A Note On Polar Representations

Francisco J. Gozzi
USP
São Paulo, Brasil.

August 4th 2016
Polar Representations

An orthogonal representation of a compact Lie group G is called *polar* if it admits an orthogonal cross-section, i.e., a linear subspace intersecting every G-orbit and doing so orthogonally.

They were first considered by J. Szenthe and J. Dadok. Consider connected G.

- Dadok ’85: Polar representations are orbit equivalent to s-representations.
Riemannian Polar G-manifolds

A complete Riemannian manifold M together with a proper isometric action of a Lie group G is said to be polar if it admits a section, i.e., an immersed complete submanifold Σ of M intersecting every G-orbit and doing so orthogonally.

Examples:
- The standard linear action of \mathbb{T}^n on \mathbb{R}^{2n}.
- The action of a compact Lie group G on itself by conjugation.
- For a symmetric pair (G, K) the left action of K on G/K.
- Any action of cohomogeneity one.
- Slice representations of a polar action are polar representations.
Orbit space structure

\[N(\Sigma) = \{ g \in G | g \cdot \Sigma = \Sigma \} \]

\(Z(\Sigma) \) point-wise stabilizer of the section.

\(W = N(\Sigma)/Z(\Sigma) \) acts isometrically on \(\Sigma \) so that

\[\Sigma/W \cong M/G. \]
Orbit space structure

\[N(\Sigma) = \{ g \in G \mid g \cdot \Sigma = \Sigma \} \]

\(Z(\Sigma) \) point-wise stabilizer of the section.

\(W = N(\Sigma)/Z(\Sigma) \) acts isometrically on \(\Sigma \) so that

\[\Sigma/W \cong M/G. \]

Construct a (candidate) fundamental domain \(C \subset \Sigma \) as a connected component of the complement of codimension one strata in \(\Sigma \), later closed.

A *Coxeter Polar* action is a polar action without exceptional strata and such that \(C \) gives a strict fundamental domain of the action.
Coxeter polar actions

\[C \cong \Sigma/W \cong M/G. \]

Boundary of \(C \subseteq \Sigma \) is stratified by totally geodesic faces.

Faces of \(C \) have constant \(W \)-isotropy in \(\Sigma \) and constant \(G \)-isotropy in \(M \).
Coxeter polar actions

\[C \cong \Sigma/W \cong M/G. \]

Boundary of \(C \subseteq \Sigma \) is stratified by totally geodesic faces.

Faces of \(C \) have constant \(W \)-isotropy in \(\Sigma \) and constant \(G \)-isotropy in \(M \).

- **Grove-Ziller, 2012**: Coxeter polar data \((C, G(C)) \) determines a Coxeter polar manifold \(M(C, G(C)) \) up to equivariant diffeomorphism.

 A polar action of a connected Lie group on a simply-connected manifold is Coxeter polar.
Some examples:

\[M = S^4 \]

\[M = \mathbb{CP}^2 \]

\[M = \begin{cases} S^2 \times S^2 & k \text{ even} \\ \mathbb{CP}^2 \# - \mathbb{CP}^2 & k \text{ odd} \end{cases} \]
\[G = \text{SO}(3) \times T(1), \quad M = \#_n S^3 \times S^2. \]
Back to representations:

An irreducible polar representation is identified by the group G and a principal isotropy subgroup. This is false for reducible polar representations.
Back to representations:

An irreducible polar representation is identified by the group G and a principal isotropy subgroup. This is false for reducible polar representations.

The isotropy subgroup data near a point in $p \in C$ is a *history* at p.
Back to representations:

An irreducible polar representation is identified by the group G and a principal isotropy subgroup. This is false for reducible polar representations.

The isotropy subgroup data near a point in $p \in C$ is a history at p.

Proposition (.)

A Coxeter polar representation is determined by its history and dimension.
Proof:
Assume G is connected.
We can determine the polar group W from the given history.
Generating reflections are given by the unique involutions in $N_{K_i}(H)/H$, for next-to-minimal subgroups K_i.

Francisco J. Gozzi
A Note On Polar Representations
Proof:
Assume G is connected.
We can determine the polar group W from the given history.
Generating reflections are given by the unique involutions in $N_{K_i}(H)/H$, for next-to-minimal subgroups K_i.
W is a Coxeter group, which decomposes uniquely as a product of irreducible factors,

$$W = W_1 \times \cdots \times W_l.$$

The representation and section decompose accordingly as

$$V = V_0 \oplus V_1 \oplus \cdots \oplus V_l.$$

$$\Sigma = V_0 \oplus \Sigma_1 \oplus \cdots \oplus \Sigma_l.$$
\(\Sigma_i \) is point-wise fixed by the action of \\
\(\mathcal{W}_{\Sigma_i} := (\mathcal{W}_1 \times \cdot \cdot \cdot \times \hat{\mathcal{W}}_i \times \cdot \cdot \cdot \mathcal{W}_l) \subset N(H)/H. \) \\
The isotropy group \(G_{p_i} \) of a generic regular point \(p_i \) in \(\Sigma_i \) is the unique minimal group in the history such that \\

\[
G_{p_i} \supset \mathcal{W}_{\Sigma_i} \cdot H.
\]
Σ_i is point-wise fixed by the action of

$W_{\Sigma_i} := (W_1 \times \cdots \times \hat{W}_i \times \cdots W_l) \subset N(H)/H$.

The isotropy group G_{p_i} of a generic regular point p_i in Σ_i is the unique minimal group in the history such that

$$G_{p_i} \supset W_{\Sigma_i} \cdot H.$$

Notice that the restricted action of G on V_i has principal isotropy group G_{p_i}.

Make the action effective and recognize it.
Σ_i is point-wise fixed by the action of $\mathcal{W}_{\Sigma_i} := (\mathcal{W}_1 \times \cdots \times \hat{\mathcal{W}}_i \times \cdots \mathcal{W}_l) \subset N(H)/H$.

The isotropy group G_{p_i} of a generic regular point p_i in Σ_i is the unique minimal group in the history such that

$$G_{p_i} \supset \mathcal{W}_{\Sigma_i} \cdots H.$$

Notice that the restricted action of G on V_i has principal isotropy group G_{p_i}.

Make the action effective and recognize it.

We have determined the representation

$$G \xrightarrow{\oplus i \rho_i} SO(V_1) \times \cdots \times SO(V_l)$$

The dimension n is only required to determine the trivial subspace V_0.

\Box
Thank you!