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Submanifolds

Let M and M̄ be Riemannian manifolds, when M is a subset of M̄ and the
inclusion map is an isometric immersion, then we say that M is a submanifold of
M̄ .
Let M be submanifold of M̄ , the Riemannian metric on M̄ induces along M on
ortogonal splitting of TM̄ . TM̄ |M = TM ⊕ νM .
The vector bundle νM is called the normal bundle of M , the fibre at p ∈M is
the normal space at p and is denoted by νpM .
A section of νM is called a normal vector field.
Let X,Y be a vector field on M and ξ a normal vector field of M , and ∇̄,∇ the
Levi-Civita connections of M̄ and M respectively. Then we have the next
equations without care the extensions of the fields in the ambient space.
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Submanifolds

∇̄XY = ∇XY + α(X,Y ) Gauss formula.
∇̄Xξ = −AξX +∇⊥Xξ Weingarten formula.
Observation: 1. α is called the second fundamental form which one C∞-bilinear
symmetric tensor field with values in the normal bundle.
2.∇⊥ define a metric connection over the normal bundle and is called normal
connection.
3. Aξ is called the shape operator of M in direction of ξ and is related to the
second fundamental form by the equation: 〈α(x, y), ξ〉 = 〈AξX,Y 〉.
4. Aξ is a self-adjoint tensor field on M , Aξ(p) does not depend on the extension
of ξp as a normal vector field.
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Submanifolds

From now M̄ = RN , SN

Definition

A submanifold M of RN is called full if it is not contained in any proper affine
subspace of RN .

Definition

If M1 ⊂ RN1 and M2 ⊂ RN2 are (Riemannian) submanifolds then M1 ×M2 is a
submanifold of RN1+N2 which is called the product of M1 by M2. A submanifold
of euclidian space is called irreducible if it is not a product of manifolds.

Definition
The rank of a Euclidean submanifold is the maximal number of linearly
independent, locally defined, parallel normal fields.
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Holonomy

Let M be a submanifold of M̄ . Let p ∈M and c be a piecewise differentiable
curve in M with c(0) = c(1) = p then the ∇⊥-parallel transport along c induces a
linear isometry

τ⊥c : νpM → νpM

.

Definition
The normal holonomy group to p is the set
{τ⊥c : c is a piecewise differentiable curves in M with c(0) = c(1) = p, and we
denote by Φ(p), the restricted normal holonomy group Φ∗(p), it is the identity
component of the holonomy.

Observations: Φ(p),Φ ∗ (p) ⊂ O(νpM), they are Lie subgroups of the ortogonal
group. If M is connected, the normal holonomy groups from two points are
conjugated by the parallel transport, for this reason we write just Φ and Φ∗
instead Φ(p) or Φ ∗ (p) respectively.
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Holonomy

Normal Holonomy Theorem (1990-Olmos)

Let M be a connected submanifold of a standard space form M̄n(k). Let p ∈M
and let Φ∗ be the restricted normal holonomy group at p. Then Φ∗ is compact,
there exists a unique (up to order) orthogonal decomposition
νpM = V0 ⊕ ...⊕ Vm of the normal space νpM into Φ∗-invariant subspaces and
there exists normal subgroups Φ0, ...,Φm of Φ∗ such that:

i Φ∗ = Φ0 × ...× Φm (direct product)

ii Φi acts trivially on Vj if j 6= i.

iii Φ0 = {1} and, if i ≥ 1, Φi acts irreducibly on Vi as the isotropy
representation of an irreducible Symmetric Riemannian space.

Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).
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Holonomy

An S-representation is by definition the isotropy representation of the simply
connected, semisimple and symmetric space M = G/K. And the orbits, orbits of
S-representations.

upper bound Theorem (2015-Olmos-Riaño)

Let Mn a homogeneous Euclidean submanifold and let r the number of no-trivial
irreducible factor subspaces of the normal space in the normal holonomy theorem,
the r ≤ n

2 .

Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67,

No. 3, 903 - 942 (2015)..
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Motivation

Rank rigidity theorem for homogeneous euclidian submanifolds
(1994-Olmos)

An irreducible full homogeneous submanifold of euclidean space of rank at least 2,
which is not a curve, is an orbit of an S-representation, moreover a homogeneous
euclidean submanifold with rank at least 1 must always be contained in a sphere.

He formulated the following conjecture, like a possible genelalization of the last
theorem.

conjecture

An irreducible full homogeneous submanifold of the sphere, different from a curve,
such that the normal holonomy group does not act transitively on the unit sphere
of the normal space, must be an orbit of an S-representation.

Olmos, C., Homogeneous Submanifolds of Higher Rank and Parallel Mean Curvatura, J. Differential Geom. 39 (1994), 605-627.
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Motivation

The conjecture is true when n = 2 (the conjecture is empty in this case).
the conjecture is true when n = 3 (2015 Olmos-Riaño)
The conjecture is actually equivalent to the following two conjectures taken
together.
a) Let M be a homogeneous irreducible and full submanifolds of the sphere,
different from a curve, which is not an orbit of an S-representation. Then the
normal holonomy group acts irreducibly.
b) Let M be a homogeneous and full submanifolds of the sphere such that the
normal holonomy acts irreducibly and is non-transitive. The M is an orbit of an
S-representation.

Olmos, C., On the Geometry of Holonomy Systems, L’Enseignement Mathématique, t. 51 (2005), p 335-349.
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Definition

The first normal space ν1p of M at p is the linear span of
{α(X,Y ) | X,Y ∈ TpM} ⊂ νpM , that is, the orthogonal complement in νpM of
the ξ ∈ νpM for which Aξ = 0. This is because the equation
〈α(x, y), ξ〉 = 〈AξX,Y 〉.

