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(a) (b) 
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FIGURE 3.1 Examples of (a) discretization and (b) clipping. The raw connection 
weight w::;w calculated from the Hebb rule is transformed to the actual w;; by 
the function shown. 

The addition of a small random number to each w;; has only a qualit ative 
effect , reducing 0 0 (Sompolinsky, 1987]. Similarly with discretizing or clipping 
the allowed values. Discretizing- allowing only a discrete set of values-may be 
useful when building circuits using a fixed number of standard resistors. Clipping 
means restricting all connections w;; to some fixed range, say jw;;I A , and is 
clearly also useful (if not essential) in practical implementations. F igure 3.1 shows 
examples of both processes. 

In the most extreme case of discretization and clipping we allow only two values 
for w;; , sometimes referred to as binarizing the connections: 

w;; = sgn(wf:W) 
p 

= sgn(I:ef ef ) . 
µ =l 

(3.l) I 
This model can be solved exactly (van Hemmen and Kiihn , 1986]; the result is 
that 0 0 is reduced from 0.138 to about 0.1. This represents a rather efficient use of I 
t he single bit of information retained per connect ion, compared to the log2 p bits 
necessary to specify one of the p possible values of each w;; with the full Hebb rule. 

Clipping may also be viewed in the context of successively learning new pat-
terns. We can imagine using the Hebb rule increm entally to continue adding new I 
terms to each w;; , so that 

w~~w = w~ld + n.:µ .:!' {3.2) ., ., ., ..... , 
to add pattern µ . Here YJ is an acquisition rate. Applying clipping to this means f 
restricting wf/w to a range (-A, AJ at all times; values outside these limits are 
immediately replaced by the appropriate limit value. This is called learning within 
bounds (Parisi, 1986; Nadal et al. , 1986]. The most recently added memory patterns 
are then always recalled well, while older ones gradually decay away. The number 
of patterns that can be remembered depends on the value of YJ compared to A ; if YJ 
is very large only the most recent pattern can be recalled, while for very small YJ t he 

P

bij Es sir



46 THREE Extensions of the Hopfield Model 

theory as before, replacing h; by 

(h,) =C L wnebb(S; ). (3.6) 
} 

Thus the previous mean field resul ts apply {for p/ N small), with a simple scaling 
of the temperature by a factor of c. 

At larger p/ N the situation is more complicated , but the qualitative feature of 
a capacity P max of order N persists for the case of symmetric dilution C;; = C; ; 
[Sompolinsky, 1987; Canning and Gardner, 1988). 

Strong Dilution 

There is another limit of the di lution problem which can be solved exactly and 
rather simply. This is the case of strong dilution, where only an infinitesimal 
fraction of the original number of connections remain . Defining I( as the average 
number of connections to and from each unit , the precise condition is that K not 
exceed something proportional to log N as N goes to infinity. The exact solution 
also requires another twist : the dilution must be performed independently on w;; 
and w;;, so that the factors C,; and C;; in (3.4) are independent random variables. 
The w;; matrix is then no longer symmetric. 

This model, first studied by Derrida, Gardner, and Zippelius [1987}, can then 
be solved . We use 

w · - ..!.c, .. '°'"µ"µ (3.7) ,, - K ,, L...J"• '>i 
µ 

for the connection strengths, with 1/ K rather than 1/ N for the normalization so 
as to give sensible values of order unity. For any state {S; } of the network, we now 
break up the field h; in (3.5) into a term coming from a particular pattern v and a 
remaining crosstalk term: 

where 

h; = Lw,1 S; 
j 

= ! Le,, L{:'{fS; ; µ 
= !tr L C;;c;s, + 11; 

j 

n!' - ..!. '°'cl;' '°' c, .. cl;' S· .,. - [( L.., .... L.., ., ... , ) . 
µ7- 11 ; 

Note that the crosstalk term T]: depends on the state {S; }. 

(3.8) 

(3.9) 

lf we set s. = tr in (3.8) and (3.9) we can see that e: is stable for small 
enough p. The first term on the right-hand side of (3.8) gives just e: on average, 
since (1:; C;; ) = K . Meanwhile the second term 'li, given by (3.9), becomes 1/ K 
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48 THREE Extensions of the Hopfield Model 

erf(x) 

X 

-2 2 

······· 
FIGURE 3.2 The function 
erf(x). The dot ted line 
shows tanh(x) for compari-
son. 

There is a critical value o ~ = 2/ Tr of o ' beyond which the only solution is 
m., = 0, but below which there are solutions with m., :j; 0. Thus the crosstalk acts 
in a way similar to thermal noise. Note however that m., goes continuously to zero 
as o' approaches o~, in contrast to what happened in the fully connected case as o 
approached o e, where the jump down to zero was discontinuous. The origin of this 
difference can be understood by comparing (3.13) with the corresponding equat ion 
(2.73) for the fu lly connected case. The latter had an extra factor of 1/,/r in the 
argument of the erf, and r (and q) had to be determined self-consistently with m . 

