single neuron, τs, which is the relaxation time
computed from Eq. (6) using single-neuron time series, grows
with the neuron’s activity (i.e., firing rate per unit time) [see
Fig. 4(b), inset]. This effect is an artifact of the deconvolution
procedure. Since the aim of the computation in boxes is to
gauge how τ is affected by the collective behavior of the
interacting neurons, we have subtracted τs from the values of
correlation time obtained from the box signal (this was done
plane by plane). All correlation times reported are subject to
this subtraction.

The correlation time (averaged over planes) is shown in
Fig. 4(b). Since we have shown that the correlation length is
proportional to W [Fig. 4(a)], this is equivalent to plotting
τ vs correlation length apart from an irrelevant numerical
factor. The plot shows that τ grows with correlation length
as expected in a critical system. Unlike ξo vs W , the growth
of τ is expected to be a (superlinear) power law, τ ∼ W z,
with z called the dynamic critical exponent. Here we observe
a very good power law in some cases (like mice 6 and 7,
with z ≈ 1.3), but in other cases the curves deviate down-
wards from the power law at high W . The details of the τ

vs W curves remain to be better understood, in particular

given the possibility that the critical power law is altered by
arousal changes typical of this experimental model data set,
which may be causing a dynamical meandering around the
critical point similar to what has been described in earlier
experiments [21,22].

Another characteristic of critical dynamics is the scaling
of the correlation function itself. On changing the observa-
tion scale (in our case, W ) one expects that, together with
the characteristic time, the shape of the correlation changes.
However, if the observation scale is changed so that the ratio
of the observation scale to the correlation length is fixed,
dynamic scaling states that the shape of the (normalized)
correlation decay will stay the same, and only the decay
scale (i.e., τ ) should change (in other words, when plotted
against t/τ all correlation functions should look the same).
Since we have argued that, the system being scale-free, the
effective correlation length is proportional to W , the time
correlations at different box sizes are effectively computed at
fixed observation-to-correlation scale ratio, and they should
scale with t/τ . The results in Fig. 5 show that this is actually
the case, although in some other cases the collapse of the
functions is less satisfactory (see the Appendixes).

c. Scale invariance of eigenvalues. Systems which, like
the present one, exhibit scale-free correlations are expected
to show similar invariance also in the eigenvalues of their

034302-5



SABRINA CAMARGO et al. PHYSICAL REVIEW E 108, 034302 (2023)

0 5 10 15
t [s]

0

0.25

0.5

0.75

1
C

(t
,W

)
200

300

400

500

600

700

800

900

1000

0 5 10 15
t/τ

0

0.25

0.5

0.75

1

C
(t

,W
)

W(a)

(b)

FIG. 5. Dynamic scaling of time correlations. (a) Normal-
ized time correlation function, C(t,W ) = C (c)(t,W )/C (c)(0,W ) [see
Eq. (6)] vs time for different observation boxes (computed averaging
over all boxes and nine rotations as in Figs. 2 and 3). (b) Same
data plotted vs the scaling variable t/τ . The collapse shows that
all correlations decay with the same shape, with only the timescale
changing for different W . Data are for mouse 7, plane 5.

covariance matrix. This is worth discussing in this context,
because it is frequent in the related literature to find remarks
on the fact that the first two or three principal components
suffice to explain more than 90% of the variance. It may well
be that the common explanation behind such observations is
a mathematical truism, that necessarily follows from the fact
that the system is critical. Consider Fig. 6, which depicts the
full correlation matrix for all planes of one mouse combined
together with the eigenvalues λi of several subsets of neu-
rons of different sizes. The eigenvalues are sorted and plotted
against their rank in a double logarithmic plot that makes it
clear that the magnitude of the eigenvalues decreases as a
(negative) power of its rank up to a rank of about half the
matrix size. The sum of the first few terms of a power-law
series make up for a sizable fraction of the total sum, so
that a scale-free distribution of the covariance eigenvalues can
explain the common observation that the first few principal
components explain most of the variance of the cortical pop-
ulation’ activity. Interestingly, the λ vs rank curves collapse
under a single scaling curve when plotted against the relative
rank [Fig. 6(b)]. This finite-size scaling property can be seen
as another manifestation of the lack of an intrinsic scale for
correlations: the magnitude of the largest eigenvalue is given
by the system size. Also, the other apparent scale, namely, the
rank at which the power law is cut off, is also set by system
size.

