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08 Weighted Vogan diagrams associated to real nilpotent orbits

Esther Galina

Abstract. We associate to each nilpotent orbit of a real semisimple Lie alge-
bra go a weighted Vogan diagram, that is a Dynkin diagram with an involution
of the diagram, a subset of painted nodes and a weight for each node. Every
nilpotent element of go is noticed in some subalgebra of go. In this paper
we characterize the weighted Vogan diagrams associated to orbits of noticed
nilpotent elements.

Introduction

Let Go a real connected reductive Lie group and go its Lie algebra. The purpose
of this work is to associate to each nilpotent Go-orbit of a simple real Lie algebra go

a diagram. It is known that the problem can really be reduced to study semisimple
groups of adjoint type.

In the case where the group and the algebra are complex, the Jacobson and
Morozov theorem relates the orbit of a nilpotent element e with a triple (h, e, f) that
generates a subalgebra of g isomorphic to sl(2, C). There is a parabolic subalgebra
associated to this triple that permits to attach a weight to each node of the Dynkin
diagram of g. The resulting diagram is called a weighted Dynkin diagram associated
to the nilpotent orbit of e (see [C]). The Bala and Carter classification [BC] (see
also [C]) of nilpotent G-orbits of a complex reductive Lie algebra g establishes a
one-to-one correspondence between nilpotent orbits of g and conjugacy classes of
pairs (m, qm), where m is a Levi subalgebra of g and qm is a distinguished parabolic
subalgebra of the semisimple Lie algebra [m, m]. The nilpotent orbit comes from
the Richardson orbit of the connected subgroup Qm of G with Lie algebra qm. The
elements of the nilpotent orbit result distinguished in m. Therefore, it is of great
importance the classification of the distinguished parabolic subalgebras, it is done
using the weighted Dynkin diagrams (see [BC] for this classification for complex
simple Lie algebras).

In the case where the group and the algebra are real, consider a Cartan decom-
position of go = ko + po. By complexification there is a decomposition g = k + p

corresponding to a Cartan involution θ. Denote by σ the conjugation in g with
respect to go. In this setting Sekiguchi [S] proves a one-to-one correspondence,
conjectured by Kostant, between Go-orbits in go and K-orbits of p where K is the
connected subgroup of the adjoint group G of g with Lie algebra k. Following the
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2 ESTHER GALINA

ideas of the Bala-Carter classification and using the Kostant-Sekiguchi correspon-
dence, Nöel [N] gives a classification of Go-nilpotent orbits in go. Actually, the
classification was previously known but based on other circle of ideas, see [CMc]
for a complete version that includes all the cases, or [Ka] for a general analysis.
Nöel proves that the orbits K.e are in one-to-one correspondence with the triples
of the form (m, qm, n) where e is a non-zero nilpotent element of p, m is a minimal
θ-stable Levi subalgebra of g containing e, qm is a θ-stable parabolic subalgebra
of [m, m] and n is a certain (L ∩ K)-prehomogeneous space of qm ∩ p containing e,
where L is the Levi subgroup of the corresponding parabolic subgroup of G with
Lie algebra qm. In doing so Nöel defines the noticed nilpotent elements, it results
that every nilpotent element e is noticed in the minimal θ-stable Levi subalgebra
of g containing e. In analogy with distinguished nilpotent orbits corresponding
to distinguished parabolic subalgebras, in our situation noticed nilpotent orbits of
p are in correspondence with noticed triples (g, q, n) as above. This explain the
importance of the classification of noticed nilpotent K-orbits in p.

In this paper we attach to each nilpotent K-orbit a weighted Vogan diagram.
It consists in a Vogan diagram (see [Kn]) with weights attached to the nodes.
The values of the weights are in the set {0, 1, 2}. Forgetting the painted nodes
and the involutive automorphism of the diagram, it is a weighted Dynkin diagram.
Moreover, from an abstract weighted Vogan diagram one can re-obtain the real
algebra go and a triple (g, q, n). That is, there is an assignment from nilpotent
K-orbits in p to equivalence classes of weighted Vogan diagrams.

We intent to determine all the weighted Vogan diagrams associated to noticed
nilpotent K-orbits in p. For classical real Lie algebras there is a parameterization of
nilpotent Go-orbits of go by signed Young diagrams [SS], [BCu], [CMc], but not for
exceptional ones. Nöel determines all the noticed orbits using this parameterization
case by case [N]. For exceptional real Lie algebras he uses the Djoković’s tables of
the reductive centralizer of real nilpotent orbits [D1], [D2]. The classification of
noticed nilpotent K-orbits in p by weighted Vogan diagrams will give a classification
of all noticed nilpotent orbits of a simple real Lie algebra. In this paper we gives a
characterization of the weighted Vogan diagrams of noticed nilpotent orbits. This
characterization will permit us to give a classification of all noticed nilpotent orbits
of a simple real Lie algebra. It will be the content of a future paper.

Kawanaka also gives a parameterization of nilpotent orbits of a simple real Lie
algebra using weighted Dynkin diagrams (see [Ka]). It seems to be compatible with
our description, but here we can explicitly reconstruct the real nilpotent orbit from
a weighted Vogan diagram.

I want to thank Sebastián Simondi for the helpful conversations we have had
that developed into the Definition 3.2.1, and to the referee of this work for the
valuable observations.

