An introduction to spectral geometry

Emilio Lauret
Universidad Nacional de Córdoba, Argentina

VI Workshop on differential geometry — EGEO
August 2016, La Falda, Córdoba
A better title to this course could be
A better title to this course could be

An introduction to inverse spectral geometry
A better title to this course could be

An introduction to inverse spectral geometry

\((M, g)\) a compact Riemannian manifold
A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold $\leadsto \Delta : C^\infty(M) \to C^\infty(M)$

the Laplace operator (also known as the Laplace-Beltrami operator).
A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold $\Delta : C^\infty(M) \to C^\infty(M)$
the Laplace operator (also known as the Laplace-Beltrami operator).

$$\Delta(f) = -\text{div} (\text{grad}(f))$$
A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold $\Delta : C^\infty(M) \to C^\infty(M)$ the Laplace operator (also known as the Laplace-Beltrami operator).

$$\Delta(f) = -\text{div}(\text{grad}(f)) = d^* d$$
A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold ↦ Δ : C∞(M) → C∞(M)
the Laplace operator (also known as the Laplace-Beltrami operator).

\[
\Delta(f) = - \text{div}(\text{grad}(f)) = d^* d
\]
\[
= \frac{1}{\sqrt{g}} \sum_{ij} \frac{\partial}{\partial x_j} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_i} \right).
\]
A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold $\Delta : C^\infty(M) \to C^\infty(M)$ the Laplace operator (also known as the Laplace-Beltrami operator).

\[
\Delta(f) = -\text{div}(\text{grad}(f)) = d^*d = \frac{1}{\sqrt{g}} \sum_{ij} \frac{\partial}{\partial x_j} \left(\sqrt{g} g_{ij} \frac{\partial f}{\partial x_i} \right).
\]

- Δ is self-adjoint (with respect to $\langle f, g \rangle = \int_M f(x)g(x)dx$.)
A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold $\mapsto \Delta : C^\infty(M) \to C^\infty(M)$
the Laplace operator (also known as the Laplace-Beltrami operator).

\[
\Delta(f) = -\text{div}(\text{grad}(f)) = d^*d
\]
\[
= \frac{1}{\sqrt{g}} \sum_{ij} \frac{\partial}{\partial x_j} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_i} \right).
\]

- Δ is self-adjoint (with respect to $\langle f, g \rangle = \int_M f(x)\overline{g(x)}dx$.)
- It commutes with isometries (i.e. $\Delta(\varphi \circ f) = \varphi \circ (\Delta f)$ for every φ isometry of M).
A better title to this course could be

An introduction to inverse spectral geometry

\((M, g)\) a compact Riemannian manifold \(\sim \Delta : C^\infty(M) \rightarrow C^\infty(M)\)
the Laplace operator (also known as the Laplace-Beltrami operator).

\[
\Delta(f) = -\text{div(grad}(f)) = d^* d
\]
\[
= \frac{1}{\sqrt{g}} \sum_{ij} \frac{\partial}{\partial x_j} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_i} \right).
\]

- \(\Delta\) is self-adjoint (with respect to \(\langle f, g \rangle = \int_M f(x) \overline{g(x)} dx\).)
- It commutes with isometries (i.e. \(\Delta(\varphi \circ f) = \varphi \circ (\Delta f)\) for every \(\varphi\) isometry of \(M\)).
- It is positive definite (i.e. \(\langle \Delta f, f \rangle \geq 0\).)
We consider the eigenvalue problem
\[\Delta(f) = \lambda f. \]
We consider the eigenvalue problem

\[\Delta(f) = \lambda f. \]

If \(\partial M \neq \emptyset \), we impose \(f = 0 \) on \(\partial M \) (Dirichlet boundary condition.)
We consider the eigenvalue problem

\[\Delta(f) = \lambda f. \]

If \(\partial M \neq \emptyset \), we impose \(f = 0 \) on \(\partial M \) (Dirichlet boundary condition.)

The spectrum of \(\Delta \), denoted by \(\text{Spec}(M, g) \), is the multiset of eigenvalues \(\lambda \) repeated according its multiplicity

\((= \dim\{ f \in C^\infty(M) : \Delta f = \lambda f \})\).
We consider the eigenvalue problem

\[\Delta(f) = \lambda f. \]

If \(\partial M \neq \emptyset \), we impose \(f = 0 \) on \(\partial M \) (Dirichlet boundary condition.)

The spectrum of \(\Delta \), denoted by \(\text{Spec}(M, g) \), is the multiset of eigenvalues \(\lambda \) repeated according its multiplicity

\((= \dim\{f \in C^\infty(M) : \Delta f = \lambda f\}) \).

It has the form

\[0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \to +\infty. \]
We consider the eigenvalue problem

$$\Delta(f) = \lambda f.$$

If $\partial M \neq \emptyset$, we impose $f = 0$ on ∂M (Dirichlet boundary condition.)

The spectrum of Δ, denoted by $\operatorname{Spec}(M, g)$, is the multiset of eigenvalues λ repeated according its multiplicity ($= \dim \{ f \in C^\infty(M) : \Delta f = \lambda f \}$).

It has the form

$$0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \to +\infty.$$

It is discrete, and each eigenvalue λ has finite multiplicity.
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of (M, g).
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).

\[
\text{Spectral information} \quad \xrightarrow{?} \quad \text{Geometric information}
\]
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).

\[
\begin{array}{c}
\text{Spectral information} \\
\text{Spec}(M, g)
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{Geometric information} \\
dimension, \text{ volume, curvature, is Kähler?, is Einstein?, …}
\end{array}
\]
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).

\[
\begin{array}{c}
\text{Spectral information} \\
\text{Spec}(M, g)
\end{array} \quad \Rightarrow \quad \\
\begin{array}{c}
\text{Geometric information} \\
dimension, \text{ volume, curvature, is Kähler?, is Einstein?, } \ldots
\end{array}
\]

Known spectral invariants:
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).

\[
\text{Spectral information} \underset{?}{\implies} \text{Geometric information}
\]

\[
\text{Spec}(M, g) \quad \text{dimension, volume, curvature, is Kähler?, is Einstein?, ...}
\]

Known spectral invariants: dimension, volume,
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).

\[
\text{Spec}(M, g) \quad ? \quad \text{dimension, volume, curvature, is Kähler?, is Einstein?, ...}
\]

Known spectral invariants: dimension, volume, heat invariants
Inverse spectral geometry studies to what extent does the spectrum encode the geometry of \((M, g)\).

\[
\text{Spectral information} \quad \overset{?}{\implies} \quad \text{Geometric information}
\]

\[
\text{Spec}(M, g) \quad \text{dimension, volume, curvature, is Kähler?, is Einstein?, \ldots}
\]

Known spectral invariants: dimension, volume, heat invariants (Prof. Gilkey is an expert on this matter).
A funnier title to this course could be

Can one hear the shape of a drum?
A funnier title to this course could be

Can one hear the shape of a drum?

