Submanifolds and Holonomy

Richar Fernando Riaño Riaño

VI Workshop on Differential Geometry (EGEO)

2016

(Universidad de los Andes)

≣ ▶ ≣ পিও 2016 2/14

・ロン ・聞き ・ モン・ モーン

Let M and \bar{M} be Riemannian manifolds, when M is a subset of \bar{M} and the inclusion map is an isometric immersion, then we say that M is a **submanifold** of \bar{M} .

Let M be submanifold of \overline{M} , the Riemannian metric on \overline{M} induces along M on ortogonal splitting of $T\overline{M}$. $T\overline{M}|_M = TM \oplus \nu M$.

The vector bundle νM is called the **normal bundle** of M, the fibre at $p \in M$ is the normal space at p and is denoted by $\nu_p M$.

A section of νM is called a **normal vector field**.

Let X, Y be a vector field on M and ξ a normal vector field of M, and $\overline{\nabla}, \nabla$ the Levi-Civita connections of \overline{M} and M respectively. Then we have the next equations without care the extensions of the fields in the ambient space.

Let M and \overline{M} be Riemannian manifolds, when M is a subset of \overline{M} and the inclusion map is an isometric immersion, then we say that M is a **submanifold** of \overline{M} .

Let M be submanifold of \overline{M} , the Riemannian metric on \overline{M} induces along M on ortogonal splitting of $T\overline{M}$. $T\overline{M}|_M = TM \oplus \nu M$.

The vector bundle νM is called the **normal bundle** of M, the fibre at $p \in M$ is the normal space at p and is denoted by $\nu_p M$.

A section of νM is called a **normal vector field**.

Let X, Y be a vector field on M and ξ a normal vector field of M, and $\overline{\nabla}, \nabla$ the Levi-Civita connections of \overline{M} and M respectively. Then we have the next equations without care the extensions of the fields in the ambient space.

イロン イヨン イヨン イヨン

Let M and \overline{M} be Riemannian manifolds, when M is a subset of \overline{M} and the inclusion map is an isometric immersion, then we say that M is a **submanifold** of \overline{M} .

Let M be submanifold of \overline{M} , the Riemannian metric on \overline{M} induces along M on ortogonal splitting of $T\overline{M}$. $T\overline{M}|_M = TM \oplus \nu M$.

The vector bundle νM is called the **normal bundle** of M, the fibre at $p \in M$ is the normal space at p and is denoted by $\nu_p M$.

A section of νM is called a **normal vector field**.

Let X, Y be a vector field on M and ξ a normal vector field of M, and $\overline{\nabla}, \nabla$ the Levi-Civita connections of \overline{M} and M respectively. Then we have the next equations without care the extensions of the fields in the ambient space.

Let M and \overline{M} be Riemannian manifolds, when M is a subset of \overline{M} and the inclusion map is an isometric immersion, then we say that M is a **submanifold** of \overline{M} .

Let M be submanifold of \overline{M} , the Riemannian metric on \overline{M} induces along M on ortogonal splitting of $T\overline{M}$. $T\overline{M}|_M = TM \oplus \nu M$.

The vector bundle νM is called the **normal bundle** of M, the fibre at $p \in M$ is the normal space at p and is denoted by $\nu_p M$.

A section of νM is called a **normal vector field**.

Let X, Y be a vector field on M and ξ a normal vector field of M, and $\overline{\nabla}, \nabla$ the Levi-Civita connections of \overline{M} and M respectively. Then we have the next equations without care the extensions of the fields in the ambient space.

$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y)$ Gauss formula. $\overline{\nabla}_X \xi = -A_{\xi}X + \nabla_X^{\perp} \xi$ Weingarten formula.

Observation: 1. α is called the second fundamental form which one C^{∞} -bilinear symmetric tensor field with values in the normal bundle.

 $2.\nabla^{\perp}$ define a metric connection over the normal bundle and is called **normal** connection.

3. A_{ξ} is called the shape operator of M in direction of ξ and is related to the second fundamental form by the equation: $\langle \alpha(x, y), \xi \rangle = \langle A_{\xi} X, Y \rangle$.

4. A_{ξ} is a self-adjoint tensor field on M, $A_{\xi}(p)$ does not depend on the extension of ξ_p as a normal vector field.

$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y)$ Gauss formula. $\overline{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$ Weingarten formula.

Observation: 1. α is called the second fundamental form which one C^{∞} -bilinear symmetric tensor field with values in the normal bundle.

2. $abla^{\perp}$ define a metric connection over the normal bundle and is called **normal** connection.

