Parabolic geometries and H-type Lie algebras

Mauro Subils

CONICET / Universidad Nacional de Rosario

VI workshop on differential geometry, EGEO
August, 2016

Joint work with A. Kaplan
1. A special family of distributions
2. Parabolic subalgebras with H-type nilradical
3. Tanaka’s prolongation
4. Parabolic geometries
A special family of distributions

\mathcal{D} vector distribution on a smooth $M / [\mathcal{D}, \mathcal{D}] = TM$.

For every never vanishing 1-form λ on M such that $\lambda(\mathcal{D}) = 0$ define a 2-form ω_λ on \mathcal{D} by:

$$\omega_\lambda(X, Y) = \lambda([X, Y]) \quad \text{for } X, Y \in \mathcal{D}$$

The distribution is called **fat** if ω_λ is non-degenerate for every λ.

A fat distribution admits a **compatible subconformal structure** if there is a subconformal metric g on D that induces a metric compatible with ω_λ for every λ.
A special family of distributions

\(\mathcal{D} \) vector distribution on a smooth \(M / [\mathcal{D}, \mathcal{D}] = TM \).

For every never vanishing 1-form \(\lambda \) on \(M \) such that \(\lambda(\mathcal{D}) = 0 \) define a 2-form \(\omega_\lambda \) on \(\mathcal{D} \) by:

\[
\omega_\lambda(X, Y) = \lambda([X, Y]) \quad \text{for } X, Y \in \mathcal{D}
\]

The distribution is called **fat** if \(\omega_\lambda \) is non-degenerate for every \(\lambda \).

A fat distribution admits a **compatible subconformal structure** if there is a subconformal metric \(g \) on \(D \) that induces a metric compatible with \(\omega_\lambda \) for every \(\lambda \).
Generally, a distribution \mathcal{D} is called **regular** if there exists a family of distributions $\{\mathcal{D}^p\}_{p < 0}$ such that:

- $\mathcal{D} = \mathcal{D}^{-1} \subset \cdots \subset \mathcal{D}^p \subset \mathcal{D}^{p-1} \subset \cdots$
- $\mathcal{D}^{p-1} = \mathcal{D}^p + [\mathcal{D}^{-1}, \mathcal{D}^p]$ for all $p < 0$.

We assume that \mathcal{D} is **bracket-generating**, i.e. there exists $\mu \in \mathbb{N}$ such that $\mathcal{D}^{-\mu} = TM$.
Generally, a distribution \mathcal{D} is called **regular** if there exists a family of distributions $\{\mathcal{D}^p\}_{p<0}$ such that:

- $\mathcal{D} = \mathcal{D}^{-1} \subset \cdots \subset \mathcal{D}^p \subset \mathcal{D}^{p-1} \subset \cdots$
- $\mathcal{D}^{p-1} = \mathcal{D}^p + [\mathcal{D}^{-1}, \mathcal{D}^p]$ for all $p < 0$.

We assume that \mathcal{D} is **bracket-generating**, i.e. there exists $\mu \in \mathbb{N}$ such that $\mathcal{D}^{-\mu} = TM$.
For every $x \in M$ the vector space

$$n(x) = \bigoplus_{i=-1}^{-\mu} \frac{D^i(x)}{D^{i+1}(x)} = \bigoplus_{i=-1}^{-\mu} g^i(x)$$

is endowed naturally with the structure of a graded nilpotent Lie algebra ($[g^i(x), g^j(x)] \subset g^{i+j}(x)$).

The Lie algebra $n(x)$ is called the **symbol** of D at x.

$n(x)$ is generated by $g^{-1}(x)$, a graded Lie algebra satisfying this property is called **fundamental**.

Fix a Lie algebra $n = \bigoplus_{i=-1}^{-\mu} g^i$, a distribution D is said of **constant type** n if for any x the symbol $n(x)$ is isomorphic to n.
For every $x \in M$ the vector space

$$n(x) = \bigoplus_{i=-1}^{-\mu} \frac{D^i(x)}{D^{i+1}(x)} = \bigoplus_{i=-1}^{-\mu} g^i(x)$$

is endowed naturally with the structure of a graded nilpotent Lie algebra ($[g^i(x), g^j(x)] \subset g^{i+j}(x)$).

The Lie algebra $n(x)$ is called the **symbol** of D at x.

$n(x)$ is generated by $g^{-1}(x)$, a graded Lie algebra satisfying this property is called **fundamental**.

Fix a Lie algebra $n = \bigoplus_{i=-1}^{-\mu} g^i$, a distribution D is said of **constant type** n if for any x the symbol $n(x)$ is isomorphic to n.
For every $x \in M$ the vector space

$$\mathfrak{n}(x) = \bigoplus_{i=-1}^{-\mu} \frac{\mathcal{D}^i(x)}{\mathcal{D}^{i+1}(x)} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i(x)$$

is endowed naturally with the structure of a graded nilpotent Lie algebra ($[\mathfrak{g}^i(x), \mathfrak{g}^j(x)] \subset \mathfrak{g}^{i+j}(x)$).