Mark Kac popularized this problem in 1966 with an article with this title.
A funnier title to this course could be

Can one hear the shape of a drum?

Mark Kac popularized this problem in 1966 with an article with this title.
Bounded plane domain \(\equiv \) a drum.
A funnier title to this course could be

Can one hear the shape of a drum?

Mark Kac popularized this problem in 1966 with an article with this title.

Bounded plane domain ≡ a drum.
A funnier title to this course could be

Can one hear the shape of a drum?

Mark Kac popularized this problem in 1966 with an article with this title.
Bounded plane domain ≡ a drum.
A funnier title to this course could be

Can one hear the shape of a drum?

Mark Kac popularized this problem in 1966 with an article with this title.
Bounded plane domain \equiv a drum.
A funnier title to this course could be

Can one hear the shape of a drum?

Mark Kac popularized this problem in 1966 with an article with this title.
Bounded plane domain \equiv a drum.
A funnier title to this course:

Can one hear the shape of a drum?

Bounded plane domain \equiv a drum.

The frequencies of the domain are encoded by the spectrum of the Laplace operator.
A funnier title to this course:

Can one hear the shape of a drum?

Bounded plane domain \cong a drum.

The frequencies of the domain are encoded by the spectrum of the Laplace operator.
The eigenvalues are the fundamental tones.
A funnier title to this course:

Can one hear the shape of a drum?

Bounded plane domain \equiv a drum.

The frequencies of the domain are encoded by the spectrum of the Laplace operator.
The eigenvalues are the fundamental tones.

The question must be interpreted as:

\[
\text{Spec}(M_1) = \text{Spec}(M_2) \Rightarrow M_1 \text{ and } M_2 \text{ are isometric.}
\]

Definition: M_1 and M_2 are called isospectral if

\[
\text{Spec}(M_1) = \text{Spec}(M_2).
\]
A funnier title to this course:

Can one hear the shape of a drum?

Bounded plane domain \equiv a drum.

The frequencies of the domain are encoded by the spectrum of the Laplace operator.
The eigenvalues are the fundamental tones.

The question must be interpreted as:

$$\text{Spec}(M_1) = \text{Spec}(M_2)$$
A funnier title to this course:

Can one hear the shape of a drum?

Bounded plane domain \equiv a drum.

The frequencies of the domain are encoded by the spectrum of the Laplace operator.
The eigenvalues are the fundamental tones.

The question must be interpreted as:

\[
\text{Spec}(M_1) = \text{Spec}(M_2) \quad \Rightarrow \quad M_1 \text{ and } M_2 \text{ are isometric.}
\]
A funnier title to this course:

Can one hear the shape of a drum?

Bounded plane domain \(\equiv\) a drum.

The frequencies of the domain are encoded by the spectrum of the Laplace operator.
The eigenvalues are the fundamental tones.

The question must be interpreted as:

\[
\text{Spec}(M_1) = \text{Spec}(M_2) \quad \iff \quad M_1 \text{ and } M_2 \text{ are isometric.}
\]

Definition: \(M_1\) and \(M_2\) are called \textit{isospectral} if \(\text{Spec}(M_1) = \text{Spec}(M_2)\).
One cannot hear the shape of a drum!

Carolyn Gordon, David Webb and Scott Wolpert (in 1992) found the first example of non-congruent isospectral plane domains:
One cannot hear the shape of a drum!

Carolyn Gordon, David Webb and Scott Wolpert (in 1992) found the first example of non-congruent isospectral plane domains:
One cannot hear the shape of a drum!

Carolyn Gordon, David Webb and Scott Wolpert (in 1992) found the first example of non-congruent isospectral plane domains:
In general, $\text{Spec}(M, g)$ is very difficult to compute.
In general, $\text{Spec}(M, g)$ is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly.
In general, $\text{Spec}(M, g)$ is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly. (Sunada method generalized by DeTurk-Gordon, torus method, among others).
In general, $\text{Spec}(M, g)$ is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly. (Sunada method generalized by DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very simple cases.
In general, Spec(M, g) is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly. (Sunada method generalized by DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very simple cases.

Contents:
In general, Spec(M, g) is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly. (Sunada method generalized by DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very simple cases.

Contents:

§1 Introduction (which is finishing now!).
In general, $\text{Spec}(M, g)$ is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly. (Sunada method generalized by DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very simple cases.

Contents:

§1 Introduction (which is finishing now!).

§2 Flat tori.
In general, Spec(M, g) is very difficult to compute.

There are methods to construct isospectral manifolds, without knowing the spectrum explicitly. (Sunada method generalized by DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very simple cases.

Contents:

§1 Introduction (which is finishing now!).
§2 Flat tori.
§3 Lens spaces.
§2 Flat tori

In \mathbb{R}^n, $\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)$.

But \mathbb{R}^n is not compact!
§2 Flat tori

In \mathbb{R}^n, $\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)$.

$v \in \mathbb{R}^n \leadsto f_v : \mathbb{R}^n \rightarrow \mathbb{C},$

\[f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}. \]
§2 Flat tori

In \mathbb{R}^n, $\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}\right)$.

$v \in \mathbb{R}^n \rightsquigarrow f_v : \mathbb{R}^n \rightarrow \mathbb{C},$

$$f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}.$$

$$(\Delta f_v)(x) = - \sum_j \frac{\partial^2}{\partial x_j^2} f_v(x)$$
§2 Flat tori

In \mathbb{R}^n, $\Delta = - \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)$.

$v \in \mathbb{R}^n \leadsto f_v : \mathbb{R}^n \to \mathbb{C},$

$$f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}.$$

$$(\Delta f_v)(x) = - \sum_j \frac{\partial^2}{\partial x_j^2} f_v(x)$$

$$= - \sum_j \frac{\partial}{\partial x_j} ((2\pi i) v_j f_v(x))$$
§2 Flat tori

In \mathbb{R}^n, $\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}\right)$.

$v \in \mathbb{R}^n \mapsto f_v : \mathbb{R}^n \to \mathbb{C},$

$$f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}.$$

$$\big(\Delta f_v\big)(x) = -\sum_j \frac{\partial^2}{\partial x_j^2} f_v(x)$$

$$= -\sum_j \frac{\partial}{\partial x_j} \left((2\pi i)v_j f_v(x)\right)$$

$$= -\sum_j (2\pi i)^2 v_j^2 f_v(x)$$
§2 Flat tori

In \mathbb{R}^n, $\Delta = - \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)$.