3. A_{ξ} is called the shape operator of M in direction of ξ and is related to the second fundamental form by the equation: $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

4. A_{ξ} is a self-adjoint tensor field on M, $A_{\xi}(p)$ does not depend on the extension of ξ_p as a normal vector field.

 $\bar{\nabla}_X Y = \nabla_X Y + \alpha(X,Y)$ Gauss formula.

 $\overline{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$ Weingarten formula.

Observation: 1. α is called the second fundamental form which one C^{∞} -bilinear symmetric tensor field with values in the normal bundle.

 $2.\nabla^{\perp}$ define a metric connection over the normal bundle and is called **normal connection**.

3. A_{ξ} is called the shape operator of M in direction of ξ and is related to the second fundamental form by the equation: $\langle \alpha(x, y), \xi \rangle = \langle A_{\xi}X, Y \rangle$. 4. A_{ξ} is a self-adjoint tensor field on M, $A_{\xi}(p)$ does not depend on the extension of ξ .

 $\bar{\nabla}_X Y = \nabla_X Y + \alpha(X,Y)$ Gauss formula.

 $\overline{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$ Weingarten formula.

Observation: 1. α is called the second fundamental form which one C^{∞} -bilinear symmetric tensor field with values in the normal bundle.

 $2.\nabla^{\perp}$ define a metric connection over the normal bundle and is called **normal** connection.

3. A_{ξ} is called the shape operator of M in direction of ξ and is related to the second fundamental form by the equation: $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

4. A_{ξ} is a self-adjoint tensor field on M, $A_{\xi}(p)$ does not depend on the extension of ξ_p as a normal vector field.

 $\bar{\nabla}_X Y = \nabla_X Y + \alpha(X,Y)$ Gauss formula.

 $\overline{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$ Weingarten formula.

Observation: 1. α is called the second fundamental form which one C^{∞} -bilinear symmetric tensor field with values in the normal bundle.

 $2.\nabla^{\perp}$ define a metric connection over the normal bundle and is called **normal** connection.

3. A_{ξ} is called the shape operator of M in direction of ξ and is related to the second fundamental form by the equation: $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

4. A_{ξ} is a self-adjoint tensor field on M, $A_{\xi}(p)$ does not depend on the extension of ξ_p as a normal vector field.

ヘロト 人間ト 人団ト 人団ト

From now $\bar{M} = \mathbb{R}^N, S^N$

Definition

A submanifold M of \mathbb{R}^N is called **full** if it is not contained in any proper affine subspace of \mathbb{R}^N .

Definition

If $M_1 \subset \mathbb{R}^{N_1}$ and $M_2 \subset \mathbb{R}^{N_2}$ are (Riemannian) submanifolds then $M_1 \times M_2$ is a submanifold of $\mathbb{R}^{N_1+N_2}$ which is called the product of M_1 by M_2 . A submanifold of euclidian space is called irreducible if it is not a product of manifolds.

Definition

The rank of a Euclidean submanifold is the maximal number of linearly independent, locally defined, parallel normal fields.

Submanifolds

From now $\bar{M} = \mathbb{R}^N, S^N$

Definition

A submanifold M of \mathbb{R}^N is called **full** if it is not contained in any proper affine subspace of \mathbb{R}^N .

Definition

If $M_1 \subset \mathbb{R}^{N_1}$ and $M_2 \subset \mathbb{R}^{N_2}$ are (Riemannian) submanifolds then $M_1 \times M_2$ is a submanifold of $\mathbb{R}^{N_1+N_2}$ which is called the product of M_1 by M_2 . A submanifold of euclidian space is called irreducible if it is not a product of manifolds.

Definition

The rank of a Euclidean submanifold is the maximal number of linearly independent, locally defined, parallel normal fields.

イロン イヨン イヨン イヨン

Submanifolds

From now $\bar{M} = \mathbb{R}^N, S^N$

Definition

A submanifold M of \mathbb{R}^N is called **full** if it is not contained in any proper affine subspace of \mathbb{R}^N .

Definition

If $M_1 \subset \mathbb{R}^{N_1}$ and $M_2 \subset \mathbb{R}^{N_2}$ are (Riemannian) submanifolds then $M_1 \times M_2$ is a submanifold of $\mathbb{R}^{N_1+N_2}$ which is called the product of M_1 by M_2 . A submanifold of euclidian space is called irreducible if it is not a product of manifolds.

Definition

The rank of a Euclidean submanifold is the maximal number of linearly independent, locally defined, parallel normal fields.