The Lie algebra $\mathfrak{n}(x)$ is called the **symbol** of \mathcal{D} at x.

$\mathfrak{n}(x)$ is generated by $\mathfrak{g}^{-1}(x)$, a graded Lie algebra satisfying this property is called **fundamental**.

Fix a Lie algebra $\mathfrak{n} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i$, a distribution D is said **of constant type** \mathfrak{n} if for any x the symbol $\mathfrak{n}(x)$ is isomorphic to \mathfrak{n}.
Let \(n = g^{-1} \oplus g^{-2} \) be a 2-graded nilpotent Lie algebra.

Definition

- \(g \) is **non-singular** if \(\text{ad} \ X : g^{-1} \rightarrow g^{-2} \) is onto for every \(X \in g^{-1} \).
- \(g \) is of **Heisenberg type** (or **H-type**) if there is a graded positive inner product such that \(g^{-1} \) is a non-trivial real unitary module over the Clifford algebra \(C(g^{-2}) \) and the bracket is given by

\[
\langle [x, y], z \rangle_{g^{-2}} = \langle J_z x, y \rangle_{g^{-1}}
\]
Remark

- A distribution is Fat if and only if its symbol in each point is nonsingular.
- A distribution admits a compatible subconformal structure if and only if its symbol in each point is of Heisenberg type.
The real division algebras $\mathbb{F} = \mathbb{C}, \mathbb{H}, \mathbb{O}$ define naturally two classes of H-type Lie algebras:

$$h_n(\mathbb{F}) = \mathbb{F}^{2n} \oplus \mathbb{F}$$ (1)

$$[(a, b), (c, d)] = a^t d - c^t b,$$

for $a, b, c, d \in \mathbb{F}^n$,

$\forall n \geq 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}$, $n = 1$ if $\mathbb{F} = \mathbb{O}$.

$$h'_{p,q}(\mathbb{F}) = \mathbb{F}^{p+q} \oplus \mathcal{S}(\mathbb{F})$$ (2)

$$[(a, b), (c, d)] = a^t c - c^t a + b^t d - d^t b,$$

for $a, c \in \mathbb{F}^p, b, d \in \mathbb{F}^q$

$\forall p, q \geq 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}$, $(p, q) = (1, 0)$ if $\mathbb{F} = \mathbb{O}$.

Actually $h'_{p,q}(\mathbb{C}) = h'_{p+q,0}(\mathbb{C})$.
Parabolic subalgebras with H-type nilradical

The real division algebras $\mathbb{F} = \mathbb{C}, \mathbb{H}, \mathbb{O}$ define naturally two classes of H-type Lie algebras:

$$h_n(\mathbb{F}) = \mathbb{F}^{2n} \oplus \mathbb{F}$$

$$(a, b), (c, d) = a^t d - c^t b,$$

for $a, b, c, d \in \mathbb{F}^n$,

$\forall n \geq 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}$, $n = 1$ if $\mathbb{F} = \mathbb{O}$.

$$h'_{p,q}(\mathbb{F}) = \mathbb{F}^{p+q} \oplus \mathbb{S}(\mathbb{F})$$

$$(a, b), (c, d) = a^t \overline{c} - c^t \overline{a} + b^t d - \overline{d}^t b,$$

for $a, c \in \mathbb{F}^p, b, d \in \mathbb{F}^q$

$\forall p, q \geq 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}$, $(p, q) = (1, 0)$ if $\mathbb{F} = \mathbb{O}$.

Actually $h'_{p,q}(\mathbb{C}) = h'_{p+q,0}(\mathbb{C})$.

$\text{Mauro Subils (CONICET / UNR)}$
Theorem

Every real simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(n, 1)$ has a unique conjugacy class of parabolic subalgebras whose nilradical is isomorphic to

$$\mathfrak{h}_n(F) = F^{2n} \oplus F,$$
$$\mathfrak{h}_{p,q}'(F) = F^{p,q} \oplus \mathcal{S}(F)$$

with $F = \mathbb{C}, \mathbb{H}, \mathbb{O}$. Correspondingly, $\mathfrak{so}(n, 1)$ has unique conjugacy class of parabolics with abelian nilradical, and is the unique simple algebra with this property.
Theorem

Every real simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(n, 1)$ has a unique conjugacy class of parabolic subalgebras whose nilradical is of H-type.
Theorem
Every real simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(n,1)$ has a unique conjugacy class of parabolic subalgebras whose nilradical is non-singular.
$h'_n(\mathbb{C})$	$\mathfrak{sl}(n+2, \mathbb{R})$, $\mathfrak{su}(p, n+2-p)$, $\mathfrak{sp}(2n+2, \mathbb{R})$, $\mathfrak{so}(q, n+4-q)$ $\mathfrak{so}^*(2n+4)$ for even n, EI, Ell, $EIII$ for $n=10$ EV, EVI, $EVII$ for $n=16$, $EVIII$, EXI for $n=28$ FII for $n=7$, G for $n=2$
$h_n(\mathbb{C})$	$\mathfrak{sl}(n+2, \mathbb{C})$, $\mathfrak{so}(n+4)$, $\mathfrak{sp}(2n+2, \mathbb{C})$, E_6 for $n=10$, E_7 for $n=16$, E_8 for $n=28$ F_4 for $n=7$, G_2 for $n=2$ $\mathfrak{sp}(p+1, q+1)$ $\mathfrak{sl}(n+2, \mathbb{H})$ FII EIV
$h'_{\rho,q}(\mathbb{H})$	
$h_n(\mathbb{H})$	
$h'_1(\mathbb{O})$	
$h'_1(\mathbb{O})$	
Let \(m = \bigoplus_{i < 0} g^i \) be a fundamental Lie algebra. The **Tanaka’s prolongation** of \(m \) is a graded Lie algebra

