Homogeneity for Riemannian Quotient Manifolds

SIXTH WORKSHOP ON DIFFERENTIAL GEOMETRY
La Falda, Sierras de Cordoba, Argentina
August 1-5, 2016

Joseph A. Wolf
University of California at Berkeley
Background

\((M, ds^2)\): connected simply connected Riemannian homogeneous space
Background

- \((M, ds^2)\): connected simply connected Riemannian homogeneous space
- \(M = G/K\) where \(G = \mathcal{I}(M, ds^2)\) is the isometry group
Background

- \((M, ds^2)\): connected simply connected Riemannian homogeneous space
- \(M = G/K\) where \(G = \mathcal{I}(M, ds^2)\) is the isometry group
- \(M \rightarrow \Gamma \backslash M\) Riemannian covering
Background

- (M, ds^2): connected simply connected Riemannian homogeneous space
- $M = G/K$ where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \rightarrow \Gamma \backslash M$ Riemannian covering
- In other words Γ is a discrete subgroup of G and if $\gamma \in \Gamma$ has a fixed point on M then $\gamma = 1$.
Background

- \((M, ds^2)\): connected simply connected Riemannian homogeneous space
- \(M = G/K\) where \(G = \mathcal{I}(M, ds^2)\) is the isometry group
- \(M \to \Gamma \backslash M\) Riemannian covering
- In other words, \(\Gamma\) is a discrete subgroup of \(G\) and if \(\gamma \in \Gamma\) has a fixed point on \(M\) then \(\gamma = 1\).
- Problem: when is \(\Gamma \backslash M\) homogeneous?
(M, ds^2): connected simply connected Riemannian homogeneous space

M = G/K where G = \mathcal{I}(M, ds^2) is the isometry group

M → \Gamma \backslash M Riemannian covering

In other words \Gamma is a discrete subgroup of G and if \gamma \in \Gamma has a fixed point on M then \gamma = 1.

Problem: when is \Gamma \backslash M homogeneous?

First step: If \Gamma \backslash M is homogeneous then every \gamma \in \Gamma is an isometry of constant displacement.
Background

- (M, ds^2): connected simply connected Riemannian homogeneous space
- $M = G/K$ where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \to \Gamma \backslash M$ Riemannian covering
- In other words Γ is a discrete subgroup of G and if $\gamma \in \Gamma$ has a fixed point on M then $\gamma = 1$.
- Problem: when is $\Gamma \backslash M$ homogeneous?
- First step: If $\Gamma \backslash M$ is homogeneous then every $\gamma \in \Gamma$ is an isometry of constant displacement.
- Example: if $\Gamma \backslash \mathbb{R}^n$ is homogeneous then Γ consists of pure translations so $\Gamma \backslash \mathbb{R}^n$ is the product of a torus and an euclidean space.
A less trivial example:
More Background

A less trivial example:

(M, ds^2) has every sectional curvature ≤ 0
A less trivial example:

(M, ds^2) has every sectional curvature ≤ 0

$(M, ds^2) = (M_1, ds_1^2) \times (M_2, ds_2^2)$ (de Rham) where

(M_1, ds_1^2) is the flat factor in the de Rham decomposition

(M_2, ds_2^2) is the product of the irreducible factors
More Background

- A less trivial example:
 - \((M, ds^2)\) has every sectional curvature \(\leq 0\)
 - \((M, ds^2) = (M_1, ds_1^2) \times (M_2, ds_2^2)\) (de Rham) where
 - \((M_1, ds_1^2)\) is the flat factor in the de Rham decomposition
 - \((M_2, ds_2^2)\) is the product of the irreducible factors
 - \(M \to \Gamma \backslash M\) universal Riemannian covering
A less trivial example:

(M, ds^2) has every sectional curvature ≤ 0

$(M, ds^2) = (M_1, ds_1^2) \times (M_2, ds_2^2)$ (de Rham) where

(M_1, ds_1^2) is the flat factor in the de Rham decomposition

(M_2, ds_2^2) is the product of the irreducible factors

$M \to \Gamma \backslash M$ universal Riemannian covering

Then the following are equivalent.