$v \in \mathbb{R}^n \leadsto f_v : \mathbb{R}^n \to \mathbb{C}$,

$$f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}.$$

$$(\Delta f_v)(x) = - \sum_j \frac{\partial^2}{\partial x_j^2} f_v(x)$$

$$= - \sum_j \frac{\partial}{\partial x_j} ((2\pi i) v_j f_v(x))$$

$$= - \sum_j (2\pi i)^2 v_j^2 f_v(x)$$

$$= 4\pi^2 \left(\sum_j v_j^2 \right) f_v(x)$$
$\S 2$ Flat tori

In \mathbb{R}^n, $\Delta = - \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)$.

$v \in \mathbb{R}^n \leadsto f_v : \mathbb{R}^n \to \mathbb{C}$,

$$f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}.$$

$$(\Delta f_v)(x) = - \sum_j \frac{\partial^2}{\partial x_j^2} f_v(x)$$

$$= - \sum_j \frac{\partial}{\partial x_j} ((2\pi i)v_j f_v(x))$$

$$= - \sum_j (2\pi i)^2 v_j^2 f_v(x)$$

$$= 4\pi^2 (\sum_j v_j^2) f_v(x) = 4\pi^2 \| v \|^2 f_v(x).$$

But \mathbb{R}^n is not compact!
§2 Flat tori

In \mathbb{R}^n, $\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}\right)$.

$v \in \mathbb{R}^n \leadsto f_v : \mathbb{R}^n \rightarrow \mathbb{C},$

$$f_v(x) = e^{2\pi i \langle x, v \rangle} = e^{2\pi i (x_1 v_1 + \cdots + x_n v_n)}.$$

$$(\Delta f_v)(x) = - \sum_j \frac{\partial^2}{\partial x_j^2} f_v(x)$$

$$= - \sum_j \frac{\partial}{\partial x_j} ((2\pi i) v_j f_v(x))$$

$$= - \sum_j (2\pi i)^2 v_j^2 f_v(x)$$

$$= 4\pi^2 (\sum_j v_j^2) f_v(x) = 4\pi^2 \|v\|^2 f_v(x).$$

But \mathbb{R}^n is not compact!
Let Λ be a lattice in \mathbb{R}^n.
Let \(\Lambda \) be a lattice in \(\mathbb{R}^n \) (i.e. \(\Lambda = \sum \alpha_j \mathbb{Z} \) for some basis \(\{\alpha_j\}_j \) of \(\mathbb{R}^n \)).

\[M_{\Lambda} := \mathbb{R}^n / \Lambda. \]

\(v + \Lambda = w + \Lambda \iff v - w \in \Lambda. \)

\(M_{\Lambda} \) is a flat torus. It is homeomorphic to ..., but it is flat.
Let Λ be a lattice in \mathbb{R}^n (i.e. $\Lambda = \sum \alpha_j \mathbb{Z}$ for some basis $\{\alpha_j\}_j$ of \mathbb{R}^n).

$M_\Lambda := \mathbb{R}^n/\Lambda$.
Let Λ be a lattice in \mathbb{R}^n (i.e. $\Lambda = \sum \alpha_j \mathbb{Z}$ for some basis $\{\alpha_j\}_j$ of \mathbb{R}^n).

$M_\Lambda := \mathbb{R}^n/\Lambda$.

$v + \Lambda = w + \Lambda \iff v - w \in \Lambda.$
Let Λ be a lattice in \mathbb{R}^n (i.e. $\Lambda = \sum \alpha_j \mathbb{Z}$ for some basis $\{\alpha_j\}_j$ of \mathbb{R}^n).

$M_\Lambda := \mathbb{R}^n / \Lambda.$

$v + \Lambda = w + \Lambda \iff v - w \in \Lambda.$

M_Λ is a flat torus.
Let Λ be a lattice in \mathbb{R}^n (i.e. $\Lambda = \sum \alpha_j \mathbb{Z}$ for some basis $\{\alpha_j\}_j$ of \mathbb{R}^n).

$M_\Lambda := \mathbb{R}^n / \Lambda$.

$v + \Lambda = w + \Lambda \iff v - w \in \Lambda$.

M_Λ is a flat torus.
Let Λ be a lattice in \mathbb{R}^n (i.e. $\Lambda = \sum \alpha_j \mathbb{Z}$ for some basis $\{\alpha_j\}_j$ of \mathbb{R}^n).

$M_\Lambda := \mathbb{R}^n / \Lambda$.

$v + \Lambda = w + \Lambda \iff v - w \in \Lambda$.

M_Λ is a flat torus.

It is homeomorphic to \mathbb{S}^1, but it is flat.
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \text{ for all } v \in \Lambda \}.$$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle \nu, w \rangle \in \mathbb{Z} \quad \text{for all} \quad \nu \in \Lambda \}. $$

$\nu \in \Lambda^*$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \text{ for all } v \in \Lambda \}.$$

$v \in \Lambda^* \rightsquigarrow f_v : M_\Lambda \to \mathbb{C}$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \text{ for all } v \in \Lambda \}.$$

$v \in \Lambda^* \leadsto f_v : M_\Lambda \to \mathbb{C}$ since, for $x \in \mathbb{R}^n$ and $w \in \Lambda$,

$$f_v(x + w) = e^{2\pi i \langle x + w, v \rangle}$$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \quad \text{for all} \quad v \in \Lambda \}. $$

$v \in \Lambda^* \quad \leadsto \quad f_v : M_\Lambda \to \mathbb{C}$ since, for $x \in \mathbb{R}^n$ and $w \in \Lambda$,

$$f_v(x + w) = e^{2\pi i \langle x + w, v \rangle} = e^{2\pi i \langle x, v \rangle} e^{2\pi i \langle w, v \rangle}$$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \ \text{for all} \ v \in \Lambda \}.$$

$v \in \Lambda^* \mapsto f_v : M_\Lambda \to \mathbb{C}$ since, for $x \in \mathbb{R}^n$ and $w \in \Lambda$,

$$f_v(x + w) = e^{2\pi i \langle x+w, v \rangle} = e^{2\pi i \langle x, v \rangle} e^{2\pi i \langle w, v \rangle} = f_v(x).$$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \text{ for all } v \in \Lambda \}.$$

Let $\nu \in \Lambda^*$ map to $f_\nu : M_\Lambda \to \mathbb{C}$ since, for $x \in \mathbb{R}^n$ and $w \in \Lambda$,

$$f_\nu(x + w) = e^{2\pi i \langle x + w, \nu \rangle} = e^{2\pi i \langle x, \nu \rangle} e^{2\pi i \langle w, \nu \rangle} = f_\nu(x).$$

Hence $f_\nu \in C^\infty(M_\Lambda)$.
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \text{ for all } v \in \Lambda \}.$$