Submanifolds

From now $\bar{M} = \mathbb{R}^N, S^N$

Definition

A submanifold M of \mathbb{R}^N is called **full** if it is not contained in any proper affine subspace of \mathbb{R}^N .

Definition

If $M_1 \subset \mathbb{R}^{N_1}$ and $M_2 \subset \mathbb{R}^{N_2}$ are (Riemannian) submanifolds then $M_1 \times M_2$ is a submanifold of $\mathbb{R}^{N_1+N_2}$ which is called the product of M_1 by M_2 . A submanifold of euclidian space is called irreducible if it is not a product of manifolds.

Definition

The rank of a Euclidean submanifold is the maximal number of linearly independent, locally defined, parallel normal fields.

イロン イヨン イヨン イヨン

Let M be a submanifold of \overline{M} . Let $p \in M$ and c be a piecewise differentiable curve in M with c(0) = c(1) = p then the ∇^{\perp} -parallel transport along c induces a linear isometry

 $\tau_c^{\perp}: \nu_p M \to \nu_p M$

Definition

The normal holonomy group to p is the set

 $\{\tau_c^{\perp} : c \text{ is a piecewise differentiable curves in } M \text{ with } c(0) = c(1) = p$, and we denote by $\Phi(p)$, the restricted normal holonomy group $\Phi^*(p)$, it is the identity component of the holonomy.

Observations: $\Phi(p), \Phi * (p) \subset O(\nu_p M)$, they are Lie subgroups of the ortogonal group. If M is connected, the normal holonomy groups from two points are conjugated by the parallel transport, for this reason we write just Φ and $\Phi *$ instead $\Phi(p)$ or $\Phi * (p)$ respectively.

Let M be a submanifold of \overline{M} . Let $p \in M$ and c be a piecewise differentiable curve in M with c(0) = c(1) = p then the ∇^{\perp} -parallel transport along c induces a linear isometry

 $\tau_c^{\perp}: \nu_p M \to \nu_p M$

Definition

The normal holonomy group to p is the set $\{\tau_c^{\perp} : c \text{ is a piecewise differentiable curves in } M \text{ with } c(0) = c(1) = p$, and we denote by $\Phi(p)$, the restricted normal holonomy group $\Phi^*(p)$, it is the identity component of the holonomy.

Observations: $\Phi(p), \Phi * (p) \subset O(\nu_p M)$, they are Lie subgroups of the ortogonal group. If M is connected, the normal holonomy groups from two points are conjugated by the parallel transport, for this reason we write just Φ and $\Phi *$ instead $\Phi(p)$ or $\Phi * (p)$ respectively.

<ロ> (四) (四) (三) (三) (三) (三)

Let M be a submanifold of \overline{M} . Let $p \in M$ and c be a piecewise differentiable curve in M with c(0) = c(1) = p then the ∇^{\perp} -parallel transport along c induces a linear isometry

 $\tau_c^{\perp}: \nu_p M \to \nu_p M$

Definition

The normal holonomy group to p is the set $\{\tau_c^{\perp} : c \text{ is a piecewise differentiable curves in } M \text{ with } c(0) = c(1) = p$, and we denote by $\Phi(p)$, the restricted normal holonomy group $\Phi^*(p)$, it is the identity component of the holonomy.

Observations: $\Phi(p), \Phi * (p) \subset O(\nu_p M)$, they are Lie subgroups of the ortogonal group. If M is connected, the normal holonomy groups from two points are conjugated by the parallel transport, for this reason we write just Φ and $\Phi *$ instead $\Phi(p)$ or $\Phi * (p)$ respectively.

<ロ> (四) (四) (三) (三) (三) (三)

Let M be a submanifold of \overline{M} . Let $p \in M$ and c be a piecewise differentiable curve in M with c(0) = c(1) = p then the ∇^{\perp} -parallel transport along c induces a linear isometry

 $\tau_c^{\perp}: \nu_p M \to \nu_p M$

Definition

The normal holonomy group to p is the set $\{\tau_c^{\perp} : c \text{ is a piecewise differentiable curves in } M \text{ with } c(0) = c(1) = p$, and we denote by $\Phi(p)$, the restricted normal holonomy group $\Phi^*(p)$, it is the identity component of the holonomy.

Observations: $\Phi(p), \Phi * (p) \subset O(\nu_p M)$, they are Lie subgroups of the ortogonal group. If M is connected, the normal holonomy groups from two points are conjugated by the parallel transport, for this reason we write just Φ and $\Phi *$ instead $\Phi(p)$ or $\Phi * (p)$ respectively.

