Some Irreducible Representations of the Braid Group $\mathbb{B}_{\boldsymbol{n}}$ of Dimension greater than n

Claudia María Egea, Esther Galina *
Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Córdoba, Argentina cegea@mate.uncor.edu, galina@mate.uncor.edu

Abstract

For any $n \geq 3$, we construct a family of finite dimensional irreducible representations of the braid group \mathbb{B}_{n}. Moreover, we give necessary conditions for a member of this family to be irreducible. In particular we give a explicitly irreducible subfamily (ϕ_{m}, V_{m}), $1 \leq m<n$, where $\operatorname{dim} V_{m}=\binom{n}{m}$. The representation obtained in the case $m=1$ is equivalent to the standard representation.

Keywords: Braid Group; Irreducible Representations.
Mathematics Subject Classification 2000: 20C99, 20F36

1. Introduction

The braid group of n strings \mathbb{B}_{n}, is defined by generators and relations as follows

$$
\mathbb{B}_{n}=<\tau_{1}, \ldots, \tau_{n-1}>/ \sim
$$

$$
\sim=\left\{\tau_{k} \tau_{j}=\tau_{j} \tau_{k}, \text { if }|k-j|>1 ; \quad \tau_{k} \tau_{k+1} \tau_{k}=\tau_{k+1} \tau_{k} \tau_{k+1} \quad 1 \leq k \leq n-2\right\}
$$

We will consider finite dimensional complex representations of \mathbb{B}_{n}; that is pairs (ϕ, V) where

$$
\phi: \mathbb{B}_{n} \rightarrow \operatorname{Aut}(V)
$$

is a morphism of groups and V is a complex vector space of finite dimension.
In this paper, we will construct a family of finite dimensional complex representations of \mathbb{B}_{n} that contains the standard representations. Moreover, we will give necessary conditions for a member of this family to be irreducible. In this way, we can find explicit families of irreducible representations. In particular, we will define a subfamily of irreducible representations $\left(\phi_{m}, V_{m}\right), 1 \leq m<n$, where $\operatorname{dim} V_{m}=\binom{n}{m}$ and the corank of ϕ_{m} is equal to $\frac{2(n-2)!}{(m-1)!(n-m-1)!}$.
*This work was partially supported by CONICET, SECYT-UNC, FONCYT.

This family of representations can be useful in the progress of classification of the irreducible representations of \mathbb{B}_{n}. As long as we known, there are only few contributions in this sense, some known results are the following ones. Formanek classified all the irreducible representations of \mathbb{B}_{n} of dimension lower than n [2]. Sysoeva did it for dimension equal to n [5]. Larsen and Rowell gave some results for unitary representation of \mathbb{B}_{n} of dimension multiples of n. In particular, they prove there are not irreducible representations of dimension $n+1$. Levaillant proved when the Lawrence-Krammer representation is irreducible and when it is reducible [4].

2. Construction and Principal Theorems

In this section, we will construct a family of representations of \mathbb{B}_{n} that we believe to be new, and we will obtain a subfamily of irreducible representations.

We choose n non negative integers $z_{1}, z_{2}, \ldots, z_{n}$, not necessarily different. Let X be the set of all the possible n-tuples obtained by permutation of the coordinates of the fixed n-tuple $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. For example, if the z_{i} are all different, then the cardinality of X is n !. Explicitly, if $n=3$,

$$
X=\left\{\left(z_{1}, z_{2}, z_{3}\right),\left(z_{1}, z_{3}, z_{2}\right),\left(z_{2}, z_{1}, z_{3}\right),\left(z_{2}, z_{3}, z_{1}\right),\left(z_{3}, z_{1}, z_{2}\right),\left(z_{3}, z_{2}, z_{1}\right)\right\}
$$

Or if $z_{1}=z_{2}=1$ and $z_{i}=0$ for all $i=3, \ldots, n$, then the cardinality of X is $\binom{n}{2}=\frac{n(n-1)}{2}$. Explicitly, for $n=3$

$$
X=\{(1,1,0),(1,0,1),(0,1,1)\}
$$

Let V be a complex vector space with orthonormal basis $\beta=\left\{v_{x}: x \in X\right\}$. Then the dimension of V is the cardinality of X.