1. Real nilpotent orbits

1.1. Let Go be a real semisimple Lie group of adjoint type with Lie algebra
go. Let θ a Cartan involution of go. It gives place to a Cartan decomposition in
eighenspaces of go = ko⊕po where ko is the subalgebra of θ-fixed points. Denote the
complexification of a space by the same letter but without the subscript. Extend
the Cartan involution θ to g linearly. Let σ be the conjugation in g with respect to
go.
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If G is the adjoint group of g, denote by K the connected subgroup with Lie
algebra k.

1.2. The Jacobson-Morosov theorem associates to each nilpotent element e ∈
g a triple (or JM-triple) (h, e, f) such that [h, e] = 2e, [h, f ] = −2f and [e, f ] = h

(see [C]). That is, the subalgebra of g generated by the triple is isomorphic to
sl(2, C). Moreover, there is a one-to-one correspondence between non-zero nilpotent
G-orbits in g and G-conjugacy classes of the Lie subalgebras generated by a triple
of g of this kind.

1.3. Following the work of Kostant-Rallis [KR] if e ∈ p there exists a JM-
triple (h, e, f) with h ∈ K and f ∈ p called a normal triple. In this case the one-to-
one correspondence is between non-zero nilpotent K-orbits in p and K-conjugacy
classes of the Lie subalgebras generated by a normal triple of g.

1.4. On the other hand, Sekiguchi obtained in [S] that each K-conjugacy
class of the Lie subalgebras generated by a normal triple of g contains a subalgebra
generated by a normal triple such that f = σ(e) and h ∈ iko. Following Nöel,
we called it a KS-triple (KS comes from Kostant and Sekiguchi). That is, each
nilpotent element of p is K-conjugate to an element e of a KS-triple (h, e, f).

Moreover, he proves that for each nilpotent Go-orbit O of go there is a real
JM-triple (ho, eo, fo) that generates a subalgebra isomorphic to sl(2, R) in go such
that eo ∈ O and θ(ho) = −ho and θ(eo) = −fo. In this setting, the triple (h, e, f)
in g

h = c(ho) = i(eo − fo) ∈ iko

e = c(eo) =
1

2
(ho − i(eo + fo))

f = c(fo) =
1

2
(ho + i(eo + fo)),

given by the Cayley transform c, is a KS-triple.
The application Go.eo → K.e produce a one-to-one correspondence between

nilpotent Go-orbits in go and nilpotent K-orbits in p.

2. Nilpotent orbits of real symmetric pairs

Continue with the notation of previous section. Nöel in [N] gives a parameter-
ization of nilpotent K-orbits in p following the philosophy of Bala-Carter classifica-
tion for nilpotent G-orbits in g. According to the Kostant-Sekiguchi correspondence
of the previous section, this results a classification of nilpotent Go-orbits in go.

2.1. It is known that each JM-triple (h, e, f) in g, determines a graduation

g = ⊕i∈Z g(j)

where g(j) = {x ∈ g : [h, x] = j x} (see [BC] for more details). Evidently h ∈ g(0),
e ∈ g(2) y f ∈ g(−2). These eigenspaces have the following property

[g(i), g(j)] ⊂ g(i+j)

for all i, j ∈ Z.
Denote by l = g(0), u = ⊕j>0 g(j) and ū = ⊕j<0 g(j). These subspaces are

subalgebras of g. The direct sum q = l ⊕ u is a parabolic subalgebra that contains
e. In fact, as adh is semisimple in g, there is a Cartan subalgebra h that contains h.
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Let Ψ = {α1, . . . , αn} be a set of simple roots of the root system ∆(g, h) determined
by the condition β(h) ≥ 0 for all β ∈ Ψ. Notice that there are several choices of Ψ
with this condition. In fact, if Wo is the subgroup of the Weyl group of g generated
by the roots β that satisfies β(h) = 0, wΨ is another set of simple roots with the
same condition for any w ∈ Wo. Therefore,

g(j) =
∑

α(h)=j

gα

where gα are the corresponding rootspaces. So,

q = l ⊕ u = g(0) ⊕
∑

j>0

g(j) = h ⊕
∑

α(h)≥0

gα

The subalgebra q = q(h,e,f) is called the parabolic subalgebra associated to the JM-
triple (h, e, f).

Remark 2.1.1. If (h, e, f) is a KS-triple, choose the Cartan subalgebra h in the
following way. As h ∈ k, take t a maximal abelian subspace of k that contains h and
a maximal abelian subspace a in p that conmutes with t. So h = t ⊕ a is θ-stable
and is a maximal compact Cartan subalgebra of g that contains h. Therefore, the
parabolic subalgebra q, the root system ∆(g, h) and the set of simple roots Ψ result
θ-stable (see [N] for more details).

Denote by Q and L the analytic subgroups of G with Lie algebras q and l

respectively.

Proposition 2.1.2. Let (h, e, f) be a KS-triple, then
(i) (L ∩ K).e is dense in g(2) ∩ p;
(ii) (Q ∩ K).e is dense in ⊕i≥2 g(i) ∩ p;

(iii) dim g(1) ∩ k = dim g(1) ∩ p.

The first item of the proposition was proved by Kostant and Rallis ([KR], in
proof of Lemma 4). The two other are results of Nöel [N], [N2].

