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Outline
-Why life is always found near criticality? (a 10 minutes 
manifesto for the non-cognoscenti on “Not too rigid, neither 
very flexible”)   

-We apply these ideas to:

• Brains  (results on critical brain dynamics)  

• Proteins (finite size scaling analysis on NMR data from 
the PDB database).  (with Y.T. Tang,Physical Review 
Letters 118, 088102, 2017) 

• Mitochondria (critical fusion-fision balance of the 
mitochondrial network). (with N&E Zamponi et al, Nature 
Sci. Reports 8, 363, 2018)

-Summary & questions

Today

Today

Perhaps

Perhaps



“Emergent complex neural dynamics” Chialvo DR, Nature Physics 6 (10), 744-750 (2010)

“Learning from mistakes” DR Chialvo, P Bak. Neuroscience 90 (4), 1137-1148 (1997).

“What kind of noise is brain noise?” Fraiman & Chialvo, Frontiers in Phys., (2011).

“Criticality in large-scale brain fMRI dynamics…”  Frontiers in Phys. (2012).

“Brain organization into resting state networks emerges from the connectome at criticality” 
Haimovici et al., Physical Review Letters, 110 (17), 178101 (2013).

“Large-scale signatures of unconsciousness are consistent with a departure from critical 
dynamics”. Journal of The Royal Society Interface, 13 (114), 20151027 (2016).

“Critical Fluctuations in the Native State of Proteins”  Tang QY et al., Physical Review Letters 118 
(8), 088102 (2017).

“Mitochondrial network complexity emerges from fission/fusion dynamics”  Zamponi N. et al,  
Scientific Reports 8 (1), 363 (2018).

“La mente es crítica” J. Marro & D. Chialvo. Univ. of Granada Editora, (2017).

“Universal and nonuniversal neural dynamics on small world connectomes: A finite size scaling 
analysis”  Zarepour M et al, Physical Review. E, (2019, in press)

*The results we describe are not anecdotal, they were already generalized to other systems, scales and 
setups by  a number of authors.

"In god we trust. All others, bring data" (W. Edwards Deming)



80’s 90’s nowadays

K. Christensen, D. Chialvo, Per 
Bak & Z.Olami. Brookhaven 
National Lab. (Feb. 1992).  H. Frauenfelder NYAS 1987 

 Intuition  Theory
(Including Self-Organized Criticality)

 Experiments

Physicals, social and 
biological systems are 
shown to be “complex” 
because they operate 
near criticality.  

“A Fundamental Theory to Model the Mind” by Jennifer Ouellette
in Quanta Magazine and Scientific American April, 2014.
 
“Criticality and phase transitions in biology”  by Philip Ball 
in New Scientist, 2014.

“La mente es crítica” by J. Marro & D. Chialvo. Granada Editora, 2017

critical



7

Snapshots of spins 
states in a model 
system (2D Ising)

Snapshots of spins states in the Ising model.          

 Long range correlations emerges at the phase transition

Subcritical SuperCriticalCritical

T<TC T>TCT~TC

TC

order

disorder

Ferromagnetic-paramagnetic Phase-Transition



Critical (for non - physicists)



Structure 
(the network of 
streets) “phases”

Individual 
Non-linear 
Dynamics 
(drivers)  

“solid”

“gas”
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What means to be “Critical” (in 5 sec) Example traffic  
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For the traffic engineer 
the maximum “efficiency” 
is at the transition 

at the Critical point

- Free flow 

-Jamming
Two phases

What means to be “Critical”   
-qualitatively speaking- 

Traffic jams as a critical process 
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Critical

Number of vehicles passing through a point 
(flow) as a function of the density of vehicles  



Higher efficiency and  
unpredictability both at criticality 
(counterintuitive, and important 
for management…)
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For the driver the Critical density is the worst case 
scenario!
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• The variability of the order parameter peaks at 
criticality (i.e, “susceptibility”) increasing with size 
as Nsome exponent 

• Clusters (jams) of all sizes (i.e, long range spatial 
correlations  observed as power law distributions 
of clusters). 

• The action of a single driver at any point in the 
system can have repercussion very far away 
both in time and space. (long range correlation 
and contingency) 

• Despite that interactions are short-range, 
correlations can be unlimited, as large as the 
system itself. 

These properties are universal (they don’t depend 
on the details of the system (cars, etc) 

Summing up, near criticality: 



Brains
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The brain can not work like a electrical circuit, 
because a circuit is something rigid (will need 
another brain to change the connections) 

Synaptic interactions are fix (at the time scale 
of interest and very weak!! 

Scale free clustering (weak ordering) without 
synchronization!  

If criticality is the solution … 
what is the problem? 
 



Remember: brain pairwise correlations are always weak
Strong ordering emerging of weak pairwise correlations
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…The (yet) unsolved problem: how the brain manage to produce  a huge 
range of cortical configurations in a flexible manner … 



These notions are already ancient 
(2003-2005)



Most of C pairs are weak

Metric Multidimensional Scaling

The functional distances between regions in the healthy group
mean data were approximated by the graphical distances be-
tween them in the two-dimensional space of Figure 4: regions
that are functionally similar are plotted in close proximity. This
analysis confirms many of the organizational features already
highlighted: symmetrical regions are often paired in the same
neighbourhood of the space and the overall configuration
broadly respects anatomical relations between regions.
Superimposed on the MDS plot are lines corresponding to

the significant pairwise inter-regional partial correlations listed
in Table 2. This again highlights the predominance of local
intrahemispheric and symmetric interhemispheric connections.