$\Gamma \backslash M$ is homogeneous

Every $\gamma \in \Gamma$ is an isometry of constant displacement

Every $\gamma \in \Gamma$ is an isometry of bounded displacement

Every $\gamma \in \Gamma$ is just a pure translation along the Euclidean factor (M_1, ds_1^2) of (M, ds^2)
Yet More Background

A nontrivial example:
Yet More Background

A nontrivial example:

\[S^{n-1} \subset \mathbb{R}^n \text{ usual round sphere of dimension } n - 1 \text{ in } \mathbb{R}^n \]
Yet More Background

- A nontrivial example:
 - $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension $n - 1$ in \mathbb{R}^n
 - Γ finite group of fixed point free isometries of S^{n-1}, in other words $\Gamma \backslash S^{n-1}$ is a spherical space form
Yet More Background

- A nontrivial example:
 - $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension $n - 1$ in \mathbb{R}^n
 - Γ finite group of fixed point free isometries of S^{n-1}, in other words $\Gamma \backslash S^{n-1}$ is a spherical space form
 - Suppose that $\Gamma \backslash S^{n-1}$ is Riemannian homogeneous
Yet More Background

- A nontrivial example:

 - $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension $n - 1$ in \mathbb{R}^n

 - Γ finite group of fixed point free isometries of S^{n-1}, in other words $\Gamma \backslash S^{n-1}$ is a spherical space form

 Suppose that $\Gamma \backslash S^{n-1}$ is Riemannian homogeneous

 - Let L denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
Yet More Background

- A nontrivial example:
 - $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension $n - 1$ in \mathbb{R}^n
 - Γ finite group of fixed point free isometries of S^{n-1}, in other words $\Gamma \backslash S^{n-1}$ is a spherical space form
 - Suppose that $\Gamma \backslash S^{n-1}$ is Riemannian homogeneous
 - Let L denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
 - Then L^0 centralizes Γ and is transitive on S^{n-1}
A nontrivial example:

- $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension $n-1$ in \mathbb{R}^n
- Γ finite group of fixed point free isometries of S^{n-1}, in other words $\Gamma \backslash S^{n-1}$ is a spherical space form
- Suppose that $\Gamma \backslash S^{n-1}$ is Riemannian homogeneous
- Let L denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
- Then L^0 centralizes Γ and is transitive on S^{n-1}
- Schur’s Lemma: L^0 is contained in the multiplicative group of a real division algebra $\mathbb{A} = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. So
Yet More Background

- A nontrivial example:
 - $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension $n - 1$ in \mathbb{R}^n
 - Γ finite group of fixed point free isometries of S^{n-1}, in other words $\Gamma \backslash S^{n-1}$ is a spherical space form
 - Suppose that $\Gamma \backslash S^{n-1}$ is Riemannian homogeneous
 - Let L denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
 - Then L^0 centralizes Γ and is transitive on S^{n-1}
 - Schur’s Lemma: L^0 is contained in the multiplicative group of a real division algebra $\mathbb{A} = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. So
 - (1) If $\mathbb{A} = \mathbb{R}$: $\Gamma \subset \{ \pm 1 \}$
 - (2) If $\mathbb{A} = \mathbb{C}$: Γ is cyclic of order > 2
 - (3) If $\mathbb{A} = \mathbb{H}$: Γ is binary dihedral, binary tetrahedral, binary octahedral or binary icosahedral
Constant Curvature

\[M \to \Gamma \backslash M \text{ universal Riemannian covering} \]
Constant Curvature

\[M \rightarrow \Gamma \backslash M \] universal Riemannian covering

Theorem. Suppose that \(M \) is complete and has constant sectional curvature \(K \). Then \(\Gamma \backslash M \) is Riemannian homogeneous if and only if every \(\gamma \in \Gamma \) is an isometry of constant displacement.
Constant Curvature

- $M \rightarrow \Gamma \backslash M$ universal Riemannian covering

Theorem. Suppose that M is complete and has constant sectional curvature K. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

For $K < 0$: the less–trivial example says that $\Gamma \backslash M$ is Riemannian homogeneous if and only if $\Gamma = \{1\}$
Constant Curvature

- $M \rightarrow \Gamma \backslash M$ universal Riemannian covering
- **Theorem.** Suppose that M is complete and has constant sectional curvature K. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- For $K < 0$: the less–trivial example says that $\Gamma \backslash M$ is Riemannian homogeneous if and only if $\Gamma = \{1\}$
- For $K = 0$: this is covered by the trivial example
Constant Curvature