2.2. The correspondence between nilpotent G-orbits of g and G-conjugacy
classes of the Lie algebras generated by a JM-triple of g permits to associate to
each nilpotent G-orbit a weighted Dynkin diagram. It consists in a pair (D, ω)
where D is the Dynkin diagram of g and ω is a set of weights attached to the nodes
of the diagram. If (h, e, f) is a JM-triple corresponding to a nilpotent G-orbit,
ω is defined by ωi = αi(h) where Ψ = {α1, . . . , αn} is the set of simple roots of
∆(g, h) defined in 2.1. Note that two weighted Dynkin diagrams associated to a
pair of JM-triples are equal if and only if the triples are in the same G-conjugacy
class. This means that the weighted Dynkin diagram only depends on the nilpotent
G-orbit (see [BC] or [C] for more details).

2.3. We need some definitions to explicitly enunciate the results of Nöel. In
Bala-Carter results distinguished nilpotent elements play an important role. They
are defined as the nilpotent elements whose centralizers do not contain any semisim-
ple element. Or equivalently, e is distinguished if the minimal Levi subalgebra of
g that contains it is g itself. Classification of weighted Dynkin diagrams of distin-
guished nilpotent G-orbits gives a parametrization of nilpotent G-orbits because
each nilpotent element in g is distinguished in the minimal Levi subalgebra that
contains it. For symmetric pairs this role is played by noticed nilpotent elements.
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Definition 2.3.1. (Nöel [N]) A nilpotent element e ∈ p is noticed if g is the
minimal θ-stable Levi subalgebra that contains e.
We will say that a KS-triple (h, e, f) is noticed if e is noticed, as well as the nilpotent
K-orbit K.e and the real nilpotent Go-orbit associated to K.e by the Kostant-
Sekiguchi correspondence.

Remark 2.3.2. Every distinguished nilpotent element in p is noticed but the
converse is not true.

Remark 2.3.3. Every nilpotent element in p is noticed in the minimal θ-stable
Levi subalgebra that contains it.

As we consider KS-triples we are in the situation of Remark 2.1.1.

Proposition 2.3.4. (Nöel [N]) The following statements are equivalent:
(i) e ∈ p is noticed;
(ii) the centralizer k(h,e,f) of the noticed triple (h, e, f) in k is 0.
(iii) dim g(0) ∩ k = dim g(2) ∩ p.

Remark 2.3.5. Every distinguished nilpotent element is even, that is g(i) = 0
for all integer i odd, but this is not true for noticed nilpotent elements.

2.4. We will express in other terms some of previous results, not given so
explicitly in [N]. Fix a KS-triple (h, e, f) and continue with the same notation and
considerations of 2.1. Each α in the set of positive roots ∆+ associated to the set
of simple roots Ψ = {α1, . . . , αn} is of the form α =

∑n

i=1 niαi for certain non
negative integers ni. For each α ∈ ∆+ define its weight ωα = α(h) and the number

lα =
∑

αi∈Ψ

ni mα =
∑

gαi
∈p

ni

We will call them the lenght and non-compact lenght of α respectively. Denote by

M
(j)
k = {α ∈ ∆+ : ωα = j, θα = α, mα even, α 6= γ + θγ for some γ ∈ ∆+}

M
(j)
p = {α ∈ ∆+ : ωα = j, θα = α, mα odd} ∪ {γ + θγ ∈ ∆+ : γ ∈ ∆+, 2ωγ = j}

C(j) = {{α, θα} : α ∈ ∆+, θα 6= α, ωα = j}

Remark 2.4.1. Note that the only situation of g simple where the second set

of M
(j)
p is not zero is in the case g = sl(2m, C) and θ does not fix any simple root.

The reason is that the only Dynkin diagram with an automorphism of order two
such that γ+θγ is a root for some γ ∈ ∆+ is the case mentioned above. The weight
of the root γ + θγ is 2ωγ , so j is even in this case.
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Proposition 2.4.2. The spaces g(j) ∩ k and g(j) ∩p with j ≥ 0 can be described
as

g(0) ∩ k = t +
∑

α∈±M
(0)
k

gα ⊕
∑

{α,θα}∈±C(0)

C(Xα + θXα)

g(j) ∩ k =
∑

α∈M
(j)
k

gα ⊕
∑

{α,θα}∈C(j)

C(Xα + θXα) j > 0

g(0) ∩ p = a +
∑

α∈±M
(0)
p

gα ⊕
∑

{α,θα}∈±C(0)

C(Xα − θXα)

g(j) ∩ p =
∑

α∈M
(j)
p

gα ⊕
∑

{α,θα}∈C(j)

C(Xα − θXα) j > 0

Proof. Without lost of generality we can consider g simple.
Let gα a root space such that ωα = j > 0. If θα 6= α, then gα ⊕ θgα = gα ⊕ gθα

is θ-stable and is generated by {Xα + θXα, Xα − θXα} for some 0 6= Xα ∈ gα. The
first generates (gα ⊕ gθα) ∩ k and the second (gα ⊕ gθα) ∩ p. So, we have obtained
the α-component in the last sumands of the l.h.s. of the equalities.

If θα = α, let’s see that α =
∑n

i=1 niαi is compact or non compact depending
on the parity of mα. Let’s prove it by induction on the length lα =

∑n

i=1 ni of α.
For lα = 1 it is obvious. Consider lα > 1. Hence there exists a root β fixed by

θ such that α = β + αs for some s if θαs = αs, or α = β + αs + θαs if θαs 6= αs.
In the last case, it is possible that β = 0.