Let M be a connected submanifold of a standard space form $\overline{M}^n(k)$. Let $p \in M$ and let Φ^* be the restricted normal holonomy group at p. Then Φ^* is compact, there exists a unique (up to order) orthogonal decomposition $\nu_p M = V_0 \oplus ... \oplus V_m$ of the normal space $\nu_p M$ into Φ^* -invariant subspaces and there exists normal subgroups $\Phi_0, ..., \Phi_m$ of Φ^* such that:

i $\Phi^* = \Phi_0 imes ... imes \Phi_m$ (direct product)

ii Φ_i acts trivially on V_j if j
eq i

iii $\Phi_0 = \{1\}$ and, if $i \ge 1$, Φ_i acts irreducibly on V_i as the isotropy representation of an irreducible Symmetric Riemannian space.

Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990)

Let M be a connected submanifold of a standard space form $\overline{M}^n(k)$. Let $p \in M$ and let Φ^* be the restricted normal holonomy group at p. Then Φ^* is compact, there exists a unique (up to order) orthogonal decomposition $\nu_p M = V_0 \oplus ... \oplus V_m$ of the normal space $\nu_p M$ into Φ^* -invariant subspaces and there exists normal subgroups $\Phi_0, ..., \Phi_m$ of Φ^* such that:

i $\Phi^* = \Phi_0 imes ... imes \Phi_m$ (direct product)

ii Φ_i acts trivially on V_j if j
eq i.

iii $\Phi_0 = \{1\}$ and, if $i \ge 1$, Φ_i acts irreducibly on V_i as the isotropy representation of an irreducible Symmetric Riemannian space.

Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990)

Let M be a connected submanifold of a standard space form $\overline{M}^n(k)$. Let $p \in M$ and let Φ^* be the restricted normal holonomy group at p. Then Φ^* is compact, there exists a unique (up to order) orthogonal decomposition $\nu_p M = V_0 \oplus ... \oplus V_m$ of the normal space $\nu_p M$ into Φ^* -invariant subspaces and there exists normal subgroups $\Phi_0, ..., \Phi_m$ of Φ^* such that:

i $\Phi^* = \Phi_0 imes ... imes \Phi_m$ (direct product)

ii Φ_i acts trivially on V_j if $j \neq i$.

iii $\Phi_0 = \{1\}$ and, if $i \ge 1$, Φ_i acts irreducibly on V_i as the isotropy representation of an irreducible Symmetric Riemannian space.

Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990)

Let M be a connected submanifold of a standard space form $\overline{M}^n(k)$. Let $p \in M$ and let Φ^* be the restricted normal holonomy group at p. Then Φ^* is compact, there exists a unique (up to order) orthogonal decomposition $\nu_p M = V_0 \oplus \ldots \oplus V_m$ of the normal space $\nu_p M$ into Φ^* -invariant subspaces and there exists normal subgroups $\Phi_0, ..., \Phi_m$ of Φ^* such that:

i
$$\Phi^* = \Phi_0 imes ... imes \Phi_m$$
 (direct product)

ii Φ_i acts trivially on V_j if $j \neq i$.

iii $\Phi_0 = \{1\}$ and, if $i \ge 1$, Φ_i acts irreducibly on V_i as the isotropy representation of an irreducible Symmetric Riemannian space.

Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990)

Let M be a connected submanifold of a standard space form $\overline{M}^n(k)$. Let $p \in M$ and let Φ^* be the restricted normal holonomy group at p. Then Φ^* is compact, there exists a unique (up to order) orthogonal decomposition $\nu_p M = V_0 \oplus ... \oplus V_m$ of the normal space $\nu_p M$ into Φ^* -invariant subspaces and there exists normal subgroups $\Phi_0, ..., \Phi_m$ of Φ^* such that:

i
$$\Phi^* = \Phi_0 imes ... imes \Phi_m$$
 (direct product)

ii Φ_i acts trivially on V_j if $j \neq i$.

iii $\Phi_0 = \{1\}$ and, if $i \ge 1$, Φ_i acts irreducibly on V_i as the isotropy representation of an irreducible Symmetric Riemannian space.

Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).

An S-representation is by definition the isotropy representation of the simply connected, semisimple and symmetric space M = G/K. And the orbits, orbits of S-representations.

upper bound Theorem (2015-Olmos-Riaño

Let M^n a homogeneous Euclidean submanifold and let r the number of no-trivial irreducible factor subspaces of the normal space in the normal holonomy theorem, the $r \leq \frac{n}{2}$.