- \(M \to \Gamma \backslash M \) universal Riemannian covering

Theorem. Suppose that \(M \) is complete and has constant sectional curvature \(K \). Then \(\Gamma \backslash M \) is Riemannian homogeneous if and only if every \(\gamma \in \Gamma \) is an isometry of constant displacement

- For \(K < 0 \): the less–trivial example says that \(\Gamma \backslash M \) is Riemannian homogeneous if and only if \(\Gamma = \{1\} \)
- For \(K = 0 \): this is covered by the trivial example
- For \(K > 0 \): this involves some nontrivial finite group theory based on (i) \(\gamma \neq \pm I \) has constant displacement if and only if it has eigenvalues \(\{\lambda, \bar{\lambda}; \ldots; \lambda, \bar{\lambda}\} \) and (ii) an induction involving binary polyhedral and \(SL(2; \mathbb{Z}_p) \) groups
Riemannian Symmetric

\(M \rightarrow \Gamma \backslash M \) universal Riemannian covering
Riemannian Symmetric

\[M \to \Gamma \backslash M \] universal Riemannian covering

Theorem. Suppose that \(M \) is a Riemannian symmetric space. Then \(\Gamma \backslash M \) is Riemannian homogeneous if and only if every \(\gamma \in \Gamma \) is an isometry of constant displacement.
Riemannian Symmetric

- $M \to \Gamma \backslash M$ universal Riemannian covering

- **Theorem.** Suppose that M is a Riemannian symmetric space. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- First reduction: to case where M is irreducible
Riemannian Symmetric

- $M \rightarrow \Gamma \backslash M$ universal Riemannian covering

- Theorem. Suppose that M is a Riemannian symmetric space. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- First reduction: to case where M is irreducible

- Second reduction: to case where M is compact irreducible
Riemannian Symmetric

- $M \rightarrow \Gamma \backslash M$ universal Riemannian covering

- **Theorem.** Suppose that M is a Riemannian symmetric space. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- First reduction: to case where M is irreducible

- Second reduction: to case where M is compact irreducible

- Compact irreducible case 1: M is a group manifold
Riemannian Symmetric

$M \rightarrow \Gamma \backslash M$ universal Riemannian covering

Theorem. Suppose that M is a Riemannian symmetric space. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement.

First reduction: to case where M is irreducible

Second reduction: to case where M is compact irreducible

Compact irreducible case 1: M is a group manifold

Compact irreducible case 2: $M = G/K$ with G compact simple classical
Riemannian Symmetric

- $M \rightarrow \Gamma \backslash M$ universal Riemannian covering

Theorem. Suppose that M is a Riemannian symmetric space. Then $\Gamma \backslash M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- First reduction: to case where M is irreducible

- Second reduction: to case where M is compact irreducible

- Compact irreducible case 1: M is a group manifold

- Compact irreducible case 2: $M = G/K$ with G compact simple classical

- Compact irreducible case 3: $M = G/K$ with G compact simple exceptional
Finsler Symmetric

\[M \rightarrow \Gamma \backslash M \] universal Finsler covering
Finsler Symmetric

- $M \rightarrow \Gamma \backslash M$ universal Finsler covering

Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \backslash M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement.
Finsler Symmetric

\[M \rightarrow \Gamma \backslash M \] universal Finsler covering

Theorem. Suppose that \((M, F)\) is a Finsler symmetric space. Then \(\Gamma \backslash M\) is Finsler homogeneous if and only if every \(\gamma \in \Gamma\) is an isometry of constant displacement.

\((M, F)\) is Berwald and
\[(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)\] with \((M_0, F_0)\) Minkowski, \((M_1, F_1)\) compact type, \((M_2, F_2)\) noncompact type.
Finsler Symmetric

- $M \rightarrow \Gamma\backslash M$ universal Finsler covering

Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma\backslash M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement (M, F) is Berwald and $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type

First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$
Finsler Symmetric

- $M \to \Gamma \backslash M$ universal Finsler covering

Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \backslash M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement.