In the first case, gα ⊂ [gβ , gαs
]. So, if gαs

∈ p, mα = mβ + 1. By inductive
hypotesis, mβ odd implies that gβ ∈ p. Then, mα is even and gα ∈ k. The case mβ

even implies that gβ ∈ k. Then, mα is odd and gα ∈ p. If gαs
∈ k, mα = mβ . So,

gα ∈ k if and only if gβ ∈ k.
In the second case, suppose β 6= 0. Hence, gαs

+ θgαs
is not a root, according

with the possible automorphism of Dynkin diagrams of order two. Therefore,

gα ⊂ [gαs
, [gβ , gθαs

]]

and mα = mβ . Consider Xαs
∈ gαs

and Xβ ∈ gβ. As gθαs
= θgαs

, we can analyse

θ[Xαs
, [Xβ, θXαs

]] = [θXαs
, [θXβ , Xαs

]] = [[θXαs
, θXβ ], Xαs

] + [θXβ , [θXαs
, Xαs

]].

But, [θXαs
, Xαs

] = 0. Hence,

θ[Xαs
, [Xβ , θXαs

]] = [[θXαs
, θXβ ], Xαs

] = [Xαs
, [θXβ , θXαs

]]

Then, gα ∈ k if and only if gβ ∈ k.
If β = 0, it means that αs + θαs is a root. Then, there exits Xαs

such that
0 6= [Xαs

, θXαs
] ∈ gαs+θαs

and

θ[Xαs
, θXαs

] = [θXαs
, Xαs

] = −[Xαs
, θXαs

]

This says that gα ∈ p. So, we have obtained the α-component in the first sumands
of the l.h.s. of the equalities. Therefore, the equalities hold for j > 0. If j = 0, we
also have to consider the subspaces t and a respectively, and the sets of negative

roots −M
(0)
k , −M

(0)
p and −C(0) that have weight zero too. �

Given a set U , denote by |U | the cardinality of U .

Corollary 2.4.3. Let (h, e, f) be a KS-triple of g, then the sets M
(1)
k and

M
(1)
p associated to it have the same cardinality.
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Proof. This follows immediatly from Proposition 2.1.2 (iii) because

0 = dim g(1) ∩ k−dim g(1) ∩ p = |M
(1)
k |+ |C(1)|− (|M

(1)
p |+ |C(1)|) = |M

(1)
k |− |M

(1)
p |

�

Corollary 2.4.4. Let (h, e, f) be a KS-triple of g, it is noticed if and only if

dim t + 2|M
(0)
k | + 2|C(0)| = |M

(2)
p | + |C(2)|.

Proof. This follows inmediatly from Proposition 2.3.4 (iii) and the previous
proposition. �

2.5. Let B be the Killing form of g. Define B′ by B′(x, y) = −B(x, θσ(y))
for all x, y ∈ g. It results a definite positive hermitian form.

Let q = l⊕ u be a θ-stable parabolic subalgebra of g, that is l and u are. Let µ

be the subspace of u ∩ p such that the decomposition

u ∩ p = µ ⊕ [u ∩ k, [u ∩ k, u ∩ p]]

is orthogonal with respect to B′. Let L be the analytic subgroup of G with Lie
algebra l. Let η be an (L ∩ K)-module of µ and η̂ = η ⊕ [l ∩ p, η]; η̂ is a θ-stable
subspace of g.

Define Lg the set of pairs (q, η) where q = l⊕u is a θ-stable parabolic subalgebra
of g and η as above such that

(1) η has a dense (L ∩ K)-orbit;
(2) η̂ has a dense L-orbit;
(3) dim l ∩ k = dim η;
(4) η̂ is orthogonal to [u, [u, u]];
(5) η̂ is orthogonal to [u, η̂];
(6) [u ∩ k, u ∩ p] ⊂ [q ∩ k, η].

Remark 2.5.1. If (h, e, f) is a KS-triple, then the decomposition (2.1) of g

in eigenspaces of ad h of g is orthogonal with respect to B′ and the parabolic
subalgebra associated to it is θ-stable.

Having in mind 1.4 and previous definitions, we can state an important corre-
spondence.

Theorem 2.5.2. (Nöel [N]) There is a one-to-one correspondence between
K-conjugacy classes of Lie subalgebras generated by noticed KS-triples and K-
conjugacy classes of pairs (q, η) ∈ Lg.

The map (h, e, f) → (q(h,e,f), g
(2)∩p) sends K-conjugacy classes of noticed KS-

triples into K-conjugacy classes of pairs (q, η) ∈ Lg. It inverse is defined choosing
a nilpotent element of the dense (L ∩ K)-orbit of the space η and considering a
KS-triple associated to it.

The main theorem of this work of Nöel is a consequence of Theorem 2.5.2
considering Remark 2.3.3.

Theorem 2.5.3. (Nöel [N]) There is a one-to-one correspondence between K-
orbits of nilpotent elements of p and K-conjugation clases of pairs (qm, ηm) ∈ Lm

with m running over all θ-stable Levi subalgebras of g.
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3. Abstract weighted Vogan diagrams

The purpose of this section is to define abstract weighted Vogan diagram. In
the next one we will relate them with nilpotent K-orbits in p.

3.1. Here we combine the notions of Vogan diagrams, used in the classification
of real simple Lie algebras [Kn], and weighted Dynkin diagram, used to classify
nilpotent G-orbits [BC], [C].

Definition 3.1.1. An abstract Vogan diagram is a diagram with data (D, θ, J)
where D is a Dynkin diagram of n nodes, θ is an automophism of the diagram D

of order at most 2 and J is a subset of θ-invariant nodes of D.
An abstract weighted Vogan diagram (D, θ, J, ω) consists on an abstract Vogan dia-
gram (D, θ, J) with a set of weights ω = (ω1, . . . , ωn) associated to the nodes that
satisfy ωi = ωθ(i) and ωi ∈ {0, 1, 2} for all i = 1, . . . , n.

