GROUPS AND DYNAMICS

Andrés Navas Flores
 Universidad de Santiago de Chile

Encuentro Nacional de Álgebra
Córdoba, Argentina
August 2014

Groups

"Les mathématiques ne sont qu'une histoire de groupes" (Poincaré).

> "Les mathématiques ne sont qu'une histoire de groupes" (Poincaré).

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

"Les mathématiques ne sont qu'une histoire de groupes" (Poincaré).

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Groups

"Les mathématiques ne sont qu'une histoire de groupes" (Poincaré).

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Vertices: elements of the group.
Edges: connect any two elements that differ by (right) multiplication by a generator.

Groups

"Les mathématiques ne sont qu'une histoire de groupes" (Poincaré).

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Vertices: elements of the group.
Edges: connect any two elements that differ by (right) multiplication by a generator.

Groups

"Les mathématiques ne sont qu'une histoire de groupes" (Poincaré).

A group is a set endowed with a multiplication and an inversion satisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a certain space (the group itself / its Cayley graph).

Vertices: elements of the group.
Edges: connect any two elements that differ by (right) multiplication by a generator.

Theorem (Frucht)

Every finitely-generated group is the full group of symmetries of a certain graph. (There are uncountably many such graphs for any prescribed group.)

Theorem (Frucht)

Every finitely-generated group is the full group of symmetries of a certain graph. (There are uncountably many such graphs for any prescribed group.)

If a group (class of groups) acts nicely on a nice space, then the action should reveal some algebraic structure (\rightsquigarrow nice theorem).

Assume a finitely-generated group faithfully acts by diffeomorphisms of a compact manifold. What can be deduced on its algebraic structure from this action ?

Assume a finitely-generated group faithfully acts by diffeomorphisms of a compact manifold. What can be deduced on its algebraic structure from this action ?

Warning: not every group acts this way (example ?).

Groups acting on manifolds

Assume a finitely-generated group faithfully acts by diffeomorphisms of a compact manifold. What can be deduced on its algebraic structure from this action ?

Warning: not every group acts this way (example ?).

Conjecture (Zimmer)

The group $\mathrm{SL}(n+2, \mathbb{R})$ has no action by homeomorphisms on a compact n-dimensional manifold with infinite image.

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

$$
B(n):=\left\langle a, b: w^{n}=i d \text { for all } w\right\rangle
$$

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite?

- YES for linear groups (Burnside).
- The Burnside groups:

$$
B(n):=\left\langle a, b: w^{n}=i d \text { for all } w\right\rangle
$$

- $B(2), B(3), B(4)$ and $B(6)$ are finite.

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

$$
B(n):=\left\langle a, b: w^{n}=i d \text { for all } w\right\rangle
$$

- $B(2), B(3), B(4)$ and $B(6)$ are finite.

- $B(7)$ should be infinite (hyperbolic; obvious for Gromov).

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite ?

- YES for linear groups (Burnside).
- The Burnside groups:

$$
B(n):=\left\langle a, b: w^{n}=i d \text { for all } w\right\rangle
$$

- $B(2), B(3), B(4)$ and $B(6)$ are finite.

- $B(7)$ should be infinite (hyperbolic; obvious for Gromov).
- $B(5)$ should still be infinite (Zelmanov).

Question (Burnside)

Let Γ be a finitely-generated group in which every element has finite order (perhaps uniformly bounded). Is Γ necessarily finite?

- YES for linear groups (Burnside).
- The Burnside groups:

$$
B(n):=\left\langle a, b: w^{n}=i d \text { for all } w\right\rangle
$$

- $B(2), B(3), B(4)$ and $B(6)$ are finite.

- $B(7)$ should be infinite (hyperbolic; obvious for Gromov).
- $B(5)$ should still be infinite (Zelmanov).
- For $n>666$ odd, $B(n)$ is infinite (non-amenable; Adian-Novikov).

Question (Farb)

Let $\Gamma \subset$ Homeo $_{+}\left(\mathrm{S}^{2}\right)$ be a finitely-generated group in which every element has finite (uniformly bounded) order. Must Γ be finite?