- (M, F) is Berwald and
- $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type

- First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$

- Second reduction: take care of Minkowski and noncompact type cases
Finsler Symmetric

- $M \rightarrow \Gamma \backslash M$ universal Finsler covering

- **Theorem.** Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \backslash M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- (M, F) is Berwald and
 $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type

- First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$

- Second reduction: take care of Minkowski and noncompact type cases

- Third reduction: reduce to irreducible Riemannian cases
Finsler Symmetric

- $\mathcal{M} \rightarrow \Gamma\backslash\mathcal{M}$ universal Finsler covering

Theorem. Suppose that (\mathcal{M}, F) is a Finsler symmetric space. Then $\Gamma\backslash\mathcal{M}$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- (\mathcal{M}, F) is Berwald and
- $(\mathcal{M}, F) = (\mathcal{M}_0, F_0) \times (\mathcal{M}_1, F_1) \times (\mathcal{M}_2, F_2)$ with (\mathcal{M}_0, F_0) Minkowski, (\mathcal{M}_1, F_1) compact type, (\mathcal{M}_2, F_2) noncompact type

- First reduction: constant displacement isometries decompose so reduced to cases $(\mathcal{M}, F) = (\mathcal{M}_i, F_i)$

- Second reduction: take care of Minkowski and noncompact type cases

- Third reduction: reduce to irreducible Riemannian cases
Dichotomy – Unbounded Cases

Putting Euclidean factors aside now there are two disparate cases
Dichotomy – Unbounded Cases

Putting Euclidean factors aside now there are two disparate cases

Unbounded: here the evidence is that isometries of bounded displacement are ordinary translations along the Euclidean factor

- Riemannian manifolds of sectional curvature \(\leq 0 \)
- Riemannian manifolds without focal points
- Riemannian manifolds homogeneous under a semisimple group with no compact factor
- Riemannian manifolds homogeneous under an exponential solvable Lie group of isometries
Dichotomy – Bounded Cases

- **Bounded**: here much of the progress on the conjecture has been case by case verification
- Riemannian or Finsler symmetric spaces
- Compact homogeneous with a certain Weyl group condition, e.g. Stieffel manifolds
- Twistor bundles over Grassmann manifolds, hermitian or quaternionic symmetric spaces, nearly-Kähler (3–symmetric) spaces, the 5–symmetric E_8/A_4A_4, …
Dichotomy – Bounded Cases

- **Bounded**: here much of the progress on the conjecture has been case by case verification
- Riemannian or Finsler symmetric spaces
- Compact homogeneous with a certain Weyl group condition, e.g. Stieffel manifolds
- Twistor bundles over Grassmann manifolds, hermitian or quaternionic symmetric spaces, nearly-Kähler (3–symmetric) spaces, the 5–symmetric E_8/A_4A_4, . . .

Example: $M = G/K_1$ fibered over $N = G/K_1K_2$.
- M and N carry normal Riemannian metrics from G
- Γ: finite subgroup of Z_GK_2
- Then Γ acts on M: by $(z, k_2)(gK_1) = zgk_2^{-1}K_1$
- This is isometric and centralizes the (transitive) isometric action of G on M so $\Gamma\backslash M$ is homogeneous
Idea of Proof: Sectional Curvature ≤ 0

M is a complete simply connected manifold with every sectional curvature ≤ 0
Idea of Proof: Sectional Curvature ≤ 0

- M is a complete simply connected manifold with every sectional curvature ≤ 0

- γ is an isometry of M of bounded displacement
Idea of Proof: Sectional Curvature ≤ 0

- M is a complete simply connected manifold with every sectional curvature ≤ 0
- γ is an isometry of M of bounded displacement
- $t \mapsto \sigma(t)$ geodesic $\Rightarrow d_{\gamma}(t) = dist(\sigma(t), \gamma(\sigma(t)))$ bounded
Idea of Proof: Sectional Curvature ≤ 0

- M is a complete simply connected manifold with every sectional curvature ≤ 0
- γ is an isometry of M of bounded displacement
- $t \mapsto \sigma(t)$ geodesic $\Rightarrow d_{\gamma}(t) = dist(\sigma(t), \gamma(\sigma(t)))$ bounded
- Geodesic segments $\sigma(t), \gamma(\sigma(t))$ fill out a flat totally geodesic strip in M
Idea of Proof: Sectional Curvature \(\leq 0 \)