Remark 3.1.2. A weighted Vogan diagram Γ = (D, θ, J, ω) gives place to
the weighted Dynkin diagram (D, ω) forgetting the automorphism and the painted
nodes [C].

In order to draw the diagram, if θ have orbits of 2 elements, the nodes in the
same orbit are connected by a doublearrow. The nodes in the set J are painted and
each weight is written above the corresponding node. For example, the diagram of
Figure 1 corresponds to the data D = D6, θ the unique non trivial automorphism
of D6 that fix the first four nodes, J = {1, 4} and ω = {2, 0, 0, 0, 1, 1}.

u e e u

e

e

#
#

c
c ?

6
2 0 0 0

1

1

Figure 1.

Remark 3.1.3. An automorphism of a Dynkin diagram of order two is unique
up to an exterior automorphism of the diagram. More explicitly, if the diagram is
connected, it is unique except for D4.

3.2. Vogan proved that to each abstract Vogan diagram (D, θ, J) one can
associate a 4-tuple (go, θ, ho, ∆

+) of a real Lie algebra go, a Cartan involution θ of
g, a real θ-stable maximally compact Cartan subalgebra ho = to ⊕ ao of go and a
positive root system ∆+(g, h) that takes ito before ao (see [Kn], Theorem 6.88).
This permits the classification of all simple real Lie algebras, but it is possible
that two different abstract Vogan diagrams give place to the same simple real Lie
algebra.

Given an abstract Vogan diagram Γ = (D, θ, J, ω) we will say that the 4-tuple
(go, θ, ho, ∆

+) is associated to Γ if it is the associated to (D, θ, J).

Definition 3.2.1. An abstract weighted Vogan diagrams Γ = (D, θ, J, ω) is
equivalent to a second one if one can pass from Γ to the other in finite operations
of the type:
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(A) given j ∈ J with ωj = 0, the resulting weighted Vogan diagram is Γ′ =
(D, θ, J ′, ω) where

J ′ = {i ∈ J : i is not adjacent to j} ∪ {i 6∈ J : i adjacent to j}

Except in the cases:
Bn : j = n J ′ = J ,
Cn : j = n − 1, J ′ = {i ∈ J : i 6= n − 2} ∪ {n− 2 if n − 2 6∈ J},
F4 : j = 2, J ′ = {i ∈ J : i 6= 1} ∪ {1 if 1 6∈ J}.

Given j ∈ J with ωj = 0, operation (A) is nothing more than change the colors
of the nodes adyacent to j, except for long neighbors of short roots in types B, C

and F. For example, the two weighted Vogan diagrams of Figure 2 are equivalent,
one is obtained from the other applying operation (A) on the second node.

u u e〉
1 0 1

e u u〉
1 0 1

Figure 2.

3.3. We will define the notion of noticed abstract weighted Vogan diagram
to be used later.

Given an abstract weighted Vogan diagram Γ = (D, θ, J, ω) denote by Nθ the
number of nodes of D fixed by θ and by Nθ

2 the number of θ-orbits with two
elements. Consider (go, θ, ho, ∆

+
Γ ), the 4-tuple associated to Γ. Denote by αj the

simple root of ∆+
Γ corresponding to the node j. Hence, every root α ∈ ∆+

Γ has the
decomposition: α =

∑n

i=1 niαi for certain non negative integers ni. Its weight and
its painted lenght are respectively given by

ωα =

n∑

i=1

niwi pα =
∑

i∈J

ni

Denote by

P (j)
np = P (j)

np (Γ) = {α ∈ ∆+
Γ : ωα = j, θα = α, pα even, α 6= γ + θγ for some γ ∈ ∆+

Γ }

P (j)
p = P (j)

p (Γ) = {α ∈ ∆+
Γ : ωα = j, θα = α, pα odd} ∪ {γ + θγ ∈ ∆+

Γ : γ ∈ ∆+
Γ , 2ωγ = j}

K(j) = K(j)(Γ) = {{α, θα} : α ∈ ∆+
Γ , θα 6= α, ωα = j}

Definition 3.3.1. An abstract weighted Vogan diagrams Γ = (D, θ, J, ω) is
noticed if the following equality holds for the corresponding subsets of ∆+

Γ ,

Nθ + Nθ
2 + 2|P (0)

np | + 2|K(0)| = |P (2)
p | + |K(2)|

4. Real nilpotent orbits and weighted Vogan diagrams

Let K and p corresponding to a symmetric pair as in Section 1. We will attach
to each nilpotent K-orbit of p a weighted Vogan diagram. The main result is
a correspondence between classes of abstract weighted Vogan diagrams and real
nilpotent orbits.
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4.1. Let (h, e, f) be a KS-triple of g. We will associate to it an abstract
weighted Vogan diagram. To this triple we can attach a weighted Dynkin diagram
following [BC], [C]. It consists in the Dynkin diagram of g and weights in each
node defined by ωi = αi(h) according to 2.1. On the other hand, by Remark 2.1.1
the Cartan involution θ of g given in 1.1 provides an automorphism of weighted
Dynkin diagrams where θ(i) is the node corresponding to θαi. As h ∈ ik, we have
that ωθ(i) = θαi(h) = αi(θh) = αi(h). That is, ωθ(i) = ωi for all i. Observe
that the weights do not change if one replace the triple by a K-conjugate triple.
The KS-triple (h, e, f) remains being a KS-triple by Ko-conjugation, K-conjugation
preserves normality. This means that ω only depends on the K-orbit.