We can generalize the treatment to finite temperature simply by rep lacing the 
sgn(x) in (3.12) by a tanh(x): 

m., = j dTJ P( TJ) tanh[/3( m., + TJ)] . (3.14) 

As in the full connect ivity case, the effect of finite temperature is to reduce the 
capacity from its zero-temperature value. 

The model can be solved for both synchronous and asynchronous updating 
(with the same result for the capacity), but is apparently not so easy to solve if the 
connection matrix is constrained to be symmetric. 

Random Asymmetric Connections 

The densely connected model may also be studied when the connections are allowed 
to be asymmetric, W;j :/ Wji . If the asymmetry is systematic, or very strong, it can 
produce limit cycles or chaotic behavior, as we will study later . But if it is random 
and not too strong it mainly plays the role of noise. Random asymmetry can be 
introduced by random dilution or by adding a random number to each connection, 
independently for ij and ji in both cases. 

For p N there seems to be no difference from the symmetric case. As in the 
case of weak dilution, the argument relies on the fact that there are still of order N 
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3.2 Correlated Patterns 49 

terms in the weighted input sum h; , which can therefore be replaced by its average 
value without approximation in the large N limit. 

At finite o , the asymmetric fully connected model differs from t he symmetric 
one in that it does not have any of the spurious spin glass states at any T > 0 
{Hertz et al., 1986, 1987; Crisanti and Sompolinsky, 1987). But retrieval of the 
stored patterns is not qualitatively different from that in the symmetric model. 
Thus random asymmetry may improve performance by removing the spin glass 
states. On the other hand, the asymmetry introduces some fluctuations and slows 
down the approach to an attractor [Parisi, 1986). 

Unipolar Connections 

For some applications it is inconvenient to require both positive and negative con• 
nection weights w;; . This is particularly true when implementing a network in 
electronic or optical hardware, as discussed in Section 3.4. It is however easy to 
modify t he design so that all the weights are positive; i.e., we can replace bipolar 
connections by unipolar ones {Denker, 1986]. 

The trick is simply to add a constant IC to every connection w,, , 

wi; = w;; + IC (3.15) 

and compensate for this with an extra term -IC}:, S; in the input h; at every unit. 
Then the t otal input h; is given by 

(3.16) 
; ; 

exactly as before . Thus there is no overall effect on the network's behavior . 
We choose IC large enough to make w:; positive (or perhaps zero) for all ij . 

For the usual Hebb rule (2.9) the value IC = l suffices. The compensating term 
-IC Ei S; is the same for all units, and may be calculated by one extra unit. It is 
sometimes referred to as an adaptive threshold because in effect it changes the 
threshold of every unit by an amount depending on the total activity E; S; . 

3.2 Correlated Patterns 

The Pseudo--lnverse 
The crosstalk term in h; which sets the fundamental limit on the network capacity 
comes from the overlap between random patterns. This overlap is much more of a 
problem when the different patterns are correlated. Then a standard network may 
not even recall patterns reliably in the limit p N. There is however a general 
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54 THREE Extensions of the Hopfield Model 

".!// / "' ,. - . --- ,/ ,I' I 
/' f ' - ./ I I I l t X I j I FIGURE 3.3 Motion towards attractors in a 
I I /' two-unit network. There are two attractors - "' J ,/ shown by dots. The center point is a saddle 
? ,l' / _...,, - . - point of the energy, not an attractor . The 

// i ' 
syst em moves in t he direction of the arrows 

., ,,,. ./' to one of the attractors; which one depends 
on the starting point. 

• Asynchronous updating. One unit at a time is selected to have its output 
set according to (3.30). 

• Synchronous updating. At each time step all units have their outputs set 
according to (3.30). 

• Continuous updating. All units continuously and simultaneously change 
their outputs towards the values given by (3.30). The u; 's change continu-
ously too, according to u; = L; w;; \'] . 

The t hird possibility is the new one [Cohen and Grossberg, 1983; Hopfield, 
1984], and is of particular interest for the circuit implementations discussed in 
Section 3.4. It can be represented by the set of differential equat ions 

(3.31 ) 

where T; are suitable time constants. 
If g( u) has a saturation nonlinearity and the w;; 's are symmetric, the solution 

V; (t) to t hese equations always settles down to a stable equil ibrium solution, as 
we will prove in the next subsection. At an equilibrium V; (t) ceases to change, 
so dV; / dt = 0 for all i . Then the right-hand side of (3.31) shows that (3.30) is 
obeyed on all units. Thus the desired state sat isfying (3.30) is an attr actor of the 
dynamical rule (3.31). 

Figure 3.3 shows a simple example for a system with two units. A state of the 
system corresponds to a point in the Vi- V2 plane illustrated. At any such point , the 
equations (3.31) (one for i = 1, one for i = 2) give a velocity vector aV/dt , shown 
in the figure by an arrow. The state of the system moves from its initial point in 
t he direction of the arrows, faster for larger arrows. Thus it ends up at one of the 
two attractors shown, where N / dt = O. 

A very similar dynamical rule with the same end result arises from lett ing t he 
inputs u; continuously approach their correct values L; w,; V; , with V; = g( u;) 
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