FIG. 6. Finite-size scaling of the covariance eigenvalues.
(a) Schematic view of the covariance matrix of all neurons from
mouse 7, including all 11 planes. The black dots denote the Pearson
correlation pairs whose values are greater than 1/2. The axis labels
indicate the planes (from 1 to 11) to which the neurons belong. To
help visualize each plane, its boundaries are identified by light blue
continuous lines. (b) Eigenvalues vs rank (double logarithmic) com-
puted from subsets of the covariance matrix in (a). The eigenvalues
were computed from square subsets of the covariance matrix, of in-
creasing size. To that effect, the covariance data of neurons belonging
to the first five consecutive planes were combined. The largest subset
considered [5295 neurons, denoted by the dashed red line in (a)] is
chosen to stay far from the degenerate case where there are more
variables that time points, leading to a spurious linear dependence
of the set of variables (a total of 10 473 time points are available
for this mouse). Notice that the raw eigenvalue vs rank curves (in-
set) can be successfully scaled on a single curve by plotting them
against the relative rank (rank/matrix size), as shown in the main
plot.

IV. CONCLUSIONS

We have analyzed the space and time correlations of a pop-
ulation of about ten thousand neurons in a region of the mouse
visual cortex. We have observed clear indication that pairs of
neurons tend to decorrelate the further apart in space they are.
That the Euclidean distance is a relevant variable affecting the
degree of correlation comes as a conclusion of four different
ways of measuring correlations in space. Moreover, we have
seen that the characteristic spatial scale of correlation decay
scales linearly with the (spatial) observation window W . This
is evidence that the correlation decay is scale-free: the only
spatial scale is that which is imposed on the system from the
outside, i.e., the size of the observation box, or eventually the
size of the system itself. A scale-free decay is long range, in
the sense that it is described by a power law rather than by an
exponential. So, although correlations do decay with distance,
they do so rather slowly. This evidence confirms previous
studies finding scale-free correlations, thus suggesting that the
resting brain is at or near a critical point.

In this study we have computed the concomitant time cor-
relations, using the same idea of a varying observation scale.
In this way we have explored how correlations in time and
space are related. We found that the correlation time τ grows
for larger observation scales, much like the spatial correlation
scale. The relation between τ and W is not linear. According
to dynamic scaling, it is expected to be a power law, which we
find for some mice. The details of this curve and the reason
for its departure from a power law in some cases remain to
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FIG. 7. Average pair distance as a function of the Pearson corre-
lation for all mice and planes.

be elucidated, but the important point here is that correlation
length and time are closely related, and the fact that neuron
activity is strongly correlated is influencing the collective
dynamics, similar to what happens in thermodynamic critical
systems.

We have also found that time correlations at different W
scale with t/τ , i.e., that the decay is identical apart from a
time rescaling. This is in agreement with the expectations of
dynamic scaling, but only if the correlation and observation
lengths scale together. This is further evidence for scale-free
correlations, because it means that the correlation scale has
changed on changing the observation box in absence of any
other alteration of the system, which can only happen if the
only correlation scale is the observation scale; i.e., the system
is scale-free.