$v \in \Lambda^* \rightsquigarrow f_v : M_\Lambda \to \mathbb{C}$ since, for $x \in \mathbb{R}^n$ and $w \in \Lambda$,

$$f_v(x + w) = e^{2\pi i \langle x+w, v \rangle} = e^{2\pi i \langle x, v \rangle} e^{2\pi i \langle w, v \rangle} = f_v(x).$$

Hence $f_v \in C^\infty(M_\Lambda) \subseteq L^2(M_\Lambda)$, a Hilbert space with

$$\langle f, g \rangle = \frac{1}{\text{vol}(M_\Lambda)} \int_{M_\Lambda} f(x)\overline{g(x)} \, dx.$$
Given a lattice Λ of \mathbb{R}^n, we associate the dual lattice

$$\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \quad \text{for all} \ v \in \Lambda \}.$$

$$v \in \Lambda^* \quad \leadsto \quad f_v : M_\Lambda \to \mathbb{C} \quad \text{since, for} \ x \in \mathbb{R}^n \ \text{and} \ w \in \Lambda,$$

$$f_v(x + w) = e^{2\pi i \langle x+w, v \rangle} = e^{2\pi i \langle x, v \rangle} e^{2\pi i \langle w, v \rangle} = f_v(x).$$

Hence $f_v \in C^\infty(M_\Lambda) \subseteq L^2(M_\Lambda)$, a Hilbert space with

$$\langle f, g \rangle = \frac{1}{\text{vol}(M_\Lambda)} \int_{M_\Lambda} f(x) \overline{g(x)} \, dx.$$

For $v, w \in \Lambda^*$,

$$\langle f_v, f_w \rangle = \frac{1}{\text{vol}(M_\Lambda)} \int_{M_\Lambda} e^{2\pi i \langle x, v-w \rangle} \, dx.$$
Given a lattice \(\Lambda \) of \(\mathbb{R}^n \), we associate the dual lattice

\[
\Lambda^* := \{ w \in \mathbb{R}^n : \langle v, w \rangle \in \mathbb{Z} \quad \text{for all} \ v \in \Lambda \}.
\]

\(v \in \Lambda^* \implies f_v : M_\Lambda \to \mathbb{C} \) since, for \(x \in \mathbb{R}^n \) and \(w \in \Lambda \),

\[
f_v(x + w) = e^{2\pi i \langle x + w, v \rangle} = e^{2\pi i \langle x, v \rangle} e^{2\pi i \langle w, v \rangle} = f_v(x).
\]

Hence \(f_v \in C^\infty(M_\Lambda) \subseteq L^2(M_\Lambda) \), a Hilbert space with

\[
\langle f, g \rangle = \frac{1}{\text{vol}(M_\Lambda)} \int_{M_\Lambda} f(x) \overline{g(x)} \, dx.
\]

For \(v, w \in \Lambda^* \),

\[
\langle f_v, f_w \rangle = \frac{1}{\text{vol}(M_\Lambda)} \int_{M_\Lambda} e^{2\pi i \langle x, v - w \rangle} \, dx = \begin{cases} 1 & \text{if } v = w, \\ 0 & \text{if } v \neq w. \end{cases}
\]
We have proven that $\{f_v\}_{v \in \Lambda^*}$ is an orthonormal set in $L^2(M_\Lambda)$.
We have proven that $\{f_\nu\}_{\nu \in \Lambda^*}$ is an orthonormal set in $L^2(M_\Lambda)$.

For $\nu \in \Lambda$ and $f \in C^\infty(M_\Lambda)$, the Fourier transform:

$$\hat{f}(\nu) = \int_{M_\Lambda} f(x)e^{-2\pi i \langle x, \nu \rangle} \, dx$$

Hence, $\{f_\nu\}_{\nu \in \Lambda^*}$ is an orthonormal basis of $L^2(M_\Lambda)$ (since $C^\infty(M_\Lambda)$ is dense in $L^2(M_\Lambda)$).
We have proven that $\{f_v\}_{v \in \Lambda^*}$ is an orthonormal set in $L^2(M_\Lambda)$.

For $v \in \Lambda$ and $f \in C^\infty(M_\Lambda)$, the Fourier transform:

$$\hat{f}(v) = \int_{M_\Lambda} f(x) e^{-2\pi i \langle x, v \rangle} \, dx = \langle f, f_v \rangle.$$
We have proven that \(\{f_v\}_{v \in \Lambda^*} \) is an orthonormal set in \(L^2(M_\Lambda) \).

For \(v \in \Lambda \) and \(f \in C^\infty(M_\Lambda) \), the Fourier transform:

\[
\hat{f}(v) = \int_{M_\Lambda} f(x)e^{-2\pi i \langle x, v \rangle} \, dx = \langle f, f_v \rangle.
\]

The Fourier series satisfies

\[
\sum_{v \in \Lambda} \hat{f}(v) e^{2\pi i \langle x, v \rangle} = f(x).
\]
We have proven that $\{f_v\}_{v \in \Lambda^*}$ is an orthonormal set in $L^2(M_\Lambda)$.

For $v \in \Lambda$ and $f \in C^\infty(M_\Lambda)$, the Fourier transform:

$$\hat{f}(v) = \int_{M_\Lambda} f(x) e^{-2\pi i \langle x, v \rangle} \, dx = \langle f, f_v \rangle.$$

The Fourier series satisfies

$$\sum_{v \in \Lambda} \hat{f}(v) e^{2\pi i \langle x, v \rangle} = f(x).$$

Hence, $\{f_v\}_{v \in \Lambda^*}$ is an orthonormal basis of $L^2(M_\Lambda)$ (since $C^\infty(M_\Lambda)$ is dense in $L^2(M_\Lambda)$).
Furthermore, $\{f_v\}_{v \in \Lambda^*}$ are eigenfunctions of Δ,

\[
\text{Spec}(\mathcal{M}_{\Lambda}) = \{\frac{4\pi^2}{\|v\|^2} : v \in \Lambda^*\}.
\]

In other words, if $\mu \in \mathbb{R} \geq 0$, then $\text{mult}(\frac{4\pi^2}{\mu}) = \# \{v \in \Lambda^* : \|v\|^2 = \mu\}$.
Furthermore, \(\{ f_v \}_{v \in \Lambda^*} \) are eigenfunctions of \(\Delta \), thus

\[
\text{Spec}(M_\Lambda) = \{ \{ 4\pi^2 \| v \|^2 : v \in \Lambda^* \} \}.
\]
Furthermore, \(\{ f_{\nu} \}_{\nu \in \Lambda^*} \) are eigenfunctions of \(\Delta \), thus

\[
\text{Spec}(M_{\Lambda}) = \{ \{ 4\pi^2 \| \nu \|^2 : \nu \in \Lambda^* \} \}.
\]

