GROUPS AND DYNAMICS

Andrés Navas Flores Universidad de Santiago de Chile

Encuentro Nacional de Álgebra Córdoba, Argentina August 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Groups

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Vertices: elements of the group.

Edges: connect any two elements that differ by (right) multiplication by a generator.

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Vertices: elements of the group.

Edges: connect any two elements that differ by (right) multiplication by a generator.

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Vertices: elements of the group.

Edges: connect any two elements that differ by (right) multiplication by a generator.

Theorem (Frucht)

Every finitely-generated group is the full group of symmetries of a certain graph. (There are uncountably many such graphs for any prescribed group.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Frucht)

Every finitely-generated group is the full group of symmetries of a certain graph. (There are uncountably many such graphs for any prescribed group.)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

If a group (class of groups) acts nicely on a nice space, then the action should reveal some algebraic structure (\rightsquigarrow nice theorem).

・ロン ・ 四 と ・ 日 と ・ 日 と

Assume a finitely-generated group faithfully acts by diffeomorphisms of a compact manifold. What can be deduced on its algebraic structure from this action ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assume a finitely-generated group faithfully acts by diffeomorphisms of a compact manifold. What can be deduced on its algebraic structure from this action ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Warning: not every group acts this way (example ?).

Assume a finitely-generated group faithfully acts by diffeomorphisms of a compact manifold. What can be deduced on its algebraic structure from this action ?

Warning: not every group acts this way (example ?).

Conjecture (Zimmer)

The group $SL(n + 2, \mathbb{R})$ has no action by homeomorphisms on a compact *n*-dimensional manifold with infinite image.

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

• YES for linear groups (Burnside).

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

 $B(n) := \langle a, b : w^n = id \text{ for all } w \rangle$

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

 $B(n) := \langle a, b : w^n = id \text{ for all } w \rangle$

- B(2), B(3), B(4) and B(6) are finite.

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

 $B(n) := \langle a, b : w^n = id \text{ for all } w \rangle$

- B(2), B(3), B(4) and B(6) are finite.

- B(7) should be infinite (hyperbolic; obvious for Gromov).

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

 $B(n) := \langle a, b : w^n = id \text{ for all } w \rangle$

- B(2), B(3), B(4) and B(6) are finite.

- B(7) should be infinite (hyperbolic; obvious for Gromov).
- B(5) should still be infinite (Zelmanov).

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

 $B(n) := \langle a, b : w^n = id \text{ for all } w \rangle$

- B(2), B(3), B(4) and B(6) are finite.
- B(7) should be infinite (hyperbolic; obvious for Gromov).
- B(5) should still be infinite (Zelmanov).
- For n > 666 odd, B(n) is infinite (non-amenable; Adian-Novikov).

Question (Farb)

Let $\Gamma \subset \operatorname{Homeo}_+(\mathrm{S}^2)$ be a finitely-generated group in which every element has finite (uniformly bounded) order. Must Γ be finite ?

Question (Farb)

Let $\Gamma \subset \operatorname{Homeo}_+(S^2)$ be a finitely-generated group in which every element has finite (uniformly bounded) order. Must Γ be finite ?

• For $Homeo_+(S^1)$, the answer is affirmative (exercise).

Question (Farb)

Let $\Gamma \subset \operatorname{Homeo}_+(S^2)$ be a finitely-generated group in which every element has finite (uniformly bounded) order. Must Γ be finite ?

• For $Homeo_+(S^1)$, the answer is affirmative (exercise).

• According to a theorem of Kerékjártó (based on the work of Brouwer), every finite-order homeomorphism of the sphere is conjugate to a rotation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- of the real line: such an action comes from a left-order (folklore).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- of the real line: such an action comes from a left-order (folklore).

– of the circle without a finite orbit: such an action comes from a bounded-cohomology class with coefficients in \mathbb{Z} having a representative taking only the values 0 and 1 (Poincaré-Ghys).

- of the real line: such an action comes from a left-order (folklore).

– of the circle without a finite orbit: such an action comes from a bounded-cohomology class with coefficients in \mathbb{Z} having a representative taking only the values 0 and 1 (Poincaré-Ghys).

Question

Does there exist an algebraic characterization of groups that do act faithfully by homeomorphisms of a certain 2-manifold ?

 $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} : \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} : \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_n is left-orderable.

 $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} : \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_n is left-orderable.

An element is "positive" if it may be written as a word in the generators such that the generator σ_i with smallest index *i* that appears is raised only to positive exponents (ex: $\sigma_2 \sigma_4^7 \sigma_2^2 \sigma_3^{-500}$).

 $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} : \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_n is left-orderable.

An element is "positive" if it may be written as a word in the generators such that the generator σ_i with smallest index *i* that appears is raised only to positive exponents (ex: $\sigma_1^{-200}\sigma_2\sigma_1$).