To obtain an abstract weighted Vogan diagram it remains to define the set
J of painted nodes. Define J the set of nodes fixed by the automorphism θ that
correspond to non compact roots, that is those roots α such that gα ∈ p. This fact
is also invariant by K-conjugation.

Note that in such assignment there is a choice of the set of simple roots Ψ =
{α1, . . . , αn} and there are |Wo| posibilities of this choice, where Wo is the subset
of the Weyl group generated by the set of roots α such that α(h) = 0. On the
other hand, observe that two weighted Vogan diagrams Γ1 and Γ2 obtained from
a KS-triple (h, e, f), like before, associated to different sets of simple roots Ψ1 and
Ψ2 = wΨ1 for some w ∈ Wo, are equivalent. In fact, w is a composition of finite
reflections sαj

with αj a simple root of Ψ1 in Wo. The set sαj
Ψ1 gives rise to the

same weighted Vogan diagram if αj is compact or complex, or to one that can be
obtained from Γ1 applying operation (A) of Definition 3.3.1 in the node j if αj is
non compact. In a finite similar steps one can obtain Γ2.

Therefore we can conclude the following.

Proposition 4.1.1. There is a map F from the set of K-conjugacy classes of
Lie subalgebras generated by KS-triples to the set of equivalent classes of abstract
weighted Vogan diagrams.

Corollary 4.1.2. There is a map Fp from the set of nilpotent K-orbits of
p to the set of equivalent classes of abstract weighted Vogan diagrams. Moreover,
the composition of Fp with the Kostant-Sekiguchi correspondence, gives a map Fgo

from the set of nilpotent Go-orbits of go to the set of equivalent classes of abstract
weighted Vogan diagrams.

Proof. Let O be a nilpotent K-orbit in p. According to Theorem 2.5.3, there
is a K-conjugacy class of a pair (qm, ηm) ∈ Lm corresponding to O where m is a
θ-stable Levi subalgebra of g. By Theorem 2.5.2, this pair consists in the θ-stable
parabolic subalgebra associated to a noticed KS-triple (h, e, f) in [m, m] such that
O = K.e and ηm = m(2)∩p. As these correspondences are one-to-one, we can define
Fp(O) as the image by F of the K-conjugacy class of the Lie subalgebras generated
by (h, e, f). �

Definition 4.1.3. A weighted Vogan diagram is an element of a class in the
image of F or Fp or Fgo

(all these images are the same).

Example 4.1.4. The first diagram of Figure 3.2 of the previous section gives
place to a 4-tuple (so(2, 5), θ, ho, ∆

+) and the second one to (so(2, 5), θ, ho, sα2(∆
+))

where sα2 is the reflexion associated to the simple root α2 of ∆+.
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Proposition 4.1.5. Let Γ = (D, θΓ, J, ω) be the weighted Vogan diagram cor-
responding to a nilpotent Go-orbit Oo of go. Then,

(i) the underlying weighted Dynking diagram (D, w) of Γ is the weighted Dynkin
diagram of the complex nilpotent G-orbit O = G.Oo;

(ii) the underlying Vogan diagram (D, θΓ, J) of Γ is a Vogan diagram of go.

Proof. Starting with a nilpotent Go-orbit Oo of go and fixing a Cartan involu-
tion θ of go, we can associate to it a nilpotent K-orbit of p by the Kostant-Sekiguchi
correspondence (see Section 1). The real nilpotent orbit Oo = Go.eo is related with
the nilpotent K-orbit Op = K.e by a Cayley transform (see 1.4), that is e = c(eo) =
g.eo for a particular element g ∈ G. So, G.Op = G.Oo = O. Then, the weighted
Dynkin diagrams associated to the KS-triple (h, e, f) = (c(ho), c(eo), c(fo)) and the
real JM-triple (ho, eo, fo) are the same.

On the other hand, the weighted Vogan diagram Γ is the one associated to
(h, e, f). Following the proof of the Existence Theorem of real semisimple Lie
algebras of Vogan diagrams (see Theorem 6.88, [Kn]), the involution θΓ of D give
place to an involution of g, observe that it coincides with θ by construction of θΓ.
As we know, the compact real form of g is ko ⊕ ipo. Then, the real semisimple Lie
algebra associated to (D, θΓ, J) is ko ⊕ po = go as we wanted. �

Remark 4.1.6. According to the proof of last proposition, there is no confusion
to denote both, the involution of a weighted Vogan diagram Γ = (D, θ, J, ω) and
the involution of g, by θ.

4.2. Given a weighted Vogan diagram denote by j0 = 0, jm+1 = n + 1 and
by j1, . . . , jm the nodes such that ωji

6= 0 and j1 < · · · < jm.

Proposition 4.2.1. Each equivalent class of weighted Vogan diagrams contains
a diagram Γ with the following property:

(P) each weighted Vogan subdiagram Γji,ji+1 of Γ with nodes ji +1, . . . , ji+1−1
has at most one painted node, for i = 0, 1, . . . , m.

Proof. Let Γ be a weighted Vogan diagram and Γji,ji+1 the subdiagram de-
fined above. The Weyl group associated to Γji,ji+1 is isomorphic to a subgroup
Wji,ji+1 of Wo = Span{sα ∈ W : θα = α, ωα = 0}. By a result in [Kn] there is a
Vogan diagram with at most one painted node associated to the same real Lie alge-
bra than the underlying Vogan diagram of Γji,ji+1 . The 4-tuple associated to them
differ in the systems of positive roots by an element si of Wji,ji+1 . The element si

is a composition of reflexions in Wo. As we have seen before Proposition 4.1.1, the
action on the diagram Γ is nothing more than an application of finite operations of
type (A).