Question (Farb)

Let $\Gamma \subset$ Homeo $_{+}\left(\mathrm{S}^{2}\right)$ be a finitely-generated group in which every element has finite (uniformly bounded) order. Must Γ be finite ?

- For $\mathrm{Homeo}_{+}\left(\mathrm{S}^{1}\right)$, the answer is affirmative (exercise).

Question (Farb)

Let $\Gamma \subset$ Homeo $_{+}\left(\mathrm{S}^{2}\right)$ be a finitely-generated group in which every element has finite (uniformly bounded) order. Must Γ be finite?

- For Homeo $\left(\mathrm{S}^{1}\right)$, the answer is affirmative (exercise).
- According to a theorem of Kerékjártó (based on the work of Brouwer), every finite-order homeomorphism of the sphere is conjugate to a rotation.

Algebraic description of groups that act faithfully by orientationpreserving homeomorphisms:

Algebraic description of groups that act faithfully by orientationpreserving homeomorphisms:

- of the real line: such an action comes from a left-order (folklore).

Algebraic description of groups that act faithfully by orientationpreserving homeomorphisms:

- of the real line: such an action comes from a left-order (folklore).
- of the circle without a finite orbit: such an action comes from a bounded-cohomology class with coefficients in \mathbb{Z} having a representative taking only the values 0 and 1 (Poincaré-Ghys).

Groups acting on 1-dimensional manifolds

Algebraic description of groups that act faithfully by orientationpreserving homeomorphisms:

- of the real line: such an action comes from a left-order (folklore).
- of the circle without a finite orbit: such an action comes from a bounded-cohomology class with coefficients in \mathbb{Z} having a representative taking only the values 0 and 1 (Poincaré-Ghys).

Question

Does there exist an algebraic characterization of groups that do act faithfully by homeomorphisms of a certain 2-manifold ?

Ordering braids

$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right.$ if $| i-j|>1\rangle$

$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right.$ if $| i-j|>1\rangle$
Theorem (Dehornoy; Nielsen-Thurston)
The braid group B_{n} is left-orderable.

$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right.$ if $| i-j|>1\rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_{n} is left-orderable.
An element is "positive" if it may be written as a word in the generators such that the generator σ_{i} with smallest index i that appears is raised only to positive exponents (ex: $\sigma_{2} \sigma_{4}^{7} \sigma_{2}^{2} \sigma_{3}^{-500}$).

$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right.$ if $| i-j|>1\rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_{n} is left-orderable.
An element is "positive" if it may be written as a word in the generators such that the generator σ_{i} with smallest index i that appears is raised only to positive exponents (ex: $\sigma_{1}^{-200} \sigma_{2} \sigma_{1}$).

$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right.$ if $| i-j|>1\rangle$

Theorem (Dehornoy; Nielsen-Thurston)

The braid group B_{n} is left-orderable.
An element is "positive" if it may be written as a word in the generators such that the generator σ_{i} with smallest index i that appears is raised only to positive exponents (ex: $\sigma_{1}^{-200} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}^{-200}$).

This comes from the work on codimension-1 foliations Sacksteder, Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

This comes from the work on codimension-1 foliations Sacksteder, Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of Diff ${ }_{+}^{1}([0,1])$ admits a nontrivial homomorphism into $\mathbb{R}\left(\right.$ i.e. $\operatorname{Diff}_{+}^{1}([0,1])$ is locally indicable).
"Proof": Take $g \mapsto \log (D g(0))$.

This comes from the work on codimension-1 foliations Sacksteder, Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of $\operatorname{Diff}_{+}^{1}([0,1])$ admits a nontrivial homomorphism into $\mathbb{R}\left(\right.$ i.e. $\operatorname{Diff}_{+}^{1}([0,1])$ is locally indicable).
"Proof": Take $g \mapsto \log (D g(0))$.
Local indicability does not hold for Homeo $+([0,1])$ (even for the group of Lipschitz homeomorphisms). An example (also due to Thurston) is the lifting to $\widetilde{\operatorname{PSL}}(2, \mathbb{R})$ of the ($2,3,7$)-triangle subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

Local indicability

A tiling of the hyperbolic disk induced by the action of the (2,3,7)-triangle group.