The uncovered behavior of the time correlations may be
relevant to provide an alternative mechanistic explanation for
the heterogeneity of the so-called temporal receptive fields of
integration, which is established by examining the autocor-
relation function of spike counts at rest [23,24]. The current
interpretation of slow autocorrelation decay in a given neuron
is that such a neuron is involved in integrating information
across long periods of time and vice versa. This view has
been used to support the idea that in the cortex there is a
hierarchy of temporal receptive fields [25], including areas
with long decay times which correspond to cognitive tasks
requiring long integration of information across time, such as
decision making and working memory [26]. Since dynamic
scaling specifically predicts slower decay for larger cortical
networks at criticality, it would be interesting to explore if
and/or how this hierarchy corresponds simply to a hierarchy
of sizes of the corresponding networks.

Finally, we have shown that finite-size scaling also ap-
plies to the eigenvalues of the covariance matrix, a fact
that is another manifestation of scale invariance in corre-
lations, and that may explain the frequent observation that
a few principal components account for most of the vari-
ance in cortical networks data. In summary, the combined
evidence of spatial correlations, temporal correlations, and
the eigenvalue analysis builds a stronger case in support of
the view that the ongoing brain dynamics is critical or near
critical.
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FIG. 8. Time correlation function [Eq. (6)] vs time for different
observation boxes. In this example the dynamic scaling of C(t,W )
is only apparent for small values of t , but not for values larger than
1–2 s. (a) (same format as for Fig. 5) The unnormalized C(t ) and
(b) the same data plotted vs the scaling variable t/τ . Data are for
mouse 6, plane 2.
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APPENDIX A: COMPUTATION OF THE
CORRELATION TIME

To compute the correlation time we use the defini-
tion obtained from ρ̃(ω), the Fourier transform of ρ(t ) =
C(t )/C(t = 0). Normalization of ρ(t ) implies that 1 =
ρ(0) = ∫ ∞

−∞
dω
2π

ρ̃(ω). Then a characteristic frequency ω0 (and
a characteristic time τ0 = 1/ω0) can be defined such that half
of the spectrum of ρ̃(ω) is contained in ω ∈ [−ω0, ω0] [17],
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FIG. 9. A slow decay does not affect the scaling of the correlation length by using the CCF. (a) Example of the signal used to compute
C(r) for a single random neuron at T = TC . Top, spike time signal; middle, spikes convolved with an exponentially decaying function with
characteristic time τ0 = 5; bottom, convolved spikes plus a random noise of amplitude 0.2. (b) Correlation length ξ0 as a function of window
size for subcritical (T = 0.33), critical (T = 0.318), and supercritical (T = 0.31) states, using the spike time signal. (c) Same as (b), using
the convolved signal. (d) Same as (b) for the noisy convolved signal. [(e)–(g)] Same as (b)–(d) in log-linear axis. Simulations used a lattice of
600 × 600 sites with periodic boundary conditions, recorded for 30 000 time steps. All other parameters as in Ref. [20].
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FIG. 10. Time binning does not affect the scaling of ξ0. (s) Ex-
ample of the spike signal for a single randomly chosen neuron at
T = TC . Top, spike time signal; bottom, spikes per frame (dashed
lines are a guide to the eye). (b) Correlation length ξ0−BIN vs window
size for subcritical (T = 0.33), critical (T = 0.318), and super-
critical (T = 0.31) states, computed for the spikes-per-frame data.
(c) Same as (b) in log-linear axis. Results computed for 200 000 time
steps, binned into 10 000 bins of 20 steps each. All other parameters
as in Fig. 9.

i.e.,
∫ ω0

−ω0

dω

2π
ρ̃(ω) = 1

2
. (A1)

This definition of τ0 = 1/ω0 can be expressed directly in the
time domain, writing

1

2
=

∫ ω0

−ω0

dω

2π

∫ ∞

−∞
dt ρ(t )eiωt = 2

∫ ∞

0
dtρ(t )

∫ ω0

−ω0

dω

2π
eiωt

= 2

π

∫ ∞

0
dt ρ(t )

sin ω0t

t
, (A2)

where we have used the fact that ρ(t ) is even. Then the
correlation time is defined by