In other words, if \(\mu \in \mathbb{R}_{\geq 0} \), then

\[
\text{mult}(4\pi^2 \mu) = \# \{ \nu \in \Lambda^* : \| \nu \|^2 = \mu \}.
\]
Example: $\Lambda = \mathbb{Z}^n$
Example: $\Lambda = \mathbb{Z}^n = \Lambda^*$.
Example: $\Lambda = \mathbb{Z}^n = \Lambda^*$. For $\mu \in \mathbb{N}_0$,

$$\text{mult}(4\pi^2\mu) = \# \{ v \in \mathbb{Z}^n : \|v\|^2 = \mu \}$$
Example: $\Lambda = \mathbb{Z}^n = \Lambda^*$. For $\mu \in \mathbb{N}_0$,

$$\text{mult}(4\pi^2 \mu) = \# \{ \nu \in \mathbb{Z}^n : \|\nu\|^2 = \mu \} = \# \{(a_1, \ldots, a_n) \in \mathbb{Z}^n : a_1^2 + \cdots + a_n^2 = \mu \} =: r_n(\mu).$$
Example: $\Lambda = \mathbb{Z}^n = \Lambda^*$. For $\mu \in \mathbb{N}_0$,

$$\text{mult}(4\pi^2 \mu) = \#\{v \in \mathbb{Z}^n : \|v\|^2 = \mu\} = \#\{(a_1, \ldots, a_n) \in \mathbb{Z}^n : a_1^2 + \cdots + a_n^2 = \mu\} =: r_n(\mu).$$

Compute $r_n(\mu)$ is a classical problem in number theory.
Example: \[\Lambda = \mathbb{Z}^n = \Lambda^*. \] For \(\mu \in \mathbb{N}_0, \)

\[
mult(4\pi^2 \mu) = \# \{ v \in \mathbb{Z}^n : \|v\|^2 = \mu \}
= \# \{(a_1, \ldots, a_n) \in \mathbb{Z}^n : a_1^2 + \cdots + a_n^2 = \mu \} =: r_n(\mu).
\]

Compute \(r_n(\mu) \) is a classical problem in number theory.

\[
r_4(\mu) = 8 \sum_{d|\mu \atop 4|d} d \quad \text{(Jacobi)},
\]
Example: \(\Lambda = \mathbb{Z}^n = \Lambda^* \). For \(\mu \in \mathbb{N}_0 \),

\[
\text{mult}(4\pi^2 \mu) = \# \{ v \in \mathbb{Z}^n : \|v\|^2 = \mu \}
= \# \{ (a_1, \ldots, a_n) \in \mathbb{Z}^n : a_1^2 + \cdots + a_n^2 = \mu \} =: r_n(\mu).
\]

Compute \(r_n(\mu) \) is a classical problem in number theory.

\[
r_4(\mu) = 8 \sum_{d|\mu, \; d \equiv 0 (\text{mod} \; 4)} d \quad \text{(Jacobi)},
\]

\[
r_2(\mu) = 4 \left(d_1(\mu) - d_3(\mu) \right),
\]

where \(d_j(\mu) = \# \{ d : d | \mu, \; d \equiv j \; (\text{mod} \; 4) \} \).
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962) The flat tori \(\mathbb{R}^n / \Lambda_1\) and \(\mathbb{R}^n / \Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda^*_1, \| \cdot \|_2^2)\) and \((\Lambda^*_2, \| \cdot \|_2^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R} \geq 0\),

\[
\# \{ v \in \Lambda^*_1 : \| v \|^2 = \mu \} = \# \{ v \in \Lambda^*_2 : \| v \|^2 = \mu \},
\]

if and only if

\[
\sum_{v \in \Lambda^*_1} q \| v \|^2 =: \vartheta_{\Lambda^*_1}(q) = \vartheta_{\Lambda^*_2}(q).
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8\), \(\Lambda_2 = D_{16} + 16\) satisfy the above condition. Witt used modular forms. For a simple proof, see [Conway, The sensual quadratic form]. There were more examples, going down the dimension until 4. It is also known that such example does not exist in dimension 3.
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^, \| \cdot \|^2)\) and \((\Lambda_2^*, \| \cdot \|^2)\) represent the same numbers (with multiplicities).*
In general \((\Lambda^*, \| \cdot \|_2^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^*, \| \cdot \|_2^2)\) and \((\Lambda_2^*, \| \cdot \|_2^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\#\{v \in \Lambda_1^* : \|v\|^2 = \mu\} = \#\{v \in \Lambda_2^* : \|v\|^2 = \mu\},
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8\), \(\Lambda_2 = D_4 + 16\) satisfy the above condition. Witt used modular forms. For a simple proof, see [Conway, The sensual quadratic form]. There were more examples, going down the dimension until 4. It is also known that such example does not exist in dimension 3.
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^*, \| \cdot \|^2)\) and \((\Lambda_2^*, \| \cdot \|^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\# \{ v \in \Lambda_1^* : \| v \|^2 = \mu \} = \# \{ v \in \Lambda_2^* : \| v \|^2 = \mu \},
\]

if and only if

\[
\sum_{v \in \Lambda_1^*} q \| v \|^2 =: \vartheta_{\Lambda_1^*}(q) = \vartheta_{\Lambda_2^*}(q).
\]
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda^*_1, \| \cdot \|^2)\) and \((\Lambda^*_2, \| \cdot \|^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\# \{ v \in \Lambda^*_1 : \| v \|^2 = \mu \} = \# \{ v \in \Lambda^*_2 : \| v \|^2 = \mu \},
\]

if and only if

\[
\sum_{v \in \Lambda^*_1} q \| v \|^2 =: \vartheta_{\Lambda^*_1}(q) = \vartheta_{\Lambda^*_2}(q).
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8\), \(\Lambda_2 = D_{16}^+\) satisfy the above condition.
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^*, \| \cdot \|^2)\) and \((\Lambda_2^*, \| \cdot \|^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\# \{ v \in \Lambda_1^* : \| v \|^2 = \mu \} = \# \{ v \in \Lambda_2^* : \| v \|^2 = \mu \},
\]

if and only if

\[
\sum_{v \in \Lambda_1^*} q^{\| v \|^2} =: \vartheta_{\Lambda_1^*}(q) = \vartheta_{\Lambda_2^*}(q).
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8, \Lambda_2 = D_{16}^+\) satisfy the above condition. Witt used modular forms.
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^*, \| \cdot \|^2)\) and \((\Lambda_2^*, \| \cdot \|^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\# \{ v \in \Lambda_1^* : \| v \|^2 = \mu \} = \# \{ v \in \Lambda_2^* : \| v \|^2 = \mu \},
\]

if and only if

\[
\sum_{v \in \Lambda_1^*} q \| v \|^2 =: \vartheta_{\Lambda_1^*}(q) = \vartheta_{\Lambda_2^*}(q).
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8\), \(\Lambda_2 = D_{16}^+\) satisfy the above condition. Witt used modular forms. For a simple proof, see [Conway, The sensual quadratic form].
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^*, \| \cdot \|^2)\) and \((\Lambda_2^*, \| \cdot \|^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\#\{v \in \Lambda_1^* : \|v\|^2 = \mu\} = \#\{v \in \Lambda_2^* : \|v\|^2 = \mu\},
\]

if and only if

\[
\sum_{v \in \Lambda_1^*} q^\|v\|^2 =: \vartheta_{\Lambda_1^*}(q) = \vartheta_{\Lambda_2^*}(q).
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8, \Lambda_2 = D_{16}^+\) satisfy the above condition.

