Física General IV Guía Nº3 - 2012

Problema 1: Se tienen dos cuerdas de diferente densidad lineal unidas en x=0. La cuerda que esta sobre el eje de x negativos tiene densidad μ_1 y la cuerda de los x positivos tiene densidad μ_2 . En x=0 la onda incidente y_i se refleja, y por lo tanto, la cuerda de la izquierda (x<0) oscilará con la superposición de estas dos ondas, $y_i + y_r$. La cuerda de la derecha (x>0) oscilará con la onda transmitida. Suponiendo ondas armónicas, las ecuaciones correspondientes de las elongaciones para las ondas incidente y reflejadas son,

$$y_i = A_i sen(k_1 x - \omega t), \ y_r = A_r sen(k_1 x + \omega t + \varphi)$$

Calcule el ángulo de desfasaje φ y, el cociente $\frac{A_r}{A_i}$ para los casos $\mu_1 > \mu_2$ y $\mu_1 < \mu_2$

Problema 2: Para calcular el índice de refracción en un cristal iónico (tal como el ClNa y F₂Ca) se tiene que tener en cuenta la resonancia que se produce por la oscilación de los iones, en consecuencia el índice de refracción viene dado por:

$$n^{2} = 1 + \frac{Nq^{2}}{m\varepsilon_{o}(\omega_{1}^{2} - \omega^{2})} + \frac{pNq^{2}}{M\varepsilon_{o}(\omega_{2}^{2} - \omega^{2})}$$

Donde M representa la masa reducida de los dos iones y p la valencia del ion (p=1 para el Na⁺ Cl⁻ y p=2 para el F^{2+} y Ca^{2+}).

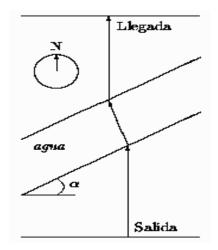
Mostrar que la ecuación de arriba puede escribirse de la forma:

$$n^2 = n^2_{\infty} + \frac{A_1}{\lambda^2 - \lambda_1^2} + \frac{A_2}{\lambda^2 - \lambda_2^2}$$
 con

$$A_{1} = \frac{Nq^{2}}{4\pi^{2}c^{2}\varepsilon_{o}m}\lambda_{1}^{4}, A_{2} = \frac{pNq^{2}}{4\pi^{2}c^{2}\varepsilon_{o}M}\lambda_{2}^{4} y n^{2}_{\infty} = 1 + \frac{A_{1}}{\lambda_{1}^{2}} + \frac{A_{2}}{\lambda_{2}^{2}}$$

Problema 3: El índice de refracción del F₂Ca en la región visible del espectro se puede escribir de la forma:

$$n^2 = 6.09 + \frac{6.12 \times 10^{-15}}{\lambda^2 - 8.88 \times 10^{-15}} + \frac{5.10 \times 10^{-9}}{\lambda^2 - 1.26 \times 10^{-9}}$$
 donde λ se mide en metros.

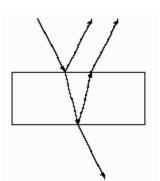

- a) Graficar n^2 vs λ
- b) De los valores de A₁ y A₂ mostrar que $\frac{m}{M} = 2.07 \times 10^{-5}$ y compárelo con el valor exacto.
- c) Usando los valores de A_i y λ_i encontrar que $n^2_{\infty} = 5.73$ lo cual concuerda bastante bien con el valor experimental.

Problema 4: ¿ Ley de Snell?

Un maratonista corre en dirección Norte desde la línea de salida hasta la de llegada. En su trayecto debe cruzar a nado un canal de agua (en reposo), el cual atraviesa de manera oblicua el camino. Si la velocidad en tierra del maratonista es v_t y su velocidad de nado es v_a ; determine una ecuación para el ángulo β , que forma la dirección de nado del maratonista con respecto a la normal a la costa del canal, tal que **minimiza** el tiempo total de su travesía.

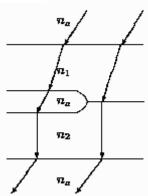
Problema 5:

- a) Calcule el ángulo de transmisión para un rayo en el aire que incide a 30° sobre un bloque de vidrio crown ($n_g = 1.52$).
- b) Un rayo de luz amarilla, procedente de una lámpara de descarga de sodio, cae sobre la superficie plana de un diamante en el aire a 45° . Si para ese color n_d =2.42, calcule la desviación angular sufrida bajo la transmisión.

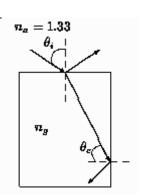


Problema 6:

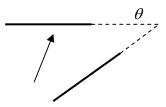
- a) Calcule el ángulo crítico, más allá del cual hay reflexión total interna para una interfase plana aire-vidrio donde $n_v = 1.5$.
- **b**) Construya un gráfico para el ángulo de transmisión θ_t versus el ángulo de incidencia θ_t para la interfase considerada en el punto anterior.


Problema 7:

Muestre analíticamente que un haz incidente sobre una placa de caras paralelas, como en la figura, emerge paralelo a su dirección inicial. Construya una expresión para el desplazamiento lateral del haz. Incidentalmente, los rayos entrantes y salientes de una pila de placas paralelas de distintos materiales, resultarán paralelos.

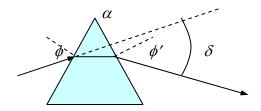

Problema 8:

Demuestre que el par de rayos que inciden paralelos en el sistema de la figura, emergen a su vez paralelos.



Problema 9:

¿Cuál es el índice de refracción n_g del bloque de vidrio de la figura, si para un ángulo de incidencia de 45° , resulta una reflexión total interna crítica en la superficie lateral interior?



Problema 10: - Dos espejos están enfrentados como muestra la figura, formando un ángulo θ . Demostrar que un haz incidente será desviado en un ángulo 2θ independientemente del ángulo de incidencia

Problema 11: Sobre un tanque de agua se derrama una capa de aceite (n = 1.48) de 1 cm de espesor. ¿Qué ángulo debe formar un haz de luz, originado en el fondo del tanque, con la normal a la superficie para no escapar?

Problema 12: Considerar un prisma de ángulo α e índice de refracción n. Demostrar que un haz incidente sufre una desviación $\delta = \phi + \phi' - \alpha$.

Encuentre el ángulo de desviación, δ , para los distintos colores si los índices de refracción son los que se dan en la tabla

<u>Color</u>	Frecuencia	Longitud de onda	n
<u>violet</u> a	668–789 THz	380–450 nm	1.554
<u>azul</u>	631–668 THz	450–475 nm	1,547
<u>verde</u>	526–606 THz	495–570 nm	1.544
<u>amarillo</u>	508–526 THz	570–590 nm	1.539
<u>naranja</u>	484–508 THz	590–620 nm	1.537
<u>rojo</u>	400–484 THz	620–750 nm	1.534

Problema 13: En un medio inhomogéneo el índice de refracción esta dado por:

$$n^{2} = \begin{cases} 1 + \frac{x}{L} & para \cdot x > 0 \\ 1 & para \cdot x < 0 \end{cases}$$

Encuentre la trayectoria de un rayo de luz que se mueve en el plano xz en dirección de las x positivas y que al pasar por x=0 forma un ángulo de 45° con el eje positivo de las x.

Hints piense primero que pasa cuando el mismo haz incide sobre una pila de n vidrios de distintos índices de refracción. Comience con n=2, luego tres etc.