Proposition 1. 2005-Olmos

Let Mn, n ≥ 2, be a homogeneous irreducible full submanifold of the euclidean
space such that the normal holonomy group in each irreducible factor (of the
normal holonomy theorem) acts non-transitively on the unity sphere. Then the
first normal space of M coincides with the normal space.

Remarks:

i. In b) the codim(M) ≤ n(n+1)
2 because A : ξ → Aξ is an injective map of

the normal space in the symmetric matrices n× n; if the codimension is
maximal the A is bijective.

ii. In b) the normal space like sphere submanifold is ¯νp(M) = νp(M) ∩ {p}⊥

Olmos, C., On the Geometry of Holonomy Systems, L’Enseignement Mathématique, t. 51 (2005), p 335-349.
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results

remember the part b) Let M be a homogeneous and full submanifolds of the
sphere such that the normal holonomy acts irreducibly and is non-transitive. The
M is an orbit of an S-representation.
If we include the hypothesis that M is an irreducible submanifold then we have
the following results:

In maximal dimension (2015-Olmos-Riaño)

Let Mn, n ≥ 2, homogeneous irreducible full submanifold of the euclidean space

and the sphere S
n(n+1)

2 +n−1, such that the normal holonomy group acts
non-transitively and irreducible in ¯νp(M) then M is an orbit of an
S-representation.
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No. 3, 903 - 942 (2015).

(Universidad de los Andes) Submanifolds and Holonomy 2016 12 / 14



results

remember the part b) Let M be a homogeneous and full submanifolds of the
sphere such that the normal holonomy acts irreducibly and is non-transitive. The
M is an orbit of an S-representation.
If we include the hypothesis that M is an irreducible submanifold then we have
the following results:

In maximal dimension (2015-Olmos-Riaño)

Let Mn, n ≥ 2, homogeneous irreducible full submanifold of the euclidean space

and the sphere S
n(n+1)

2 +n−1, such that the normal holonomy group acts
non-transitively and irreducible in ¯νp(M) then M is an orbit of an
S-representation.

Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67,

No. 3, 903 - 942 (2015).

(Universidad de los Andes) Submanifolds and Holonomy 2016 12 / 14



results

remember the part b) Let M be a homogeneous and full submanifolds of the
sphere such that the normal holonomy acts irreducibly and is non-transitive. The
M is an orbit of an S-representation.
If we include the hypothesis that M is an irreducible submanifold then we have
the following results:

In maximal dimension (2015-Olmos-Riaño)

Let Mn, n ≥ 2, homogeneous irreducible full submanifold of the euclidean space

and the sphere S
n(n+1)

2 +n−1, such that the normal holonomy group acts
non-transitively and irreducible in ¯νp(M) then M is an orbit of an
S-representation.

Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67,

No. 3, 903 - 942 (2015).

(Universidad de los Andes) Submanifolds and Holonomy 2016 12 / 14



results

remember the part b) Let M be a homogeneous and full submanifolds of the
sphere such that the normal holonomy acts irreducibly and is non-transitive. The
M is an orbit of an S-representation.
If we include the hypothesis that M is an irreducible submanifold then we have
the following results:

In maximal dimension (2015-Olmos-Riaño)

Let Mn, n ≥ 2, homogeneous irreducible full submanifold of the euclidean space

and the sphere S
n(n+1)

2 +n−1, such that the normal holonomy group acts
non-transitively and irreducible in ¯νp(M) then M is an orbit of an
S-representation.

Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67,

No. 3, 903 - 942 (2015).

(Universidad de los Andes) Submanifolds and Holonomy 2016 12 / 14



results

remember the part b) Let M be a homogeneous and full submanifolds of the
sphere such that the normal holonomy acts irreducibly and is non-transitive. The
M is an orbit of an S-representation.
If we include the hypothesis that M is an irreducible submanifold then we have
the following results:

In maximal dimension (2015-Olmos-Riaño)

Let Mn, n ≥ 2, homogeneous irreducible full submanifold of the euclidean space

and the sphere S
n(n+1)

2 +n−1, such that the normal holonomy group acts
non-transitively and irreducible in ¯νp(M) then M is an orbit of an
S-representation.

Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67,

No. 3, 903 - 942 (2015).

(Universidad de los Andes) Submanifolds and Holonomy 2016 12 / 14



Remarks:(2015-Olmos-Riano)
1. The conjecture for case 3 is included in the previous theorem by upper bound
Theorem.
2. In the previous theorem we can change that M is a homogeneous irreducible

full submanifold of the sphere S
n(n+1)

2 +n−1 by M is a complete(inmmersed) and

minimal(Traza(Aξ) = 0) submanifold of the sphere S
n(n+1)

2 +n−1.

Definition

Let M an Homogeneous submanifold of SN . Let νpM the normal at p we call a
subspace of νpM maximal abelian if a is a maximal subspace of νpM such that
[Aξ, Aη] = 0,∀ξ, η ∈ a. Then the normal holonomy of M has sections of the
compact type if exp(iAa) (exp the matrix exponential) is compact for all
maximal abelian.

theorem. 2016-Olmos-Riaño

Let Mn, n ≥ 2, be a homogeneous submanifold of the SN such that the normal
holonomy acts irreducibly and non-transitively. Then M is an orbit of an
irreducible S-representation if and only if the normal holonomy of M has sections
of compact type.
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