Witt used modular forms. For a simple proof, see [Conway, The sensual quadratic form].

There were more examples, going down the dimension until 4.
In general \((\Lambda^*, \| \cdot \|^2)\) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori \(\mathbb{R}^n/\Lambda_1\) and \(\mathbb{R}^n/\Lambda_2\) are isospectral if and only if the quadratic forms \((\Lambda_1^*, \| \cdot \|^2)\) and \((\Lambda_2^*, \| \cdot \|^2)\) represent the same numbers (with multiplicities), that is, for each \(\mu \in \mathbb{R}_{\geq 0}\),

\[
\# \{ v \in \Lambda_1^* : \| v \|^2 = \mu \} = \# \{ v \in \Lambda_2^* : \| v \|^2 = \mu \},
\]

if and only if

\[
\sum_{v \in \Lambda_1^*} q \| v \|^2 =: \vartheta_{\Lambda_1^*}(q) = \vartheta_{\Lambda_2^*}(q).
\]

Witt in 1942 proved that the quadratic forms associated to \(\Lambda_1 = E_8 \oplus E_8, \Lambda_2 = D_{16}^+\) satisfy the above condition. Witt used modular forms. For a simple proof, see [Conway, The sensual quadratic form].
There were more examples, going down the dimension until 4. It is also known that such example does not exist in dimension 3.
§3 Lens spaces

3.1 Spectrum of S^n

$$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}.$$
§3 Lens spaces

3.1 Spectrum of S^n

$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}$.

$\Delta = - \left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right)$ Laplacian on \mathbb{R}^{n+1}.

Theorem
If f is a harmonic ($\Delta f = 0$) homogeneous polynomial of degree k, then

$\Delta S^n f = k(k+n-1)f$.

§3 Lens spaces

3.1 Spectrum of S^n

$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}.$

$\Delta = - \left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right)$ Laplacian on \mathbb{R}^{n+1}.

$\Delta_S :=$ Laplacian on S^n.
3.1 Spectrum of S^n

$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}$.

$\Delta = - \left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right)$ Laplacian on \mathbb{R}^{n+1}.

$\Delta_S :=$ Laplacian on S^n.

$f \in C^\infty(S^n)$
§3 Lens spaces

3.1 Spectrum of S^n

$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}.$

$\Delta = - \left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right)$ Laplacian on \mathbb{R}^{n+1}.

$\Delta_S :=$ Laplacian on S^n.

$f \in C^\infty(S^n) \rightsquigarrow \hat{f} : \mathbb{R}^{n+1} \setminus \{0\} \rightarrow \mathbb{C}$, $x \mapsto f(\frac{x}{|x|}).$
§3 Lens spaces

3.1 Spectrum of S^n

$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}$.

$\Delta = -\left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right)$ Laplacian on \mathbb{R}^{n+1}.

$\Delta_S :=$ Laplacian on S^n.

$f \in C^\infty(S^n) \sim \hat{f} : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{C}$, $x \mapsto f(\frac{x}{|x|})$.

$\Delta_S f = (\Delta \hat{f})|_{S^n}$ (it requires a proof).
§3 Lens spaces

3.1 Spectrum of S^n

$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \}.$

$\Delta = - \left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right)$ Laplacian on \mathbb{R}^{n+1}.

$\Delta_S := \text{Laplacian on } S^n.$

$f \in C^\infty(S^n) \leadsto \hat{f} : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{C}, \ x \mapsto f(\frac{x}{|x|}).$

$\Delta_S f = (\Delta \hat{f})|_{S^n}$ (it requires a proof).

Theorem

If f is a harmonic ($\Delta f = 0$) homogeneous polynomial of degree k, then
§3 Lens spaces

3.1 Spectrum of \(S^n \)

\[S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} x_i^2 = 1 \} \]

\[\Delta = - \left(\sum_{i=0}^{n} \frac{\partial}{\partial x_i^2} \right) \text{ Laplacian on } \mathbb{R}^{n+1}. \]

\[\Delta_S := \text{Laplacian on } S^n. \]

\[f \in C^\infty(S^n) \leadsto \hat{f} : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{C}, \ x \mapsto f(\frac{x}{|x|}). \]

\[\Delta_S f = (\Delta \hat{f})|_{S^n} \text{ (it requires a proof).} \]

Theorem

If \(f \) is a harmonic \((\Delta f = 0)\) homogeneous polynomial of degree \(k \), then

\[\Delta_S f = k(k + n - 1)f. \]
Proof.
Let f be a harmonic homogeneous polynomial of degree k.
Proof.
Let \(f \) be a harmonic homogeneous polynomial of degree \(k \). Let \(r = |x| \), thus \(r^2 = \sum_i x_i^2 \).
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

$$(\Delta \hat{f})(x) = \Delta(f(\frac{x}{r}))$$
Proof.
Let f be a harmonic homogeneous polynomial of degree k.
Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

$$(\Delta \hat{f})(x) = \Delta(f(\frac{x}{r})) = \Delta(r^{-k}f(x))$$
Proof.
Let \(f \) be a harmonic homogeneous polynomial of degree \(k \).
Let \(r = |x| \), thus \(r^2 = \sum_i x_i^2 \).

\[
(\Delta \hat{f})(x) = \Delta(f(\frac{x}{r})) = \Delta(r^{-k}f(x)) = -\sum_{i=0}^{n} \frac{\partial^2}{\partial x_i^2}(r^2)^{-\frac{k}{2}}f(x)
\]
Proof.
Let \(f \) be a harmonic homogeneous polynomial of degree \(k \).
Let \(r = |x| \), thus \(r^2 = \sum_i x_i^2 \).

\[
(\Delta \hat{f})(x) = \Delta (f(\frac{x}{r})) = \Delta (r^{-k} f(x)) = -\sum_{i=0}^{n} \frac{\partial^2}{\partial x_i^2} \left((r^2)^{-\frac{k}{2}} f(x) \right)
\]

\[
= -\sum_{i=0}^{n} \frac{\partial}{\partial x_i} \left(-\frac{k}{2} (r^2)^{-(\frac{k}{2}+1)} 2x_i f(x) + (r^2)^{-\frac{k}{2}} \frac{\partial f}{\partial x_i}(x) \right)
\]
Proof.