We define $\phi: \mathbb{B}_{n} \rightarrow \operatorname{Aut}(V)$, such that

$$
\phi\left(\tau_{k}\right)\left(v_{x}\right)=q_{x_{k}, x_{k+1}} v_{\sigma_{k}(x)}
$$

where $q_{x_{k}, x_{k+1}}$ is a non-zero complex number that depends on $x=\left(x_{1}, \ldots, x_{n}\right)$, but, it only depends on the places k and $k+1$ of x; and

$$
\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, x_{k}, x_{k+2}, \ldots, x_{n}\right)
$$

With this notations, we have the following theorem,
Theorem 2.1. (ϕ, V) is a representation of the braid group \mathbb{B}_{n}.
Proof. We need to check that $\phi\left(\tau_{k}\right)$ satisfy the relations of the braid group. We have for $j \neq k-1, k, k+1$ that

$$
\phi\left(\tau_{k}\right) \phi\left(\tau_{j}\right)\left(v_{x}\right)=\phi\left(\tau_{k}\right)\left(q_{x_{j}, x_{j+1}} v_{\sigma_{j}(x)}\right)=q_{x_{j}, x_{j+1}} q_{x_{k}, x_{k+1}} v_{\sigma_{k} \sigma_{j}(x)}
$$

On the other hand

$$
\phi\left(\tau_{j}\right) \phi\left(\tau_{k}\right)\left(v_{x}\right)=\phi\left(\tau_{j}\right)\left(q_{x_{k}, x_{k+1}} v_{\sigma_{k}(x)}\right)=q_{x_{k}, x_{k+1}} q_{x_{j}, x_{j+1}} v_{\sigma_{j} \sigma_{k}(x)}
$$

As $\sigma_{k} \sigma_{j}(x)=\sigma_{j} \sigma_{k}(x)$, if $|j-k|>1$, then $\phi\left(\tau_{k}\right) \phi\left(\tau_{j}\right)=\phi\left(\tau_{k}\right) \phi\left(\tau_{j}\right)$ if $|j-k|>1$.
In the same way, we have

$$
\begin{aligned}
\phi\left(\tau_{k}\right) \phi\left(\tau_{k+1}\right) \phi\left(\tau_{k}\right)\left(v_{x}\right) & =\phi\left(\tau_{k}\right) \phi\left(\tau_{k+1}\right)\left(q_{x_{k}, x_{k+1}} v_{\sigma_{k}(x)}\right) \\
& =\phi\left(\tau_{k}\right)\left(q_{x_{k}, x_{k+1}} q_{x_{k}, x_{k+2}} v_{\sigma_{k+1} \sigma_{k}(x)}\right) \\
& =q_{x_{k}, x_{k+1}} q_{x_{k}, x_{k+2}} q_{x_{k+1}, x_{k+2}} v_{\sigma_{k} \sigma_{k+1} \sigma_{k}(x)}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\phi\left(\tau_{k+1}\right) \phi\left(\tau_{k}\right) \phi\left(\tau_{k+1}\right)\left(v_{x}\right) & =\phi\left(\tau_{k+1}\right) \phi\left(\tau_{k}\right)\left(q_{x_{k+1}, x_{k+2}} v_{\sigma_{k+1}(x)}\right) \\
& =\phi\left(\tau_{k+1}\right)\left(q_{x_{k+1}, x_{k+2}} q_{x_{k}, x_{k+2}} v_{\sigma_{k} \sigma_{k+1}(x)}\right) \\
& =q_{x_{k+1}, x_{k+2}} q_{x_{k}, x_{k+2}} q_{x_{k}, x_{k+1}} v_{\sigma_{k+1} \sigma_{k} \sigma_{k+1}(x)}
\end{aligned}
$$

As $\sigma_{k} \sigma_{k+1} \sigma_{k}(x)=\sigma_{k+1} \sigma_{k} \sigma_{k+1}(x)$, for all k and $x \in X$, then $\phi\left(\tau_{k}\right) \phi\left(\tau_{k+1}\right) \phi\left(\tau_{k}\right)=$ $\phi\left(\tau_{k+1}\right) \phi\left(\tau_{k}\right) \phi\left(\tau_{k+1}\right)$ for all k.

