

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Estructuras Algebraicas (2014) Parcial 1

- I. Elegir uno (y sólo uno) de los siguientes dos ejercicios
 - IA. Sean G y \overline{G} grupos.
 - a) Sean $f: G \to \overline{G}$ un homomorfismo y $a \in G$ de orden finito. Entonces el orden de f(a) divide el orden de a. Más aún, si $\operatorname{mcd}(|G|, |\overline{G}|) = 1$ entonces $f(a) = e_{\overline{G}}$ para todo $a \in G$.
 - b) Si $a \in G$ tiene orden finito $n \neq k$ es un número natural tal que k|n entonces $|a^k| = n/k$.
 - c) Sean $f: G \to \overline{G}$ un homomorfismo sobreyectivo con G de orden finito, y $b \in \overline{G}$ de orden m. Entonces existe también en G un elemento de orden m.
 - d) Si $|G| = p^m$ con p primo y G tiene la propiedad de tener a lo más un subgrupo de cada tamaño, entonces G es cíclico.¹
 - IB. Sea $Q_8 := \{\pm 1, \pm i, \pm j, \pm k\}$ el grupo cuya multiplicación está dada por $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j, y las reglas usuales de multiplicación por ± 1 (el grupo Q_8 es llamado el grupo cuaterniónico).
 - a) Describir de manera lo más completa posible todos los subgrupos de Q_8 .
 - b) ¿Cuáles son sus subgrupos normales?
 - c) Para cada subgrupo normal N de Q_8 decir quién es el grupo Q_8/N .
- II. Sea G un grupo. Dados $a, b \in G$ se define el conmutador de a y b como $[a, b] := a^{-1}b^{-1}ab$. El subgrupo conmutador de G es el grupo generado por los conmutadores de G, $[G, G] := \langle [a, b] : a, b \in G \rangle$.
 - a) Pruebe que para todo automorfismo f de G, f([a,b]) = [f(a), f(b)], y así [G,G] es invariante por todo automorfismo de G.
 - b) Pruebe que para todo subgrupo N de G, tal que $[G,G] \leq N$, se tiene que N es normal en G y el grupo G/N es abeliano.
 - c) Calcular el conmutador del grupo simétrico \mathbb{S}_n , con n=3,4. Pruebe que el conmutador del grupo simétrico \mathbb{S}_n , con $n\geq 5$, es el grupo alternante \mathbb{A}_n (utilizar, si es necesario, el resultado que dice que \mathbb{A}_n es simple $\forall n\geq 5$).
- III. Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar
 - a) Si H es un subgrupo normal de un grupo G tal que H y G/H son cíclicos, entonces G es cíclico.
 - b) El grupo múltiplicativo de los números racionales sin el cero, $\mathbb{Q}^{\times} := \mathbb{Q} \{0\}$, es cíclico.
 - c) El grupo aditivo $\mathbb{Z} \times \mathbb{Z}$ no es cíclico.
 - d) El grupo aditivo $\mathbb{Z} \times \mathbb{Z}$ no es libre en la categoría de grupos arbitrarios.

¹Veremos más adelante que esta propiedad caracteriza a los grupos cíclicos; sin la hipótesis sobre el orden de G.