Olmos, C., Riaño, Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (ISMJ). Vol. 67, 40, 3, 903 - 942 (2015).

An S-representation is by definition the isotropy representation of the simply connected, semisimple and symmetric space M = G/K. And the orbits, orbits of S-representations.

upper bound Theorem (2015-Olmos-Riaño)

Let M^n a homogeneous Euclidean submanifold and let r the number of no-trivial irreducible factor subspaces of the normal space in the normal holonomy theorem, the $r \leq \frac{n}{2}$.

Olmos, C., Riaño, Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015)..

An S-representation is by definition the isotropy representation of the simply connected, semisimple and symmetric space M = G/K. And the orbits, orbits of S-representations.

upper bound Theorem (2015-Olmos-Riaño)

Let M^n a homogeneous Euclidean submanifold and let r the number of no-trivial irreducible factor subspaces of the normal space in the normal holonomy theorem, the $r \leq \frac{n}{2}$.

Olmos, C., Riaño, Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015)..

An irreducible full homogeneous submanifold of euclidean space of rank at least 2, which is not a curve, is an orbit of an S-representation, moreover a homogeneous euclidean submanifold with rank at least 1 must always be contained in a sphere.

He formulated the following conjecture, like a possible genelalization of the last theorem.

conjecture

An irreducible full homogeneous submanifold of the sphere, different from a curve, such that the normal holonomy group does not act transitively on the unit sphere of the normal space, must be an orbit of an S-representation.

Imos, C., Homogeneous Submanifolds of Higher Rank and Parallel Mean Curvatura, J. Differential Geom. 39 (1994), 605-627.

An irreducible full homogeneous submanifold of euclidean space of rank at least 2, which is not a curve, is an orbit of an S-representation, moreover a homogeneous euclidean submanifold with rank at least 1 must always be contained in a sphere.

He formulated the following conjecture, like a possible genelalization of the last theorem.

conjecture

An irreducible full homogeneous submanifold of the sphere, different from a curve, such that the normal holonomy group does not act transitively on the unit sphere of the normal space, must be an orbit of an S-representation.

Imos, C., Homogeneous Submanifolds of Higher Rank and Parallel Mean Curvatura, J. Differential Geom. 39 (1994), 605-627.

An irreducible full homogeneous submanifold of euclidean space of rank at least 2, which is not a curve, is an orbit of an S-representation, moreover a homogeneous euclidean submanifold with rank at least 1 must always be contained in a sphere.

He formulated the following conjecture, like a possible genelalization of the last theorem.

conjecture

An irreducible full homogeneous submanifold of the sphere, different from a curve, such that the normal holonomy group does not act transitively on the unit sphere of the normal space, must be an orbit of an S-representation.

Nmos, C., Homogeneous Submanifolds of Higher Rank and Parallel Mean Curvatura, J. Differential Geom. 39 (1994), 605-627.

An irreducible full homogeneous submanifold of euclidean space of rank at least 2, which is not a curve, is an orbit of an S-representation, moreover a homogeneous euclidean submanifold with rank at least 1 must always be contained in a sphere.

He formulated the following conjecture, like a possible genelalization of the last theorem.

conjecture

An irreducible full homogeneous submanifold of the sphere, different from a curve, such that the normal holonomy group does not act transitively on the unit sphere of the normal space, must be an orbit of an S-representation.

Olmos, C., Homogeneous Submanifolds of Higher Rank and Parallel Mean Curvatura, J. Differential Geom. 39 (1994), 605-627.

The conjecture is true when n = 2 (the conjecture is empty in this case).

the conjecture is true when n = 3 (2015 Olmos-Riaño)

The conjecture is actually equivalent to the following two conjectures taken together.

a) Let M be a homogeneous irreducible and full submanifolds of the sphere, different from a curve, which is not an orbit of an S-representation. Then the normal holonomy group acts irreducibly.

b) Let M be a homogeneous and full submanifolds of the sphere such that the normal holonomy acts irreducibly and is non-transitive. The M is an orbit of an S-representation.

mos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.

The conjecture is true when n = 2 (the conjecture is empty in this case). the conjecture is true when n = 3 (2015 Olmos-Riaño)

The conjecture is actually equivalent to the following two conjectures taken together.

a) Let M be a homogeneous irreducible and full submanifolds of the sphere, different from a curve, which is not an orbit of an S-representation. Then the normal holonomy group acts irreducibly.

b) Let M be a homogeneous and full submanifolds of the sphere such that the normal holonomy acts irreducibly and is non-transitive. The M is an orbit of an S-representation.

mos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.