As β is an orthonormal basis, we have that,

$$
<\phi\left(\tau_{k}\right) v_{y}, v_{x}>=<q_{y_{k}, y_{k+1}} v_{\sigma_{k}(y)}, v_{x}>=<v_{y}, \overline{q_{x_{k+1}, x_{k}}} v_{\sigma_{k}(x)}>
$$

then,

$$
\left(\phi\left(\tau_{k}\right)\right)^{*}\left(v_{x}\right)=\overline{q_{x_{k+1}, x_{k}}} v_{\sigma_{k}(x)}
$$

therefore, $\phi\left(\tau_{k}\right)$ is self-adjoint if and only if $q_{x_{k+1}, x_{k}}=\overline{q_{x_{k}, x_{k+1}}}$ for all $x \in X$. In particular, if $x_{k}=x_{k+1}$ then $q_{x_{k}, x_{k+1}}$ is a real number. In the same way, $\phi\left(\tau_{k}\right)$ is unitary if and only if $\left|q_{x_{k}, x_{k+1}}\right|^{2}=1$ for all $x \in X$.

Now, we will give a subfamily of irreducible representations.
Theorem 2.2. If $\phi\left(\tau_{k}\right)$ is a self-adjoint operator for all k, and for any pair $x, y \in$ X, there exists $j, 1 \leq j \leq n-1$, such that $\left|q_{x_{j}, x_{j+1}}\right|^{2} \neq\left|q_{y_{j}, y_{j+1}}\right|^{2}$, then (ϕ, V) is an irreducible representation of the braid group \mathbb{B}_{n}.

Proof. Let $W \subset V$ be a non-zero invariant subspace. It is enough to prove that W contains one of the basis vectors v_{x}. Indeed, given $y \in X$, there exists a permutation σ of the coordinates of x, that sends x to y. This happens because the elements of X are n-tuples obtained by permutation of the coordinates of the fixed n-tuple $\left(z_{1}, \ldots, z_{n}\right)$. Suppose that $\sigma=\sigma_{i_{1}} \ldots \sigma_{i_{l}}$, then $\tau:=\tau_{i_{1}} \ldots, \tau_{i_{l}}$ satisfies that $\phi(\tau)\left(v_{x}\right)=\lambda v_{y}$, for some non-zero complex number λ. Then W contains v_{y} and therefore, W contains the basis $\beta=\left\{v_{x}: x \in X\right\}$.

As $\phi\left(\tau_{k}\right)$ is a self-adjoint operator, it commutes with P_{W}, the orthogonal projection over the subspace W. Therefore, $\left(\phi\left(\tau_{k}\right)\right)^{2}$ commute with P_{W}. On the other hand, note that $\left(\phi\left(\tau_{k}\right)\right)^{2}\left(v_{x}\right)=\left|q_{x_{k}, x_{k+1}}\right|^{2} v_{x}$, hence, $\left(\phi\left(\tau_{k}\right)\right)^{2}$ is diagonal in the basis $\beta=\left\{v_{x}: x \in X\right\}$. Then, the matrix of P_{W} has at least the same blocks than $\left(\phi\left(\tau_{k}\right)\right)^{2}$ for all $k, 1 \leq k \leq n-1$.

If for some k, the matrix of $\left(\phi\left(\tau_{k}\right)\right)^{2}$ has one block of size 1×1, then the matrix of P_{W} has one block of size 1×1. In other words, there exists $x \in X$ such that v_{x} is an eigenvector. If the eigenvalue associated to v_{x} is non-zero, then $v_{x} \in W$.

It rest to see that the matrix of $\left(\phi\left(\tau_{k}\right)\right)^{2}$ has all its blocks of size 1×1. By hypothesis, for each pair of vectors in the basis β, v_{x} and v_{y}, there exists $k, 1 \leq$ $k \leq n-1$, such that $\left|q_{x_{k}, x_{k+1}}\right|^{2} \neq\left|q_{y_{k}, y_{k+1}}\right|^{2}$. Fix any order in X and let x and y the first and second element of X. Then there exists k such that v_{x} and v_{y} are eigenvectors of $\left(\phi\left(\tau_{k}\right)\right)^{2}$ of different eigenvalue. Hence $\left(\phi\left(\tau_{k}\right)\right)^{2}$ has the first block of size 1×1. As $\left(\phi\left(\tau_{j}\right)\right)^{2}$ commute with $\left(\phi\left(\tau_{k}\right)\right)^{2}$ for all $j,\left(\phi\left(\tau_{j}\right)\right)^{2}$ also has this property.

By induction, suppose that for all $j\left(\phi\left(\tau_{j}\right)\right)^{2}$ has its $r-1$ first blocks of size 1×1. Let x^{\prime}, y^{\prime} the elements r and $r+1$ of X, then there exists k^{\prime} such that $v_{x^{\prime}}$ and $v_{y^{\prime}}$ are eigenvectors of $\left(\phi\left(\tau_{k^{\prime}}\right)\right)^{2}$ of different eigenvalue. Hence, $\left(\phi\left(\tau_{k^{\prime}}\right)\right)^{2}$ has the r block of size 1×1. Therefore $\left(\phi\left(\tau_{j}\right)\right)^{2}$ too because it commute with $\left(\phi\left(\tau_{k^{\prime}}\right)\right)^{2}$, for all j. Then we obtain that all the blocks are of size 1×1.