Let \(f \) be a harmonic homogeneous polynomial of degree \(k \).

Let \(r = |x| \), thus \(r^2 = \sum_i x_i^2 \).

\[
(\Delta \hat{f})(x) = \Delta(f(\frac{x}{r})) = \Delta(r^{-k}f(x)) = -\sum_{i=0}^{n} \frac{\partial^2}{\partial x_i^2} \left((r^2)^{-\frac{k}{2}} f(x)\right)
\]

\[
= -\sum_{i=0}^{n} \frac{\partial}{\partial x_i} \left(-\frac{k}{2}(r^2)^{-\left(\frac{k}{2}+1\right)} 2x_i f(x) + (r^2)^{-\frac{k}{2}} \frac{\partial f}{\partial x_i}(x)\right)
\]

\[
= -\sum_{i=0}^{n} \left(k\left(\frac{k}{2} + 1\right)(r^2)^{-\left(\frac{k}{2}+2\right)} 2x_i^2 f(x) - k(r^2)^{-\left(\frac{k}{2}+1\right)} f(x)
-2k(r^2)^{-\left(\frac{k}{2}+1\right)} x_i \frac{\partial f}{\partial x_i}(x) + (r^2)^{-\frac{k}{2}} \frac{\partial^2 f}{\partial x_i^2}(x)\right)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

\[
(\Delta \hat{f})(x) = \Delta(f(\frac{x}{r})) = \Delta(r^{-k}f(x)) = - \sum_{i=0}^{n} \frac{\partial^2}{\partial x_i^2} \left((r^2)^{-\frac{k}{2}} f(x) \right)
\]

\[
= - \sum_{i=0}^{n} \frac{\partial}{\partial x_i} \left(-\frac{k}{2}(r^2)^{-\left(\frac{k}{2}+1\right)} 2x_i f(x) + (r^2)^{-\frac{k}{2}} \frac{\partial f}{\partial x_i}(x) \right)
\]

\[
= - \sum_{i=0}^{n} \left(k(\frac{k}{2} + 1)(r^2)^{-\left(\frac{k}{2}+2\right)} 2x_i^2 f(x) - k(r^2)^{-\left(\frac{k}{2}+1\right)} f(x)
\]

\[-2k(r^2)^{-\left(\frac{k}{2}+1\right)} x_i \frac{\partial f}{\partial x_i}(x) + (r^2)^{-\frac{k}{2}} \frac{\partial^2 f}{\partial x_i^2}(x) \right)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

$$(\Delta \hat{f})(x) = -\sum_{i=0}^{n} \left(k(k+2)(r^2)^{-\left(\frac{k}{2}+2\right)} x_i^2 f(x) \right)$$

$$-k(r^2)^{-\left(\frac{k}{2}+1\right)} f(x)$$

$$-2k(r^2)^{-\left(\frac{k}{2}+1\right)} x_i \frac{\partial f}{\partial x_i}(x)$$

$$+(r^2)^{-\frac{k}{2}} \frac{\partial^2 f}{\partial x_i^2}(x)$$
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

\[
(\Delta \hat{f})(x) = -k(k + 2)(r^2)^{-(\frac{k}{2}+2)} \left(\sum_{i=0}^{n} x_i^2 \right) f(x) \\
+ \sum_{i=0}^{n} k(r^2)^{-(\frac{k}{2}+1)} f(x) \\
+ 2k(r^2)^{-(\frac{k}{2}+1)} \left(\sum_{i=0}^{n} x_i \frac{\partial f}{\partial x_i}(x) \right) \\
- (r^2)^{-\frac{k}{2}} \left(\sum_{i=0}^{n} \frac{\partial^2 f}{\partial x_i^2}(x) \right)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

\[
(\Delta \hat{f})(x) = -k(k + 2)(r^2)^{-\left(\frac{k}{2}+2\right)} r^2 f(x) \\
+ \sum_{i=0}^{n} k(r^2)^{-\left(\frac{k}{2}+1\right)} f(x) \\
+ 2k(r^2)^{-\left(\frac{k}{2}+1\right)} \left(\sum_{i=0}^{n} x_i \frac{\partial f}{\partial x_i}(x) \right) \\
- (r^2)^{-\frac{k}{2}} \left(\sum_{i=0}^{n} \frac{\partial^2 f}{\partial x_i^2}(x) \right)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

\[
(\Delta \hat{f})(x) = -k(k + 2)(r^2)^{-(\frac{k}{2} + 2)}r^2f(x) \\
+ (n + 1)k(r^2)^{-(\frac{k}{2} + 1)}f(x) \\
+ 2k(r^2)^{-(\frac{k}{2} + 1)}\left(\sum_{i=0}^{n} x_i \frac{\partial f}{\partial x_i}(x)\right) \\
- (r^2)^{-\frac{k}{2}}\left(\sum_{i=0}^{n} \frac{\partial^2 f}{\partial x_i^2}(x)\right)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

\[
(\Delta \widehat{f})(x) = -k(k + 2)(r^2)^{-\left(\frac{k}{2}+2\right)} r^2 f(x) \\
+ (n + 1)k(r^2)^{-\left(\frac{k}{2}+1\right)} f(x) \\
+ 2k(r^2)^{-\left(\frac{k}{2}+1\right)} kf(x) \\
- (r^2)^{-\frac{k}{2}} \left(\sum_{i=0}^{n} \frac{\partial^2 f}{\partial x_i^2}(x) \right)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

\[
(\Delta \hat{f})(x) = -k(k+2)(r^2)^{-\left(\frac{k}{2}+2\right)} r^2 f(x) \\
+ (n+1)k(r^2)^{-\left(\frac{k}{2}+1\right)} f(x) \\
+ 2k^2(r^2)^{-\left(\frac{k}{2}+1\right)} f(x) \\
- (r^2)^{-\frac{k}{2}} (\Delta f)(x) \\
\]

= 0
Proof.
Let f be a harmonic homogeneous polynomial of degree k.
Let $r = |x|$, thus $r^2 = \sum_i x_i^2$. If $x \in S^n$, then $r = 1$.