Using this process for each i = 0, . . . , m we can conclude that the resulting
weighted Vogan diagram has property (P). �

5. Weighted Vogan diagrams of noticed nilpotent orbits

In this section we will give a characterization of weighted Vogan diagrams
corresponding to noticed nilpotent Go-orbits of go.

5.1. According with Subsection 3.2, the following results are direct conse-
quences of Lema 2.4.2.
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Lemma 5.1.1. Let Γ = (D, θΓ, J, ω) be a weighted Vogan diagram and (go, θ, ho, ∆
+
Γ )

be the 4-tuple associated to it. Then, for each integer j ≤ n, the following conditions
are equivalent,

(i) there exists a root α =
∑n

i=1 niαi ∈ ∆+
Γ with nj > 0 such that gα ⊂ g(2)∩p;

(ii) for the j-node of Γ there is a connected weighted Vogan subdiagram Γj =
(Dj , θj , Jj , ωj) that contains it and satisfies one of the following condi-
tions,
(a) 0 <

∑
i ω

j
i ≤ 2 and there is a root α ∈ ∆+

Γj ⊂ ∆+
Γ of weight 2 with

odd painted lenght mα and nj > 0, or
(b) Γj is of the type

e e e e e

e e e e e

. . . . . .

. . . . . .

0 0 1 0 0

0 0 1 0 0

?6 ?6?6 ?6 ?6

Proof. Suppose α is as in (i). Then, α ∈ M
(2)
p by Lemma 2.4.2 . Let N j

α =
{il : nil

> 0}. Denote by Γj = (Dj , θj , Jj, ωj) the connected weighted Vogan
subdiagram such that Dj is the Dynkin diagram supported on N j

α, Jj = J ∩ N j
α,

θj(i) = θΓ(i) and ω
j
i = ωi for all i ∈ N j

α. In particular, α ∈ ∆+
Γj . By Lemma 2.4.2,

mα is odd or α = γ + θγ because gα ⊂ g(2) ∩ p. Then, α satisfies (ii.a) or Γj is as
in (ii.b).

Conversely, given Γj that satisfies (ii.a), consider α a root of ∆+
Γ as in (ii.a).

Then, α ∈ M
(2)
p . It implies that gα ⊂ g(2) ∩ p by Lemma 2.4.2.

If Γj is as in (ii.b), denote by Ψj the subset of simple roots associated to Dj

and define the root α =
∑

αi∈Ψj αi. Then, α = γ + θγ, so it is in M
(2)
p . Applying

again Lemma 2.4.2, the proof is finished. �

Lemma 5.1.2. Let Γ = (D, θΓ, J, ω) be a weighted Vogan diagram and (go, θ, ho, ∆
+
Γ )

be the 4-tuple associated to it. Then, for each integer j ≤ n, the following conditions
are equivalent,

(i) there exists a root α ∈ ∆+
Γ with nj > 0 such that gα ⊂ g(2) ∩ k;

(ii) for the j-node of Γ there is a connected weighted Vogan subdiagram Γj =

(Dj , θj , Jj , ωj) that contains it, 0 <
∑

i ω
j
i ≤ 2 and there is a root α ∈ ∆+

Γj ⊂ ∆+
Γ

of weight 2 such that its painted lenght mα is even and nj > 0.

The proof is analogous to the previous one.

Lemma 5.1.3. Let Γ = (D, θΓ, J, ω) be a weighted Vogan diagram and (go, θ, ho, ∆
+
Γ )

be the 4-tuple associated to it. Then, for each integer j ≤ n,the following conditions
are equivalent,

(i) there exists a complex root α ∈ ∆+
Γ with nj > 0 and weight 2;

(ii) for the j-node of Γ there is a connected non-θΓ-stable weighted Dynkin

subdiagram Ωj = (Dj , ωj) that contains it such that
∑

i ω
j
i = 2.

Proof. Suppose α is as in (i). As it is complex, the set N j
α = {il : nil

> 0} is
not θ-stable. Define the connected weighted Dynkin subdiagram Ωj = (Dj , ωj) with

Dj supported in N j
α and ω

j
i = ωi for all i ∈ N j

α. Observe that θΓ is not the identity
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automorphism. Regarding diagrams with this property, the only posibilities of the
numbers ni for any positive root are 0 or 1. Then,

∑
i∈Nj ω

j
i = ωα = 2.

Conversely, denote by Ψj the subset of simple roots associated to Ωj and define
the root α =

∑
αi∈Ψj αi ∈ ∆+

Γ . Then α satisfies (i) because D is not θ-stable and

ωα =
∑

i∈N
j
α

ω
j
i = 2. �

Proposition 5.1.4. Let Γ = (D, θΓ, J, ω) be a weighted Vogan diagram corre-
sponding to the KS-triple (h, e, f) of g and let (go, θ, ho, ∆

+
Γ ) be the 4-tuple associated

to it. Then, the following statements are equivalent,

(1) g is the minimal θ-stable Levi subalgebra that contains h ⊕ g(2) ∩ p;
(2) one of the next conditions is satisfied for each node j of Γ,

(a) there is a connected non-θ-stable weighted Dynkin subdiagram Ωj =

(Dj , ωj) that contains the node j such that
∑

i ω
j
i = 2, or

(b) there is a connected weighted Vogan subdiagram Γj = (Dj , θj , Jj , ωj)
that contains the node j such that

I. 0 <
∑

i ω
j
i ≤ 2 and there is a root α ∈ ∆+

Γj ⊂ ∆+
Γ of weight 2

with odd painted lenght mα and nj > 0, or
II. Γj is

e e e e e

e e e e e

. . . . . .