- \(M \) is a complete simply connected manifold with every sectional curvature \(\leq 0 \)
- \(\gamma \) is an isometry of \(M \) of bounded displacement
- \(t \mapsto \sigma(t) \) geodesic \(\Rightarrow d_\gamma(t) = \text{dist}(\sigma(t), \gamma(\sigma(t))) \) bounded
- Geodesic segments \(\sigma(t), \gamma(\sigma(t)) \) fill out a flat totally geodesic strip in \(M \)
- So \(\gamma \) is ordinary translation along the euclidean factor of the de Rham decomposition of \(M \)
Idea of Proof: Sectional Curvature ≤ 0

- M is a complete simply connected manifold with every sectional curvature ≤ 0
- γ is an isometry of M of bounded displacement
- $t \mapsto \sigma(t)$ geodesic $\Rightarrow d_\gamma(t) = dist(\sigma(t), \gamma(\sigma(t)))$ bounded
- Geodesic segments $\sigma(t), \gamma(\sigma(t))$ fill out a flat totally geodesic strip in M
- So γ is ordinary translation along the euclidean factor of the de Rham decomposition of M
- **Theorem.** Suppose that M is homogeneous and $M \to \Gamma \backslash M$ is a Riemannian covering. Then $\Gamma \backslash M$ is homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement. In that case Γ is a discrete group of ordinary translations along the euclidean factor of M.
If G is noncompact simple and α is a bounded automorphism then $\alpha = 1$. Essentially the same argument as for sectional curvature ≤ 0: distinct 1–parameter subgroups of hyperbolic type must diverge apart,
Idea of Proof: Group Structure

- If G is noncompact simple and α is a bounded automorphism then $\alpha = 1$. Essentially the same argument as for sectional curvature ≤ 0: distinct 1–parameter subgroups of hyperbolic type must diverge apart,

- If $M = G/K$, G semisimple with no compact factor, and γ is a bounded isometry then $\gamma = 1$. This uses $\mathcal{I}(M)^0 = \{xK \to gxu^{-1}K \mid g \in G, u \text{ isometry}, u \text{ normalizes } K \}$

- p. 11
Idea of Proof: Group Structure

- If G is noncompact simple and α is a bounded automorphism then $\alpha = 1$. Essentially the same argument as for sectional curvature ≤ 0: distinct 1–parameter subgroups of hyperbolic type must diverge apart,

- If $M = G/K$, G semisimple with no compact factor, and γ is a bounded isometry then $\gamma = 1$. This uses $\mathcal{I}(M)^0 = \{ xK \mapsto gxu^{-1}K \mid g \in G, u$ isometry, u normalizes K.

- If $M = G/K$, G exponential solvable, and γ is a bounded isometry then $\alpha = 1$. This uses some basic unipotent group theory, and includes the case of nilpotent G.
Idea of Proof: Riemannian Symmetric

M: complete simply conn. Riemannian symmetric space
Idea of Proof: Riemannian Symmetric

\(M \): complete simply conn. Riemannian symmetric space

\(\gamma \) is an isometry of constant displacement
Idea of Proof: Riemannian Symmetric

- M: complete simply conn. Riemannian symmetric space
- γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition
- $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
Idea of Proof: Riemannian Symmetric

- M: complete simply conn. Riemannian symmetric space
- γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
Idea of Proof: Riemannian Symmetric

- M: complete simply conn. Riemannian symmetric space
- γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\Gamma \subset \mathcal{I}(M)$, every $\gamma \in \Gamma$ const. displ, $M \rightarrow \Gamma \backslash M$ covering
Idea of Proof: Riemannian Symmetric

- M: complete simply conn. Riemannian symmetric space
- γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\Gamma \subset I(M)$, every $\gamma \in \Gamma$ const. displ, $M \to \Gamma \backslash M$ covering
- If $M = (L \times L)/(\text{diag } L)$ group manifold then Γ is $I(M)$-conjugate to a subgroup of $L \times \{1\}$.
Idea of Proof: Riemannian Symmetric

- M: complete simply conn. Riemannian symmetric space
- γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\Gamma \subset \mathcal{I}(M)$, every $\gamma \in \Gamma$ const. displ, $M \to \Gamma \backslash M$ covering
- If $M = (L \times L)/(\text{diag } L)$ group manifold then Γ is $\mathcal{I}(M)$-conjugate to a subgroup of $L \times \{1\}$.
- If $M = G/K$ with G simple: run through the classification
Idea of Proof: Riemannian Symmetric