Small World Properties

We thresholded the unihemispheric partial correlation matrix
of the healthy volunteers so that any partial correlation with P <
0.05 was represented by an edge between the corresponding
regional vertices (and all other possible edges were set to zero).
For this network, the clustering coefficient CP was 0.25 and the
mean minimum path length LP was 2.82. Corresponding param-
eters for a random graph with the same number of nodes
were: CP

random=0.12 and LP
random=2.58. In other words, local

clustering or cliquishness of connections in the brain network
was approximately two times greater than in the random net-
work, CP/CP

random=2.08, whereas path length between any two
brain regions was approximately the same as in the random

Figure 2. Dependency of functional connectivity on anatomical distance and frequency components of fMRI time series. Top panel: Plot of functional connectivity between regions
(healthy group mean partial correlation; y-axis) versus Euclidean distance (D, mm; x-axis) between regional centroids in Talairach space. Symmetric interhemispheric connections
are highlighted by red circles. Partial correlations generally decay as a function of increasing anatomical distance between regions; this relationship is described by the inverse
square law, r ~ 1/D2, fitted to the data (solid line). Green dashed lines represent the 5 and 95% quantiles for the mean partial correlations estimated in each 1 cm bin of the distance
distribution. Middle panel: Plot of inter-regional partial correlations versus Euclidean distance for the patient with brainstem ischaemia. Note that symmetrical connectivity is
relatively attenuated, compared to the healthy group, whereas the relationship between anatomical distance and short-range connectivity is preserved. Bottom panel: Plot of
healthy group mean partial correlations between regions subtended by high frequency components of the time series (y-axis) versus partial correlations subtended by low frequency
components (x-axis). The solid line is the line of identity, y5 x; symmetric interhemispheric connections are highlighted by red circles. Inter-regional connectivity consistently tends
to be stronger based on low-frequency components of the time series.

Cerebral Cortex September 2005, V 15 N 9 1337

 at N
IH

 Library on O
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 Salvador et al., Cerebral Cortex, (2005) 

β = 0.47+0.2 

 α= 0.45

 Expert et al., J. Royal Soc. (2010) 

Brain’ average two-point correlation functions computed from 
Functional Magnetic Resonance Images during rest (no task)

C decays with distance as a power 
law
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The bottom line: Big, intermediate and small regions all behaves in the same way

For example: Two places 4 mm apart on a blob of 20 voxels are as correlated as 
those 40 mm apart on a blob of 4000 voxels

Choose many ROIs. 
Compute the average connected correlation function 
for each ROI & plot it as a function of distance  
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Correlation length increases 
with ROI size   

Chialvo DR & Fraiman D. (2010)

What truly matters is the correlation length  
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Mutual information increases with cluster size.  
 

Mutual information MI(r) as a function of 
distance r averaged over all time series of each 
of the ROI.

Rescaled mutual information
 

MI(X;Y) = H(X) - H(X | Y)

You could do the same for Mutual Information 

Chialvo DR & Fraiman D. (2010)



Data from human fMRI

(Fraiman & Chialvo, 2011)

Data from optogenetic
2P recording in behaving 
mice AI cortex
 Plenz & Chialvo, 2017

correlation length: at criticality, it increases with system size 
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First, get the instantaneous dynamics  (peaks)

Moral: large scale dynamics is preserved despite a huge data reduction (95%)  most of 
the information is in the peaks.

Brain “meteorology” (searching for order in very large 
scale, fMRI) 
how we proceed:
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Brain “meteorology”

Time

Number of clouds

Size of the 
largest cloud
(sort of “order” 
parameter)

Second, identify clusters of activity (like clouds in the sky)
pixels in green belong to one cluster, blue to another, etc
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Avalanches of activity are scale free

From Tagliazucchi et al, Frontiers in Physiol. 2012.

Fractal 
Dimension

Lifetime PDF
Size PDF

Third, identify spatiotemporal correlations (avalanches)
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Spontaneous fluctuations of brain 
activity evolve as in a continuous 
phase transition, being most of the 
time at a regime with the largest 
variance 

Fourth, check for “control” versus “order” parameter 
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Identical avalanches were described in vivo & in vitro preps.
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D

cultured rat cerebral cortex (Beggs & Plenz, 2003)

Optogenetic 2P recording in behaving mice AI cortex (Plenz & Chialvo, 2018)
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two words about modeling 



Critical	point

cl
us

te
r s

iz
es

From Haimovici et al, Phys. Rev. Letters 2013.

critical

supercritical

subcritical

Connectome			+ Node	
dynamics =		Phases			

one	parameter	toy	model
Getting the experimental correlations from the interactions (“Connectome")

?

Interactions
dynamics 
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How the topology of interactions shapes brain dynamics?
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1- Some general properties, expected near the critical 
point of a continuous phase transition, are seen in brain 
dynamics: 
✓ Long range correlations in space and time. 
✓ Correlation length scales with system size 
✓ Anomalous scaling of the variance of the fluctuations 
✓ Variance of the order parameter peaks at the critical point 

(susceptibility)  
✓ Scale invariance in the clusters size distribution  
✓ Scale invariance in avalanches sizes distribution  
2- A model based on the brain connectivity replicates the 
observations ONLY at criticality, implying that “connectivity” is 
not enough to understand the dynamics. 
3- it seems that a degree of disorder is needed in the 
interactions   
 4- more theory is needed 

 Summary
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