Note that if the numbers $q_{x_{k}, x_{k+1}}$ are all equal and $|X|>1$, then ϕ is not irreducible because the subspace W, generated by the vector $v=\sum_{x \in X} v_{x}$, is an invariant subspace.

2.1. Examples

We are going to compute some explicit examples of this family of representations. We will show that the standard representation ([5], [6]) is a member of this family.

2.1.1. Standard Representation

Let $z_{1}=1$ and $z_{j}=0$ for all $j=2, \ldots, n$. Then the cardinality of X is n and $\operatorname{dim} V=n$ too. For each $x \in X$, let $q_{x_{k}, x_{k+1}}=1+(t-1) x_{k+1}$, where $t \neq 0,1$ is a complex number. Therefore $\phi: \mathbb{B}_{n} \rightarrow \operatorname{Aut}(V)$, given by $\phi\left(\tau_{k}\right) v_{x}=q_{x_{k}, x_{k+1}} v_{\sigma_{k}(x)}$, is equivalent to the standard representation ρ, given by

$$
\rho\left(\tau_{k}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & \\
& 1 & & & & & \\
& & \ddots & & & & \\
& & & 0 & t & & \\
& & & 1 & 0 & & \\
& & & & & \ddots & \\
& & & & & \ddots & \\
& & & & & & & 1
\end{array}\right)
$$

where t is in the place $(k, k+1)$. In fact, if $\left\{\beta_{j}: j=1, \ldots, n\right\}$ is the canonical basis of \mathbb{C}^{n}, and if x_{j} is the element of X with 1 in the place j and zero elsewhere, define

$$
\begin{aligned}
\alpha: \mathbb{C}^{n} & \rightarrow V \\
\beta_{j} & \mapsto v_{x_{j}}
\end{aligned}
$$

Then $\alpha\left(\rho\left(\tau_{k}\right)\left(\beta_{j}\right)\right)=\phi\left(\tau_{k}\right)\left(\alpha\left(\beta_{j}\right)\right)$ for all $j=1, \ldots, n$. Hence the representations are equivalent.

2.1.2. Example

Let $z_{1}, \ldots, z_{n} \in\{0,1\}$, such that $z_{1}=z_{2}=\cdots=z_{m}=1$ and $z_{m+1}=\cdots=z_{n}=0$. Then the cardinality of X is $\binom{n}{m}=\frac{n!}{m!(n-m)!}$. If V_{m} is the vector space with basis $\beta_{m}=\left\{v_{x}: x \in X\right\}$, then $\operatorname{dim} V_{m}=\frac{n!}{m!(n-m)!}$.

For each $x:=\left(x_{1}, \ldots, x_{n}\right) \in X$, let

$$
q_{x_{k}, x_{k+1}}= \begin{cases}1 & \text { if } x_{k}=x_{k+1} \\ t & \text { if } x_{k} \neq x_{k+1}\end{cases}
$$

where t is a real number, $t \neq 0,1,-1$.
We define $\phi_{m}: \mathbb{B}_{n} \rightarrow \operatorname{Aut}\left(V_{m}\right)$, given by

$$
\phi_{m}\left(\tau_{k}\right) v_{x}=q_{x_{k}, x_{k+1}} v_{\sigma_{k}(x)}
$$

For example, fixing the lexicographic order in X, if $n=5$ and $m=3$, then $\operatorname{dim} V_{m}=$ 10 , the ordered basis is

$$
\begin{aligned}
\beta:=\{ & v_{(0,0,1,1,1)}, v_{(0,1,0,1,1)}, v_{(0,1,1,0,1)}, v_{(0,1,1,1,0)}, v_{(1,0,0,1,1)}, \\
& \left.v_{(1,0,1,0,1)}, v_{(1,0,1,1,0)}, v_{(1,1,0,0,1)}, v_{(1,1,0,1,0)}, v_{(1,1,1,0,0)}\right\}
\end{aligned}
$$