 $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} : \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_n is left-orderable.

An element is "positive" if it may be written as a word in the generators such that the generator σ_i with smallest index *i* that appears is raised only to positive exponents (ex: $\sigma_1^{-200}\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2^{-200}$).

This comes from the work on codimension-1 foliations Sacksteder, Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

This comes from the work on codimension-1 foliations Sacksteder, Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of $\text{Diff}^1_+([0,1])$ admits a nontrivial homomorphism into \mathbb{R} (*i.e.* $\text{Diff}^1_+([0,1])$ is *locally in-dicable*).

"Proof": Take $g \mapsto \log(Dg(0))$.

This comes from the work on codimension-1 foliations Sacksteder, Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of $\text{Diff}^1_+([0,1])$ admits a nontrivial homomorphism into \mathbb{R} (*i.e.* $\text{Diff}^1_+([0,1])$ is *locally in-dicable*).

```
"Proof": Take g \mapsto \log(Dg(0)).
```

Local indicability does not hold for $\operatorname{Homeo}_+([0,1])$ (even for the group of Lipschitz homeomorphisms). An example (also due to Thurston) is the lifting to $\widetilde{\mathrm{PSL}}(2,\mathbb{R})$ of the (2,3,7)-triangle subgroup of $\mathrm{PSL}(2,\mathbb{R})$.

Local indicability

A tiling of the hyperbolic disk induced by the action of the (2,3,7)-triangle group.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Local indicability

A tiling of the hyperbolic disk induced by the action of the (2,3,7)-triangle group.

Theorem (N)

Local indicability is not the only obstruction for embeddings into $\mathrm{Diff}^1_+([0,1]).$

Theorem (N)

Every finitely-generated subgroup of $\text{Diff}_{+}^{1+\alpha}([0,1])$ has either polynomial or exponential growth. This is false for $\text{Diff}_{+}^{1}([0,1])$.

Theorem (N)

Every finitely-generated subgroup of $\text{Diff}_{+}^{1+\alpha}([0,1])$ has either polynomial or exponential growth. This is false for $\text{Diff}_{+}^{1}([0,1])$.

Theorem (Witte Morris)

If Γ is a finite-index subgroup of $SL(3, \mathbb{Z})$, then every C^0 action of Γ on S^1 (resp. [0,1]) has a finite image (resp. is trivial).

Theorem (N)

Every finitely-generated subgroup of $\text{Diff}_{+}^{1+\alpha}([0,1])$ has either polynomial or exponential growth. This is false for $\text{Diff}_{+}^{1}([0,1])$.

Theorem (Witte Morris)

If Γ is a finite-index subgroup of $SL(3, \mathbb{Z})$, then every C^0 action of Γ on S^1 (resp. [0,1]) has a finite image (resp. is trivial).

Theorem (N)

If Γ is a finitely-generated subgroup of ${\rm Diff}_+^{3/2}({\rm S}^1)$ having Kazhdan's property (T), then it is finite.

(日) (同) (三) (三) (三) (○) (○)

Every group Γ acts on $\{0,1\}^{\Gamma}$ by shifting coordinates. For infinite countable Γ , this is a Cantor set. This action contains lots of information.

Every group Γ acts on $\{0,1\}^{\Gamma}$ by shifting coordinates. For infinite countable Γ , this is a Cantor set. This action contains lots of information.

Every group Γ acts on $\{0,1\}^{\Gamma}$ by shifting coordinates. For infinite countable Γ , this is a Cantor set. This action contains lots of information.

The group of piecewise dyadic homeomorphisms of the binary Cantor set is finitely presented and simple (Thompson's group V). It contains a copy of every finite group.

R.Thompson's groups

• The elements of V that respect the cyclic order form the subgroup T; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the circle.

R.Thompson's groups

• The elements of V that respect the cyclic order form the subgroup T; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the circle.

• The elements of T that respect the linear order form the subgroup F; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the unit interval.

R.Thompson's groups

• The elements of V that respect the cyclic order form the subgroup T; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the circle.

• The elements of T that respect the linear order form the subgroup F; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the unit interval.

 $F = \langle f, g \colon [fg^{-1}, f^{-1}gf] = [fg^{-1}, f^{-2}gf^2] = id \rangle.$

Out(V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Out(V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

- Every automorphism of V is induced by conjugacy of a certain homeomorphism of the Cantor set (Rubin, Epstein...)

Out(V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

– Every automorphism of V is induced by conjugacy of a certain homeomorphism of the Cantor set (Rubin, Epstein...)

- Such a homeomorphism must have some "regularity".

Out(V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

– Every automorphism of V is induced by conjugacy of a certain homeomorphism of the Cantor set (Rubin, Epstein...)

- Such a homeomorphism must have some "regularity".
- For Lipschitz homeomorphisms, rigidity comes from the associated cohomological equation.

MUCHAS GRACIAS