- M: complete simply conn. Riemannian symmetric space
- γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\Gamma \subset \mathcal{I}(M)$, every $\gamma \in \Gamma$ const. displ, $M \to \Gamma \backslash M$ covering
- If $M = (L \times L)/(\text{diag } L)$ group manifold then Γ is $\mathcal{I}(M)$-conjugate to a subgroup of $L \times \{1\}$.
- If $M = G/K$ with G simple: run through the classification
- **Theorem.** Let $M \to \Gamma \backslash M$ be a Riemannian covering. Then $\Gamma \backslash M$ is homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement.
Isotropy–Split Fibrations

\[\pi : \widetilde{M} \to M \] given by
Isotropy–Split Fibrations

- $\pi : \tilde{M} \rightarrow M$ given by
- $G/K_1 \rightarrow G/K$, $K \cong K_1 \times K_2$ with $\dim \mathfrak{k}_1 \neq 0 \neq \dim \mathfrak{k}_2$
Isotropy–Split Fibrations

- $\pi : \tilde{M} \to M$ given by
- $G/K_1 \to G/K$, $K \simeq K_1 \times K_2$ with $\dim \mathfrak{k}_1 \neq 0 \neq \dim \mathfrak{k}_2$
- M and \tilde{M} are normal homogeneous spaces of G
Isotropy–Split Fibrations

- $\pi : \widetilde{M} \to M$ given by
- $G/K_1 \to G/K$, $K \cong K_1 \times K_2$ with $\dim \mathfrak{k}_1 \neq 0 \neq \dim \mathfrak{k}_2$
- M and \widetilde{M} are normal homogeneous spaces of G
- $\widetilde{M} \to M$ is a Riemannian submersion
Isotropy–Split Fibrations

\[\pi : \tilde{M} \to M \] given by

\[G/K_1 \to G/K, \; K \simeq K_1 \times K_2 \; \text{with} \; \dim \mathfrak{k}_1 \neq 0 \neq \dim \mathfrak{k}_2 \]

\(M \) and \(\tilde{M} \) are normal homogeneous spaces of \(G \)

\(\tilde{M} \to M \) is a Riemannian submersion

Examples:

- \(G/[K, K] \to G/K \) hermitian symmetric base
- \(G/K_1 \to G/Sp(1)K_1 \) quaternion–Kaehler symm. base
- \(G/K_1 \to G/SU(3)K_1 \) nearly–Kaehler 3–symmetric base
- \(E_8/SU(5) \to E_8/SU(5)SU(5) \) 5–symmetric base
- \(SO(k + \ell)/SO(k) \to SO(k + \ell)/[SO(k) \times SO(\ell)] \) real Stieffel manifold over real Grassmann manifold
- \(Sp(k + \ell)/Sp(k) \to Sp(k + \ell)/[Sp(k) \times Sp(\ell)] \) quaternion Stieffel manifold over quaternion Grassmann manifold
Work in Progress

In many cases, including the examples above, I recently
In many cases, including the examples above, I recently calculated the full isometry group $I(\widetilde{M})$ – it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$.
In many cases, including the examples above, I recently calculated the full isometry group \(I(\tilde{M}) \) – it has identity component \(G \times r(K_2) \) where \((g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1 \), and found all isometries of constant displacement of \(\tilde{M} \).
In many cases, including the examples above, I recently calculated the full isometry group $I(\tilde{M})$ – it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$, found all isometries of constant displacement of \tilde{M}, and proved the Homogeneity Conjecture for those cases:
In many cases, including the examples above, I recently calculated the full isometry group $I(\tilde{M})$ – it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$,

found all isometries of constant displacement of \tilde{M},

proved the Homogeneity Conjecture for those cases:

Theorem. Let $\pi : \tilde{M} \to M$ be one of the examples listed above of isotropy–split fibration $G/K_1 \to G/K_1 K_2$. Let $\tilde{M} \to \Gamma\backslash\tilde{M}$ be a Riemannian covering. Then these are equivalent: (1) $\gamma \in \Gamma$ is of constant displacement (2) $\Gamma \subset Z_G \times r(K_2)$, (3) $\Gamma\backslash\tilde{M}$ is homogeneous.
Thank you for your attention