and the matrices in this basis are

$$
\begin{aligned}
\phi_{3}\left(\tau_{1}\right) & =\left(\begin{array}{lllllllllll}
1 & & & & & & & & & \\
& 0 & & & t & & & & & \\
& 0 & 0 & & 0 & t & & & & \\
& 0 & 0 & 0 & 0 & 0 & t & & & \\
& t & 0 & 0 & 0 & 0 & 0 & & & \\
& & t & 0 & & 0 & 0 & & & \\
& & & & t & & & 0 & & & \\
& & & & & & & 1 & & \\
& & & & & & & & 1 & \\
& & & & & & & & & 1
\end{array}\right) \\
\phi_{3}\left(\tau_{2}\right) & =\left(\begin{array}{llllllllllll}
0 & t & & & & & & & \\
t & 0 & & & & & & & \\
& & & 1 & & & & & & & \\
& & & 1 & & & & & & \\
& & & & 1 & & & & & \\
& & & & & 0 & & t & & \\
& & & & & 0 & 0 & 0 & t & \\
& & & & & t & 0 & 0 & 0 & \\
& & & & & & t & & 0 & \\
& & & & & & & & & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{3}\left(\tau_{3}\right)=\left(\begin{array}{llllllllll}
1 & & & & & & & & & \\
& 0 & t & & & & & & & \\
& t & 0 & & & & & & & \\
& & & 1 & & & & & & \\
& & & & 0 & t & & & & \\
& & & & t & 0 & & & & \\
& & & & & & 1 & & & \\
& & & & & & 1 & & \\
& & & & & & & 0 & \\
& & & & & & & & t & \\
& & & & & & & & &
\end{array}\right) \\
& \phi_{3}\left(\tau_{4}\right)=\left(\begin{array}{llllllllll}
1 & & & & & & & & & \\
& 1 & & & & & & & & \\
& & & 0 & t & & & & & \\
\\
& & & t & 0 & & & & & \\
\\
& & & & & 1 & & & & \\
& \\
& & & & & 0 & t & & & \\
& & & & & t & 0 & & & \\
& & & & & & & 0 & t & \\
& & & & & & & t & 0 & \\
& & & & & & & & & 1
\end{array}\right)
\end{aligned}
$$

With this notation, we have the following results,
Theorem 2.3. Let $n>2$, then $\left(\phi_{m}, V_{m}\right)$ is an irreducible representation of \mathbb{B}_{n}, for all $1 \leq m<n$.

Proof. We analyze two cases, $n \neq 2 m$ and $n=2 m$. Suppose that $n \neq 2 m$. Let $x \neq y \in X$, then there exists $j, 1 \leq j \leq n$, such that $x_{j} \neq y_{j}$. If $j>1$, we may suppose that $x_{j-1}=y_{j-1}$, then $q_{x_{j-1}, x_{j}} \neq q_{y_{j-1}, y_{j}}$, therefore $\left|q_{x_{j-1}, x_{j}}\right|^{2} \neq$ $\left|q_{y_{j-1}, y_{j}}\right|^{2}$. If $j=1$, and $n \neq 2 m$, there exists $l=2, \ldots, n$ such that $x_{l-1} \neq y_{l-1}$ and $x_{l}=y_{l}$, then $\left|q_{x_{l-1}, x_{l}}\right|^{2} \neq\left|q_{y_{l-1}, y_{l}}\right|^{2}$. Then, by theorem 2.2, ϕ_{m} is an irreducible representation.

Note that if $n=2 m, x_{0}=(1, \ldots, 1,0, \ldots, 0)$ and $y_{0}=(0, \ldots, 0,1, \ldots, 1)$ satisfy $x_{0} \neq y_{0}$ but $q_{x_{j-1}, x_{j}}=q_{y_{j-1}, y_{j}}$ for all j. So, we can not use theorem 2.2. But in the proof of the theorem, we really use that x and y are consecutive in some order. Considering the lexicographic order, x_{0} and y_{0} are not consecutive. In general, for each $x \in X$, there exists $y_{x} \in X$ such that $q_{x_{j}, x_{j+1}}=q_{y_{j}, y_{j+1}}$ for all $j=1, \ldots, n-1$. We define y_{x} changed in x the zeros by ones and the ones by zeros. For example, if $x=(1,0,0,1,0,1)$, then $y_{x}=(0,1,1,0,1,0)$. However, only $x=(0,1, \ldots, 1,0, \ldots, 0)$ satisfies that y_{x} is consecutive to x. Therefore P_{W}, the projection on the invariant subspace W, has its blocks 1×1, except the block 2×2 associated to $\left\{v_{x}, v_{y_{x}}\right\}$. If some block 1×1 of P_{W} is non-zero, then P_{W} contains some v_{x}^{\prime} of the basis β_{m}. Hence $W=V_{m}$. On the other case, $W \subseteq\left\{v_{x}, v_{y_{x}}\right\}$.