Local indicability

A tiling of the hyperbolic disk induced by the action of the ($2,3,7$)-triangle group.

Theorem (N)
Local indicability is not the only obstruction for embeddings into Diff $_{+}^{1}([0,1])$.

More results

More results

Theorem (N)

Every finitely-generated subgroup of $\operatorname{Diff}_{+}^{1+\alpha}([0,1])$ has either polynomial or exponential growth. This is false for $\operatorname{Diff}_{+}^{1}([0,1])$.

More results

Theorem (N)

Every finitely-generated subgroup of $\operatorname{Diff}_{+}^{1+\alpha}([0,1])$ has either polynomial or exponential growth. This is false for $\operatorname{Diff}_{+}^{1}([0,1])$.

Theorem (Witte Morris)
If Γ is a finite-index subgroup of $\operatorname{SL}(3, \mathbb{Z})$, then every C^{0} action of Γ on S^{1} (resp. $[0,1]$) has a finite image (resp. is trivial).

More results

Theorem (N)

Every finitely-generated subgroup of $\operatorname{Diff}_{+}^{1+\alpha}([0,1])$ has either polynomial or exponential growth. This is false for $\mathrm{Diff}_{+}^{1}([0,1])$.

Theorem (Witte Morris)
If Γ is a finite-index subgroup of $\operatorname{SL}(3, \mathbb{Z})$, then every C^{0} action of Γ on S^{1} (resp. $[0,1]$) has a finite image (resp. is trivial).

Theorem (N)

If Γ is a finitely-generated subgroup of $\operatorname{Diff}_{+}^{3 / 2}\left(\mathrm{~S}^{1}\right)$ having Kazhdan's property (T), then it is finite.

Every group Γ acts on $\{0,1\}^{\Gamma}$ by shifting coordinates. For infinite countable Γ, this is a Cantor set. This action contains lots of information.

Every group Γ acts on $\{0,1\}^{\Gamma}$ by shifting coordinates. For infinite countable Γ, this is a Cantor set. This action contains lots of information.

Every group Γ acts on $\{0,1\}^{\Gamma}$ by shifting coordinates. For infinite countable Γ, this is a Cantor set. This action contains lots of information.

The group of piecewise dyadic homeomorphisms of the binary Cantor set is finitely presented and simple (Thompson's group V). It contains a copy of every finite group.

- The elements of V that respect the cyclic order form the subgroup T; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the circle.
- The elements of V that respect the cyclic order form the subgroup T; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the circle.
- The elements of T that respect the linear order form the subgroup F; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the unit interval.
- The elements of V that respect the cyclic order form the subgroup T; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the circle.
- The elements of T that respect the linear order form the subgroup F; this may be seen also as a group of piecewise-affine, orientation-preserving homeomorphisms of the unit interval.

$$
F=\left\langle f, g: \quad\left[f g^{-1}, f^{-1} g f\right]=\left[f g^{-1}, f^{-2} g f^{2}\right]=i d\right\rangle .
$$

Theorem (Bleak, Navas, Yonah)

Out (V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

Theorem (Bleak, Navas, Yonah)
Out (V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

- Every automorphism of V is induced by conjugacy of a certain homeomorphism of the Cantor set (Rubin, Epstein...)

Theorem (Bleak, Navas, Yonah)

Out (V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

- Every automorphism of V is induced by conjugacy of a certain homeomorphism of the Cantor set (Rubin, Epstein...)
- Such a homeomorphism must have some "regularity".

Theorem (Bleak, Navas, Yonah)

Out (V) consists of two elements. The nontrivial element comes from interchanging zeros and ones.

- Every automorphism of V is induced by conjugacy of a certain homeomorphism of the Cantor set (Rubin, Epstein...)
- Such a homeomorphism must have some "regularity".
- For Lipschitz homeomorphisms, rigidity comes from the associated cohomological equation.

MUCHAS GRACIAS