\[
g = \bigoplus_{i \in \mathbb{Z}} g^i(m) = \bigoplus_{i \in \mathbb{Z}} g^i,
\]

satisfying:

1. \(g^i(m) = g^i \) for all \(i \leq 0 \);
2. if \(X \in g^i(m) \) with \(i > 0 \) satisfies \([X, g_{-1}] = 0 \), then \(X = 0 \);
3. \(g \) is the maximal graded Lie algebra, satisfying 1 y 2.
\(\mathfrak{m} \) is **of finite type** if \(\mathfrak{g} \) is of finite dimension.

Theorem [Tanaka, 70]

Let \(\mathcal{D} \) a distribution of constant type \(\mathfrak{m} \). Assume that \(\mathfrak{m} \) is of finite type then the Lie algebra of all infinitesimal automorphisms of a \(\mathcal{D} \) is finite dimensional and of dimension \(\leq \dim \mathfrak{g} \).
\(\mathfrak{m} \) is **of finite type** if \(\mathfrak{g} \) is of finite dimension.

Theorem [Tanaka, 70]

Let \(\mathcal{D} \) a distribution of constant type \(\mathfrak{m} \). Assume that \(\mathfrak{m} \) is of finite type then the Lie algebra of all infinitesimal automorphisms of a \(\mathcal{D} \) is finite dimensional and of dimension \(\leq \dim \mathfrak{g} \).
Proposition

For every non-singular Lie algebra whose automorphism group acts irreducibly on g/z, the following conditions are equivalent:

1. to be the nilradical of a parabolic subalgebra of a simple Lie algebra;
2. to have non-trivial Tanaka prolongation;
3. to be isomorphic to one of the Lie algebras $\mathfrak{h}_n(\mathbb{C})$, $\mathfrak{h}'_n(\mathbb{C})$, $\mathfrak{h}_n(\mathbb{H})$, $\mathfrak{h}'_{p,q}(\mathbb{H})$, $\mathfrak{h}_1(\mathbb{O})$ and $\mathfrak{h}'_{1,0}(\mathbb{O})$.
Definition

Let $H \subset G$ Lie subgroup, $\mathfrak{h} = \text{Lie}(H)$, $\mathfrak{g} = \text{Lie}(G)$. A Cartan geometry of type (G, H) on M is

1. an H-principal fiber bundle $p : \mathcal{P} \to M$,
2. a g-valued 1-form $\omega \in \Omega^1(\mathcal{P}, \mathfrak{g})$, called Cartan connection, that verifies:
 1. $(R_h)^* \omega = h^{-1} \cdot \omega$ for all $h \in H$,
 2. $\omega(X^\dagger(\lambda)) = x$ for all $x \in \mathfrak{h}$, $\lambda \in \mathcal{P}$,
 3. $\omega(\lambda) : T_\lambda \mathcal{P} \to \mathfrak{g}$ is an isomorphism for every $\lambda \in \mathcal{P}$.

A parabolic geometry is a Cartan geometry of type (G, P) where G is a semisimple Lie group and P a parabolic subgroup.
So we associate to every real simple non-compact Lie algebra a parabolic geometry with an underlying fat distribution that admits a compatible subconformal structure.

For example,
\(G = \mathfrak{sl}(n + 2, \mathbb{R}) \) Lagrangean contact structures,
\(G = \mathfrak{su}(p + 1, q + 1) \), non-degenerate partially integrable hypersurface type almost CR-structures of signature \((p, q)\),
\(G = \mathfrak{sp}(2n + 2, \mathbb{R}) \), contact projective structures,
\(G = \mathfrak{sp}(p + 1, q + 1) \), quaternionic contact structures of signature \((p, q)\).
So we associate to every real simple non-compact Lie algebra a parabolic geometry with an underlying fat distribution that admits a compatible subconformal structure.

For example,
\[G = \mathfrak{sl}(n + 2, \mathbb{R}) \] Lagrangean contact structures,
\[G = \mathfrak{su}(p + 1, q + 1) \] non-degenerate partially integrable hypersurface type almost CR-structures of signature \((p, q)\),
\[G = \mathfrak{sp}(2n + 2, \mathbb{R}) \] contact projective structures,
\[G = \mathfrak{sp}(p + 1, q + 1) \] quaternionic contact structures of signature \((p, q)\).

GRACIAS!