∫ ∞

0

dt

t
ρ(t ) sin

(
t

τ0

)
= π

4
. (A3)

It can be seen that if ρ(t ) = f (t/τ ), then τ0 is proportional
to τ (it suffices to change the integration variable to u = t/τ
in the integral above). An advantage of this definition is that
it copes well with the case when inertial effects are impor-
tant and manifest in (damped) oscillations of the correlation
function.
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FIG. 11. Arousal-like changes in the spontaneous activity do not
affect the correlation scaling behavior. (a) Fraction of active neurons
( f ) as a function of time for 30 000 time steps, where the value
of the spontaneous activation probability r1 is changed every 5000
time steps between a low (r1 = 1 × 10−5) and a high (r1 = 2 × 10−4)
value. [(b), (c)] The correlation length as a function of window size,
in linear and log-linear axes, for subcritical (T = 0.33), critical (T =
0.318), and supercritical states (T = 0.31). All other parameters as
in Fig. 9.

APPENDIX B: CORRELATION AND DISTANCE

The correlation functions studied in the main text proceed
by choosing a pair of neurons within a given distance and
computing their correlation at a single time frame. This pro-
cedure finds that correlations are smaller for larger distances.
An alternative procedure, that leads to the same conclusion,
is shown in Fig. 7. For each mouse’s data set, one starts by
computing the Pearson correlation for all pairs. After that,
correlations are binned (bin width = 0.01). Finally, for the
pairs within each bin, their average correlations and their
respective average Euclidean distances are computed.

APPENDIX C: TIME CORRELATION FUNCTION

In some data sets we noted that C(t,W ) only collapses
for small values of t but not for longer ones. An example
of this disagreement is presented in Fig. 8. With the present
data, we can only provide probable reasons. The first is re-
lated to nonstationarity conditions linked with the fact that the
data are obtained while the animal executes at will bursts of
wheel running. This alone may affect the entire correlation
structure of the brain. The second factor may simply be the
changes in arousal, which in these experiments was monitored
by changes in the mouse pupil diameter. The role of both
possibilities deserves to be explored in further work.

APPENDIX D: NULL HYPOTHESES
AND PREPROCESSING ARTIFACTS

1. Insights from numerical simulations

To test for potential artifacts in the results, we have
conducted a series of numerical simulations for the

Greenberg-Hastings [27] model simulated as in Ref. [20]. In
brief, we simulate a square lattice of L × L (here L = 600)
neurons with periodic boundary conditions. Each neuron is
first connected to the closest k = 24 neighbors, and then
each output connection is rewired with probability π = 0.01
to another neuron within the whole system. Nonzero con-
nection weights W are taken from a random distribution
p(W = w) ∝ exp(−w/λ) with λ = 12.5. The connection ma-
trix is fixed throughout the simulations. Each neuron i is a
cellular automaton that can be in any of three states, as a
function of time: quiescent [Si(t ) = 0], active [Si(t ) = 1], or
refractory [Si(t ) = 2]. A quiescent neuron can become ac-
tive in the next time either by spontaneous activation (with
probability r1 = 10−5) or if the contribution of its active
connections at time t is larger than the threshold T (i.e., if∑

j Wi jδS j (t ),1 > T ). An active neuron will always become
refractory, and a refractory neuron will become quiescent
with probability r2 = 0.3. This model undergoes a continu-
ous phase transition as T is varied: it can be found in the
supercritical (very active and bursting, for T < TC), critical
(for T = TC � 0.318), and subcritical (for T > TC) states.