. . . . . .

0 0 1 0 0

0 0 1 0 0

?6 ?6?6 ?6 ?6

Proof. Let m be a minimal θ-stable Levi subalgebra of g that contains h ⊕
g(2)∩p. Then, as m contains h the roots system ∆(m, h) is a subsystem of ∆Γ(g, h).
Hence, by Lemmas 5.1.3, 5.1.1 and 2.4.2, the node j satisfy condition (a) or (b) if
and only iff there is α ∈ ∆+

Γ with nj 6= 0 such that (gα ⊕ gθα) ∩ g(2) ∩ p 6= ∅ or

gα ⊂ g(2) ∩ p respectively. Then, this happens for each node j of Γ if and only if
every simple root αj of ∆Γ is in ∆(m, h), or equivalently, if and only if m = g. �

Following the notation of 3.3 we have the following results that caracterize
weighted Vogan diagrams associated to noticed KS-triples of g.

Theorem 5.1.5. If Γ is a weighted Vogan diagram associated to a noticed KS-
triple (h, e, f) of g, then

(1) P
(1)
np (Γ) and P

(1)
p (Γ) have the same cardinality;

(2) the statement (2) of Proposition 5.1.4 holds.

Proof. The statement (1) follows inmediatly from Proposition 2.4.3, since the

sets P
(1)
np and P

(1)
p are equal to the sets M

(1)
k and M

(1)
p defined in section 2.1 for

the system root associated to the KS-triple (h, e, f).
Suppose that (h, e, f) is a noticed KS-triple of g, this means that g is the

minimal θ-stable Levi subalgebra of g that contains e. But e ∈ g(2) ∩ p, then g is
contained in the minimal θ-stable Levi subalgebra m of g that contains h⊕ g(2) ∩ p.
So, (1) of Proposition 5.1.4 is prooved, or equivalently, (2) is true. This proves the
second statement. �

Theorem 5.1.6. The following statements are equivalent,
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(1) (h, e, f) is a noticed KS-triple of g;
(2) Op = K.e is a noticed nilpotent K-orbit of p;
(3) Oo = Go.eo is a noticed nilpotent Go-orbit of go, where eo is the corre-

sponding element of e by the Kostant-Sekiguchi correspondence;
(4) the weighted Vogan diagram associated to (h, e, f) is a noticed weighted

Vogan diagram.

Proof. The three first items are equivalent by Definition 2.3.1.
By Corollary 2.4.4, (h, e, f) is noticed if and only if the subsets of the positive

root system ∆+ associated to (h, e, f) satisfy dim t + 2|M
(0)
k | + 2|C(0)| = |M

(2)
p | +

|C(2)|. But it is obvious that they are related to Γ in the following way: dim t =

Nθ + Nθ
2 , M

(0)
k = P

(0)
np (Γ), M

(2)
p = P

(2)
p (Γ), C(0) = K(0)(Γ) and C(2) = K(2)(Γ).

So, the equality in terms of the sets defined from Γ is exactly the condition on Γ to
be noticed. So, (1) and (4) are equivalent. �

Given a weighted Vogan diagram, the advantage of this caracterization is that
it permits to decide easily if it is the associated one to a noticed nilpotent orbit or
not. Let’s see some examples.

Example 5.1.7. a) The first diagram of Figure 3.2 is not a noticed weighted
Vogan diagram because the first node does not satisfy the condition (2) of Propo-
sition 5.1.4. Other argument is that the following numbers are are not equal,

Nθ + Nθ
2 + 2|P (0)

np | + 2|K(0)| = 3 + 0 + 0 + 0

|P (2)
p | + |K(2)| = |{α2 + 2α3}| + 0 = 1

b) The diagram of Figure 3.1 is not a noticed weighted Vogan diagram. In fact,
beside of Γ satisfies (1) and (2) of Theorem 5.1.5, we obtain that

Nθ + Nθ
2 + 2|P (0)

np | + 2|K(0)| = 4 + 1 + 6 + 0 = 11

|P (2)
p | + |K(2)| =

= |{α1, α1 + α2, α1 + α2 + α3, α4 + α5 + α6,

α3 + α4 + α5 + α6, α2 + α3 + α4 + α5 + α6}| + 0 = 6

c) The following diagram is a noticed weighted diagram,

e u e u u〉
2 0 0 2 0

Figure 3.

In fact,

Nθ + Nθ
2 + 2|P (0)

np | + 2|K(0)| = 5 + 0 + 2 + 0 = 7

|P (2)
p | + |K(2)| =

= |{α1 + α2, α1 + α2 + α3, α4, α4 + 2α5, α3 + α4,

α2 + α3 + α4 + α5, α3 + α4 + 2α5}| + 0 = 7.
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Moreover, this diagram is equivalent to the diagram with the same weights but with
all the nodes painted or to the one with the first, third and fifth nodes painted. In
this case there more than one diagram with the property (P) of Proposition 4.2.1.

In a future paper we will present the weighted Vogan diagrams associated to
noticed nilpotent orbits.
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