The conjecture is true when n = 2 (the conjecture is empty in this case). the conjecture is true when n = 3 (2015 Olmos-Riaño)

The conjecture is actually equivalent to the following two conjectures taken together.

a) Let M be a homogeneous irreducible and full submanifolds of the sphere, different from a curve, which is not an orbit of an S-representation. Then the normal holonomy group acts irreducibly.

b) Let M be a homogeneous and full submanifolds of the sphere such that the normal holonomy acts irreducibly and is non-transitive. The M is an orbit of an S-representation.

Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the codim(M) ≤ n(n+1)/2 because A : ξ → A_ξ is an injective map of the normal space in the symmetric matrices n × n; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $u_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-345

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the codim(M) ≤ n(n+1)/2 because A : ξ → A_ξ is an injective map of the normal space in the symmetric matrices n × n; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $u_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-345

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the codim(M) ≤ n(n+1)/2 because A : ξ → A_ξ is an injective map of the normal space in the symmetric matrices n × n; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $\nu_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

, C. On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-344

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the codim(M) ≤ n(n+1)/2 because A : ξ → A_ξ is an injective map of the normal space in the symmetric matrices n × n; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $\nu_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

, C. On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-344

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the $codim(M) \leq \frac{n(n+1)}{2}$ because $A: \xi \to A_{\xi}$ is an injective map of the normal space in the symmetric matrices $n \times n$; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $\nu_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the codim(M) ≤ n(n+1)/2 because A : ξ → Aξ is an injective map of the normal space in the symmetric matrices n × n; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $\nu_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.

The first normal space ν_p^1 of M at p is the linear span of $\{\alpha(X,Y) \mid X, Y \in T_pM\} \subset \nu_pM$, that is, the orthogonal complement in ν_pM of the $\xi \in \nu_pM$ for which $A_{\xi} = 0$. This is because the equation $\langle \alpha(x,y), \xi \rangle = \langle A_{\xi}X, Y \rangle$.

Proposition 1. 2005-Olmos

Let M^n , $n \ge 2$, be a homogeneous irreducible full submanifold of the euclidean space such that the normal holonomy group in each irreducible factor (of the normal holonomy theorem) acts non-transitively on the unity sphere. Then the first normal space of M coincides with the normal space.

Remarks:

- i. In b) the codim(M) ≤ n(n+1)/2 because A : ξ → A_ξ is an injective map of the normal space in the symmetric matrices n × n; if the codimension is maximal the A is bijective.
- ii. In b) the normal space like sphere submanifold is $\nu_p(M) = \nu_p(M) \cap \{p\}^{\perp}$

Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.

If we include the hypothesis that ${\cal M}$ is an irreducible submanifold then we have the following results:

(2015-Olmos-Riaño) (2015-Olmos-Riaño)

Let M^n , $n \geq 2$, homogeneous irreducible full submanifold of the euclidean space and the sphere $S^{\frac{n(n+1)}{2}+n-1}$, such that the normal holonomy group acts non-transitively and irreducible in $\nu_p(M)$ then M is an orbit of an S-representation.

Olmos, C., Riaño, Richar, Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

If we include the hypothesis that M is an irreducible submanifold then we have the following results:

(2015-Olmos-Riaño) (2015-Olmos-Riaño)

Let M^n , $n \geq 2$, homogeneous irreducible full submanifold of the euclidean space and the sphere $S^{\frac{n(n+1)}{2}+n-1}$, such that the normal holonomy group acts non-transitively and irreducible in $\nu_p(M)$ then M is an orbit of an S-representation.

Olmos, C., Riaño, Richar, Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

<ロト <回ト < 回ト < 回ト

If we include the hypothesis that M is an irreducible submanifold then we have the following results:

(2015-Olmos-Riaño) (2015-Olmos-Riaño)

Let M^n , $n \geq 2$, homogeneous irreducible full submanifold of the euclidean space and the sphere $S^{\frac{n(n+1)}{2}+n-1}$, such that the normal holonomy group acts non-transitively and irreducible in $\nu_p(M)$ then M is an orbit of an S-representation.

Nimos, C., Riaño, Richar, Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, 10. 3, 903 - 942 (2015).