2. Slow decay of Ca2+ does not affect
the correlation length scaling results

To exclude possible effects of the slow temporal decay
of the calcium signal on the scaling of correlations reported
here, we compare the CCF from both a discrete time series
of spikes and from a “calcium-like” exponentially decaying
function of time triggered by each spike. The calcium-like
time series is built by convolving the spike time series with
an exponential with characteristic time τe = 5. An example of
the original and the convolved signals is shown in Fig. 9(a),
while ξ0 vs W can be found in Figs. 9(b), 9(c), 9(e), and 9(f).
It can be seen that the scaling of ξ0 with window size W is the
same for the spikelike and the calcium-like time series: for
the critical state, ξ0 grows linearly with W , while the growth
is logarithmic for sub- or supercritical states. This result is
not surprising since we are computing how correlations of
the fluctuations around the mean scale with distance, and
not simply the correlation of S(t ) between two places. To
further illustrate the point we recomputed the results after
adding noise (with uniform distribution of width 0.2) to each
neuron at each time step (signal-to-noise ratio � 2). Note that
despite the noise, the scaling of ξ0 is still unchanged [see
Figs. 9(d) and 9(g)].

3. Slow sampling rate does not affect the scaling
of correlation length

Next, we consider the potential effects of the relatively
slow sampling rate in the fluorescence recording (3 Hz). To
mimic the experimental protocol, we run numerical simula-
tions where the signal is time binned: the sum of the activity
over 20 frames (instead of the instantaneous activity) is used
as a signal to compute C(r). The results for this binned
correlation length, termed ξ0−BIN are shown in Fig. 10. We
conclude that time binning does not alter the scaling.
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4. Common drives do not affect the scaling of correlation length

To show that the connected correlation function is insen-
sitive to common drives, such as slow network-wide arousal
changes, we conducted numerical simulations where the spon-
taneous activation rate r1 is periodically changed between
a low and a high value (r1 = 1 × 10−5 and r1 = 2 × 10−4,
respectively) every 5000 time steps (Fig. 11). Note that these
variations in the spiking rate are not changing the dynamical
state of the network (i.e., we keep T = TC). This result demon-
strates that even large changes in the rate are not preventing
the observation of the scale-free correlation behavior since,
as already discussed, the CCF subtracts the population mean
instantaneous activity [Eq. (1)].

5. The scaling of correlation time is not due to Ca2+ slow decay

We can safely exclude the possibility that the dynamic
scaling is an artifact of the slow decay of the Ca2+ signals
from which the authors of Ref. [12] extracted the time series.
This is demonstrated by the results in Fig. 12, which show
the time correlation function and the correlation times as a
function of window size, for the spikelike time series and the
calcium-like time series considered in Sec. D 2 above. Here
we estimate the correlation time as the crossing of the value
1/e of the connected time correlation function C(t,W ), for the
spike and the calcium-like convolved data. Numerical results
show as expected that the correlation time is small and almost
independent of window size for subcritical (T = 0.33) and
supercritical (T = 0.31) states, while the critical state shows a

much larger correlation time, strongly dependent on window
size. More importantly, note that the correlation times esti-
mated from the spikelike and from the convolved calcium-like
data only differ by a constant for all regimes, showing the
same qualitative behavior as a function of W .

6. The scaling of correlation length is destroyed by random
position permutations

In order to check for potential artifacts affecting the overall
network, we tested how the correlations from the mice and
the simulation data change when the neuron positions are
randomly shuffled. For that we reassigned the time series of
each neuron to another, randomly chosen neuron. Shuffling
the data in this way should not change results if the correla-
tions were due to an external or hidden variable driving the
entire network activity.

In Fig. 13 we show how the correlations are changed by
this shuffling, using a single window (without rotations) of
mouse 4c, layer 4. As expected from the theory, the cor-
relation lengths computed from the shuffled data are very
small and finite; i.e., ξ0 is independent of W . Similar re-
sults hold for all windows of all layers and all mice. The
numerical simulation results shown in the bottom panels
of the same figure demonstrate the same behavior when
the data gathered from the model at the critical state are
shuffled in the same way. These results exclude the possi-
bility of attributing the origin of the scaling of correlation
length to unknown hidden variables driving the entire net-
work correlations and support the argument for critical
dynamics.
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