If the equality holds, $v_{x} \in W$ and $W=V_{m}$. Suppose that W is generated by $v=a v_{x}+b v_{y_{x}}$, with $a, b \neq 0$. But $\phi_{m}\left(\tau_{1}\right) v=t\left(a v_{\sigma_{1}(x)}+b v_{\sigma_{1}\left(y_{x}\right)}\right)$, with $\sigma_{1}(x) \neq x$, $\sigma_{1}\left(y_{x}\right) \neq y_{x}$ and $\sigma_{1}(x) \neq y_{x}$ (if $n>2$). Therefore $\phi\left(\tau_{1}\right) v \neq \lambda v$, for all $\lambda \in \mathbb{C}$. This is a contradiction because W is an invariant subspace.

The corank of a finite dimensional representation ϕ of \mathbb{B}_{n} is the rank of $\left(\phi\left(\tau_{k}\right)-\right.$ 1). This number does not depend on k because all the τ_{k} are conjugate to each other (see p. 655 of [1]).

Theorem 2.4. If $n>2$ and $1 \leq m<n$, then $\left(\phi_{m}, V_{m}\right)$ is an irreducible representation of dimension $\binom{n}{m}$ and corank $\frac{2(n-2)!}{(m-1)!(n-m-1)!}$.

Proof. By theorem before, $\left(\phi_{m}, V_{m}\right)$ is an irreducible representation. The dimension of ϕ is the cardinality of X, then

$$
\operatorname{dim} V_{m}=\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

We compute the corank of ϕ_{m}. Let $x \in X$ such that $\sigma_{k}(x)=x$, then $x_{k}=x_{k+1}$ and $q_{x_{k}, x_{k+1}}=1$. Therefore $\phi_{m}\left(\tau_{k}\right)\left(v_{x}\right)=v_{x}$. Hence the corank of ϕ_{m} is equal to the cardinality of $Y=\left\{x \in X: \sigma_{k}(x) \neq x\right\}$. But it is equal to the cardinality of X minus the cardinality of $\left\{x \in X: x_{k}=x_{k+1}=0\right.$ or $\left.x_{k}=x_{k+1}=1\right\}$. Therefore

$$
\begin{aligned}
\operatorname{cork}\left(\phi_{m}\right)=r k\left(\phi_{m}\left(\tau_{k}\right)-1\right) & =\frac{n!}{m!(n-m)!}-\frac{(n-2)!}{m!(n-m-2)!}-\frac{(n-2)!}{(m-2)!(n-m)!} \\
& =\frac{2(n-2)!}{(m-1)!(n-m-1)!}
\end{aligned}
$$

In the example $n=5$ and $m=3$, we have that $\operatorname{cork}\left(\phi_{m}\right)=6$.
Note that if $m=1$, the dimension of ϕ_{m} is n and the corank is 2 . Therefore ϕ_{1} is equivalent to the standard representation, because this is the unique irreducible representations of \mathbb{B}_{n} of dimension n [5].

Acknowledgment

The authors thanks to Aroldo Kaplan for his helpful comments.

Bibliography

[1] Chow, W.-L.; "On the algebraical Braid Group", Annals of math., 49 (1948), 654-658.
[2] Formanek, E.; "Braid Group Representations of Low Degree", Proc. london Mayh. Soc., 73 (1996), 279-322.
[3] Jones, V; "Subfactor and Knots", CBMS 80, Pub AMS, USA 1991.
[4] Levaillant, C; "Irreducibility of the BMW algebra of type A_{n-1}, PhD thesis (2008), California Institute of Techonology.

March 20, 2009 17:53 WSPC/INSTRUCTION FILE Irreduc-repres-Bnrevised

8 C. Egea, E. Galina
[4] Larsen, M.; Rowell, E.; "Unitary braid representations with finite image", arXiv: math.GR/0805.4222v1.
[5] Sysoeva, I.; "Dimension n representations of Braid Group on n Strings", Journal of Algebra 243 (2001), 518-538.
[6] Tong, D.; Yang, S.; Ma, Z.; "A New Class of representations of braid group", Comm. Theoret. Phys. 26, No 4 (1996), 483-486.