<ロト <回ト < 回ト < 回ト

If we include the hypothesis that M is an irreducible submanifold then we have the following results:

In maximal dimension (2015-Olmos-Riaño)

Let M^n , $n \geq 2$, homogeneous irreducible full submanifold of the euclidean space and the sphere $S^{\frac{n(n+1)}{2}+n-1}$, such that the normal holonomy group acts non-transitively and irreducible in $\nu_p(M)$ then M is an orbit of an S-representation.

Olmos, C., Riaño, Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

If we include the hypothesis that M is an irreducible submanifold then we have the following results:

In maximal dimension (2015-Olmos-Riaño)

Let M^n , $n \geq 2$, homogeneous irreducible full submanifold of the euclidean space and the sphere $S^{\frac{n(n+1)}{2}+n-1}$, such that the normal holonomy group acts non-transitively and irreducible in $\nu_p(M)$ then M is an orbit of an S-representation.

Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

イロン イヨン イヨン イヨン

1. The conjecture for case $\boldsymbol{3}$ is included in the previous theorem by upper bound Theorem.

2. In the previous theorem we can change that M is a homogeneous irreducible full submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$ by M is a complete(immersed) and minimal($Traza(A_{\xi}) = 0$) submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$.

Definition

Let M an Homogeneous submanifold of \mathbb{S}^N . Let $\nu_p M$ the normal at p we call a subspace of $\nu_p M$ maximal abelian if \mathfrak{a} is a maximal subspace of $\nu_p M$ such that $[A_{\xi}, A_{\eta}] = 0, \forall \xi, \eta \in \mathfrak{a}$. Then the normal holonomy of M has sections of the **compact type** if $\exp(iA_{\mathfrak{a}})$ (exp the matrix exponential) is compact for all maximal abelian.

2016-Olmos-Riaño

Let M^n , $n \ge 2$, be a homogeneous submanifold of the \mathbb{S}^N such that the normal holonomy acts irreducibly and non-transitively. Then M is an orbit of an irreducible S-representation if and only if the normal holonomy of M has sections of compact type.

1. The conjecture for case $\boldsymbol{3}$ is included in the previous theorem by upper bound Theorem.

2. In the previous theorem we can change that M is a homogeneous irreducible full submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$ by M is a complete(inmmersed) and minimal($Traza(A_{\xi}) = 0$) submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$.

Definition

Let M an Homogeneous submanifold of \mathbb{S}^N . Let $\nu_p M$ the normal at p we call a subspace of $\nu_p M$ maximal abelian if \mathfrak{a} is a maximal subspace of $\nu_p M$ such that $[A_{\xi}, A_{\eta}] = 0, \forall \xi, \eta \in \mathfrak{a}$. Then the normal holonomy of M has sections of the **compact type** if $\exp(iA_{\mathfrak{a}})$ (exp the matrix exponential) is compact for all maximal abelian.

2016-Olmos-Riaño

Let M^n , $n \ge 2$, be a homogeneous submanifold of the \mathbb{S}^N such that the normal holonomy acts irreducibly and non-transitively. Then M is an orbit of an irreducible S-representation if and only if the normal holonomy of M has sections of compact type.

1. The conjecture for case $\boldsymbol{3}$ is included in the previous theorem by upper bound Theorem.

2. In the previous theorem we can change that M is a homogeneous irreducible full submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$ by M is a complete(immersed) and minimal($Traza(A_{\xi}) = 0$) submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$.

Definition

Let M an Homogeneous submanifold of \mathbb{S}^N . Let $\nu_p M$ the normal at p we call a subspace of $\nu_p M$ maximal abelian if a is a maximal subspace of $\nu_p M$ such that $[A_{\xi}, A_{\eta}] = 0, \forall \xi, \eta \in \mathfrak{a}$. Then the normal holonomy of M has sections of the **compact type** if $\exp(iA_{\mathfrak{a}})$ (exp the matrix exponential) is compact for all maximal abelian.

theorem. 2016-Olmos-Riaño

Let M^n , $n \ge 2$, be a homogeneous submanifold of the \mathbb{S}^N such that the normal holonomy acts irreducibly and non-transitively. Then M is an orbit of an irreducible S-representation if and only if the normal holonomy of M has sections of compact type.

1. The conjecture for case $\boldsymbol{3}$ is included in the previous theorem by upper bound Theorem.

2. In the previous theorem we can change that M is a homogeneous irreducible full submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$ by M is a complete(immersed) and minimal($Traza(A_{\xi}) = 0$) submanifold of the sphere $S^{\frac{n(n+1)}{2}+n-1}$.