$$(\Delta S f)(x) = (\Delta \hat{f})(x) = -k(k + 2)(r^2)^{-(\frac{k}{2}+2)} r^2 f(x) + (n + 1)k(r^2)^{-(\frac{k}{2}+1)} f(x) + 2k^2(r^2)^{-(\frac{k}{2}+1)} f(x)$$
Proof.
Let \(f \) be a harmonic homogeneous polynomial of degree \(k \).
Let \(r = |x| \), thus \(r^2 = \sum_i x_i^2 \). If \(x \in S^n \), then \(r = 1 \).

\[
(\Delta_S f)(x) = (\hat{\Delta} f)(x) = -k(k + 2)f(x) + (n + 1)kf(x) + 2k^2 f(x)
\]
Proof.
Let f be a harmonic homogeneous polynomial of degree k. Let $r = |x|$, thus $r^2 = \sum_i x_i^2$.

$$(\Delta_S f)(x) = k(k + n - 1)f(x)$$
\[\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}, \]
\[P_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}, \quad H_k := \{ f \in P_k : \Delta f = 0 \}, \]
\(\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}, \ H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \}, \)

Theorem
\(\Delta : \mathcal{P}_k \to \mathcal{P}_{k-2} \) is surjective.
\(\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)} \), \(H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \} \),

Theorem

\(\Delta : \mathcal{P}_k \to \mathcal{P}_{k-2} \) is surjective. Moreover, \(\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} \).
\(\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)} \), \(H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \} \),

Theorem

\(\Delta : \mathcal{P}_k \to \mathcal{P}_{k-2} \) is surjective. Moreover, \(\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} \).

Hence

\[
\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2}
\]
\[\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}, \quad H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \}, \]

Theorem

\(\Delta : \mathcal{P}_k \to \mathcal{P}_{k-2} \) is surjective. Moreover, \(\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} \).

Hence

\[\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} = H_k \oplus r^2 (H_{k-2} \oplus r^2 \mathcal{P}_{k-4}) \]
$\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}$, $H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \}$,

Theorem

$\Delta : \mathcal{P}_k \to \mathcal{P}_{k-2}$ is surjective. Moreover, $\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2}$.

Hence

\[
\mathcal{P}_k = H_k \mathcal{P}_{k-2} = H_k \oplus r^2 (H_{k-2} \oplus r^2 \mathcal{P}_{k-4}) \\
= H_k \oplus r^2 H_{k-2} \oplus r^4 H_{k-4} \oplus \cdots \oplus \begin{cases} \\
 r^k H_0 & \text{if } n \text{ is even}, \\
 r^{k-1} H_1 & \text{if } n \text{ is odd}.
\end{cases}
\]
\[P_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)},
\quad H_k := \{ f \in P_k : \Delta f = 0 \}, \]

Theorem

\[\Delta : P_k \rightarrow P_{k-2} \text{ is surjective. Moreover, } P_k = H_k \oplus r^2 P_{k-2}. \]

Hence

\[
P_k = H_k \oplus r^2 P_{k-2} = H_k \oplus r^2(H_k \oplus r^2 P_{k-4}) \]

\[
= H_k \oplus r^2 H_{k-2} \oplus r^4 H_{k-4} \oplus \cdots \oplus \begin{cases} r^k H_0 & \text{if } n \text{ is even,} \\ r^{k-1} H_1 & \text{if } n \text{ is odd.} \end{cases}
\]

Thus, every polynomial restricted to \(S^n \) (\(r = 1 \)) is sum of harmonic polynomials.
\[\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}, \ H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \}, \]

Theorem

\(\Delta : \mathcal{P}_k \to \mathcal{P}_{k-2} \) is surjective. Moreover, \(\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} \).

Hence

\[
\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} = H_k \oplus r^2 (H_{k-2} \oplus r^2 \mathcal{P}_{k-4})
\]

\[
= H_k \oplus r^2 H_{k-2} \oplus r^4 H_{k-4} \oplus \cdots \oplus \begin{cases} r^k H_0 & \text{if } n \text{ is even}, \\ r^{k-1} H_1 & \text{if } n \text{ is odd}. \end{cases}
\]

Thus, every polynomial restricted to \(S^n (r = 1) \) is sum of harmonic polynomials. By Weierstrass approximation theorem, one shows that

\[
L^2(S^n) = \bigoplus_{k \geq 0} H_k
\]
\(\mathcal{P}_k := \mathbb{C}[x_0, \ldots, x_n]^{(k)}, \) \(H_k := \{ f \in \mathcal{P}_k : \Delta f = 0 \}, \)

Theorem

\(\Delta : \mathcal{P}_k \rightarrow \mathcal{P}_{k-2} \) is surjective. Moreover, \(\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} \).

Hence

\[
\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} = H_k \oplus r^2 (H_{k-2} \oplus r^2 \mathcal{P}_{k-4}) \\
= H_k \oplus r^2 H_{k-2} \oplus r^4 H_{k-4} \oplus \cdots \oplus \begin{cases} r^k H_0 & \text{if } n \text{ is even}, \\ r^{k-1} H_1 & \text{if } n \text{ is odd}. \end{cases}
\]

Thus, every polynomial restricted to \(S^n \) \((r = 1) \) is sum of harmonic polynomials. By Weierstrass approximation theorem, one shows that

\[
L^2(S^n) = \bigoplus_{k \geq 0} H_k \quad \text{(Hilbert sum)}.
\]
We conclude that the spectrum of S^n is:
We conclude that the spectrum of S^n is:

$$\lambda_k := k(k + n - 1) \in \text{Spec}(S^n) \quad \forall k \geq 0.$$
We conclude that the spectrum of S^n is:

$$\lambda_k := k(k + n - 1) \in \text{Spec}(S^n) \quad \forall \; k \geq 0.$$

$$\text{mult}(\lambda_k) = \dim H_k$$
We conclude that the spectrum of S^n is:

$$\lambda_k := k(k + n - 1) \in \text{Spec}(S^n) \quad \forall k \geq 0.$$

$$\text{mult}(\lambda_k) = \dim H_k = \dim \mathcal{P}_k - \dim \mathcal{P}_{k-2}$$

since $\mathcal{P}_k = H_k \oplus r^2\mathcal{P}_{k-2} \simeq H_k \oplus \mathcal{P}_{k-2}$.
We conclude that the spectrum of S^n is:

$$\lambda_k := k(k + n - 1) \in \text{Spec}(S^n) \quad \forall k \geq 0.$$

$$\text{mult}(\lambda_k) = \dim H_k = \dim \mathcal{P}_k - \dim \mathcal{P}_{k-2}$$

since $\mathcal{P}_k = H_k \oplus r^2 \mathcal{P}_{k-2} \cong H_k \oplus \mathcal{P}_{k-2}$.

Hence

$$\text{mult}(\lambda_k) = \binom{k+n}{n} - \binom{k-2+n}{n}.$$