Definition

Let M an Homogeneous submanifold of \mathbb{S}^N . Let $\nu_p M$ the normal at p we call a subspace of $\nu_p M$ maximal abelian if a is a maximal subspace of $\nu_p M$ such that $[A_{\xi}, A_{\eta}] = 0, \forall \xi, \eta \in \mathfrak{a}$. Then the normal holonomy of M has sections of the **compact type** if $\exp(iA_{\mathfrak{a}})$ (exp the matrix exponential) is compact for all maximal abelian.

theorem. 2016-Olmos-Riaño

Let M^n , $n \ge 2$, be a homogeneous submanifold of the \mathbb{S}^N such that the normal holonomy acts irreducibly and non-transitively. Then M is an orbit of an irreducible S-representation if and only if the normal holonomy of M has sections of compact type.

イロン イヨン イヨン イヨン 三日

- Berndt, J., S. Console and C. Olmos., *Submanifolds and Holonomy*. CRC/Chapman and Hall, Research Notes Series in Mathematics 434. Boca Raton, 2003.
- Heintze, E., and Olmos, C., *Normal holonomy groups and S-representations*, Indiana Univ. Math. J. 41 (1992), 869-874.
 - Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).
- Olmos, C., Homogeneous Submanifolds and Higher Rank and Parallel Mean Curvature, J. Differ. Geom. 39, 605-627 (1994).
- Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.
- Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

- Berndt, J., S. Console and C. Olmos., Submanifolds and Holonomy. CRC/Chapman and Hall, Research Notes Series in Mathematics 434. Boca Raton, 2003.
- Heintze, E., and Olmos, C., *Normal holonomy groups and S-representations*, Indiana Univ. Math. J. 41 (1992), 869-874.
 - Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).
- Olmos, C., Homogeneous Submanifolds and Higher Rank and Parallel Mean Curvature, J. Differ. Geom. 39, 605-627 (1994).
- Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.
- Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

- Berndt, J., S. Console and C. Olmos., Submanifolds and Holonomy. CRC/Chapman and Hall, Research Notes Series in Mathematics 434. Boca Raton, 2003.
- Heintze, E., and Olmos, C., *Normal holonomy groups and S-representations*, Indiana Univ. Math. J. 41 (1992), 869-874.

Olmos C., *The normal holonomy group*, FProc. Amer. Math. Soc. 110 (1990).

- Olmos, C., Homogeneous Submanifolds and Higher Rank and Parallel Mean Curvature, J. Differ. Geom. 39, 605-627 (1994).
- Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.
- Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

イロン イヨン イヨン イヨン

- Berndt, J., S. Console and C. Olmos., Submanifolds and Holonomy. CRC/Chapman and Hall, Research Notes Series in Mathematics 434. Boca Raton, 2003.
- Heintze, E., and Olmos, C., *Normal holonomy groups and S-representations*, Indiana Univ. Math. J. 41 (1992), 869-874.
 - Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).
- Olmos, C., Homogeneous Submanifolds and Higher Rank and Parallel Mean Curvature, J. Differ. Geom. 39, 605-627 (1994).
- Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.
- Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

イロン イヨン イヨン イヨン

- Berndt, J., S. Console and C. Olmos., Submanifolds and Holonomy. CRC/Chapman and Hall, Research Notes Series in Mathematics 434. Boca Raton, 2003.
- Heintze, E., and Olmos, C., *Normal holonomy groups and S-representations*, Indiana Univ. Math. J. 41 (1992), 869-874.
 - Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).
- Olmos, C., Homogeneous Submanifolds and Higher Rank and Parallel Mean Curvature, J. Differ. Geom. 39, 605-627 (1994).
- Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.
- Olmos, C., Riaño,Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

- Berndt, J., S. Console and C. Olmos., Submanifolds and Holonomy. CRC/Chapman and Hall, Research Notes Series in Mathematics 434. Boca Raton, 2003.
- Heintze, E., and Olmos, C., *Normal holonomy groups and S-representations*, Indiana Univ. Math. J. 41 (1992), 869-874.
 - Olmos C., The normal holonomy group, FProc. Amer. Math. Soc. 110 (1990).
- Olmos, C., Homogeneous Submanifolds and Higher Rank and Parallel Mean Curvature, J. Differ. Geom. 39, 605-627 (1994).
- Olmos, C., On the Geometry of Holonomy Systems, L'Enseignement Mathématique, t. 51 (2005), p 335-349.
- Olmos, C., Riaño, Richar., Normal holonomy of orbits and Veronese submanifolds, journal of the mathematical society of japan (JSMJ). Vol. 67, No. 3, 903 - 942 (2015).

イロン イヨン イヨン イヨン