Irreduc-repres-Bn-

Some Irreducible Representations of the Braid Group \mathbb{B}_n of Dimension greater than n

Claudia María Egea, Esther Galina * Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Córdoba, Argentina cegea@mate.uncor.edu, galina@mate.uncor.edu

Abstract

For any $n \geq 3$, we construct a family of finite dimensional irreducible representations of the braid group \mathbb{B}_n . Moreover, we give necessary conditions for a member of this family to be irreducible. In particular we give a explicitly irreducible subfamily (ϕ_m, V_m) , $1 \leq m < n$, where dim $V_m = \binom{n}{m}$. The representation obtained in the case m = 1 is equivalent to the standard representation.

Keywords: Braid Group; Irreducible Representations.

Mathematics Subject Classification 2000: 20C99, 20F36

1. Introduction

The braid group of n strings \mathbb{B}_n , is defined by generators and relations as follows

$$\mathbb{B}_n = <\tau_1, \ldots, \tau_{n-1} >_{/\sim}$$

 $\sim = \{ \tau_k \tau_j = \tau_j \tau_k, \text{ if } |k-j| > 1; \ \tau_k \tau_{k+1} \tau_k = \tau_{k+1} \tau_k \tau_{k+1} \ 1 \le k \le n-2 \}$

We will consider finite dimensional complex representations of \mathbb{B}_n ; that is pairs (ϕ, V) where

$$\phi: \mathbb{B}_n \to \operatorname{Aut}(V)$$

is a morphism of groups and V is a complex vector space of finite dimension.

In this paper, we will construct a family of finite dimensional complex representations of \mathbb{B}_n that contains the standard representations. Moreover, we will give necessary conditions for a member of this family to be irreducible. In this way, we can find explicit families of irreducible representations. In particular, we will define a subfamily of irreducible representations (ϕ_m, V_m) , $1 \le m < n$, where dim $V_m = \binom{n}{m}$ and the corank of ϕ_m is equal to $\frac{2(n-2)!}{(m-1)!(n-m-1)!}$.

*This work was partially supported by CONICET, SECYT-UNC, FONCYT.

This family of representations can be useful in the progress of classification of the irreducible representations of \mathbb{B}_n . As long as we known, there are only few contributions in this sense, some known results are the following ones. Formanek classified all the irreducible representations of \mathbb{B}_n of dimension lower than n [2]. Sysoeva did it for dimension equal to n [5]. Larsen and Rowell gave some results for unitary representation of \mathbb{B}_n of dimension multiples of n. In particular, they prove there are not irreducible representations of dimension n+1. Levaillant proved when the Lawrence-Krammer representation is irreducible and when it is reducible [4].

2. Construction and Principal Theorems

In this section, we will construct a family of representations of \mathbb{B}_n that we believe to be new, and we will obtain a subfamily of irreducible representations.

We choose *n* non negative integers z_1, z_2, \ldots, z_n , not necessarily different. Let *X* be the set of all the possible *n*-tuples obtained by permutation of the coordinates of the fixed *n*-tuple (z_1, z_2, \ldots, z_n) . For example, if the z_i are all different, then the cardinality of *X* is *n*!. Explicitly, if n = 3,

$$X = \{(z_1, z_2, z_3), (z_1, z_3, z_2), (z_2, z_1, z_3), (z_2, z_3, z_1), (z_3, z_1, z_2), (z_3, z_2, z_1)\}$$

Or if $z_1 = z_2 = 1$ and $z_i = 0$ for all i = 3, ..., n, then the cardinality of X is $\binom{n}{2} = \frac{n(n-1)}{2}$. Explicitly, for n = 3

$$X = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}\$$

Let V be a complex vector space with orthonormal basis $\beta = \{v_x : x \in X\}$. Then the dimension of V is the cardinality of X.

We define $\phi : \mathbb{B}_n \to \operatorname{Aut}(V)$, such that

$$\phi(\tau_k)(v_x) = q_{x_k, x_{k+1}} v_{\sigma_k(x)}$$

where $q_{x_k,x_{k+1}}$ is a non-zero complex number that depends on $x = (x_1, \ldots, x_n)$, but, it only depends on the places k and k + 1 of x; and

$$\sigma_k(x_1, \dots, x_n) = (x_1, \dots, x_{k-1}, x_{k+1}, x_k, x_{k+2}, \dots, x_n)$$

With this notations, we have the following theorem,

Theorem 2.1. (ϕ, V) is a representation of the braid group \mathbb{B}_n .

Proof. We need to check that $\phi(\tau_k)$ satisfy the relations of the braid group. We have for $j \neq k - 1, k, k + 1$ that

$$\phi(\tau_k)\phi(\tau_j)(v_k) = \phi(\tau_k)(q_{x_j,x_{j+1}}v_{\sigma_j(k)}) = q_{x_j,x_{j+1}}q_{x_k,x_{k+1}}v_{\sigma_k\sigma_j(k)}$$

On the other hand

$$\phi(\tau_j)\phi(\tau_k)(v_x) = \phi(\tau_j)(q_{x_k,x_{k+1}}v_{\sigma_k}(x)) = q_{x_k,x_{k+1}}q_{x_j,x_{j+1}}v_{\sigma_j\sigma_k}(x)$$

Irreducible Representations of the Braid Group \mathbb{B}_n 3

As $\sigma_k \sigma_j(x) = \sigma_j \sigma_k(x)$, if |j - k| > 1, then $\phi(\tau_k)\phi(\tau_j) = \phi(\tau_k)\phi(\tau_j)$ if |j - k| > 1. In the same way, we have

$$\phi(\tau_k)\phi(\tau_{k+1})\phi(\tau_k)(v_x) = \phi(\tau_k)\phi(\tau_{k+1})(q_{x_k,x_{k+1}}v_{\sigma_k(x)})$$

= $\phi(\tau_k)(q_{x_k,x_{k+1}}q_{x_k,x_{k+2}}v_{\sigma_{k+1}\sigma_k(x)})$
= $q_{x_k,x_{k+1}}q_{x_k,x_{k+2}}q_{x_{k+1},x_{k+2}}v_{\sigma_k\sigma_{k+1}\sigma_k(x)}$

Similarly,

$$\phi(\tau_{k+1})\phi(\tau_k)\phi(\tau_{k+1})(v_x) = \phi(\tau_{k+1})\phi(\tau_k)(q_{x_{k+1},x_{k+2}}v_{\sigma_{k+1}(x)})$$

= $\phi(\tau_{k+1})(q_{x_{k+1},x_{k+2}}q_{x_k,x_{k+2}}v_{\sigma_k\sigma_{k+1}(x)})$
= $q_{x_{k+1},x_{k+2}}q_{x_k,x_{k+2}}q_{x_k,x_{k+1}}v_{\sigma_{k+1}\sigma_k\sigma_{k+1}(x)}$

As $\sigma_k \sigma_{k+1} \sigma_k(x) = \sigma_{k+1} \sigma_k \sigma_{k+1}(x)$, for all k and $x \in X$, then $\phi(\tau_k) \phi(\tau_{k+1}) \phi(\tau_k) = \phi(\tau_{k+1}) \phi(\tau_k) \phi(\tau_{k+1})$ for all k.

As β is an orthonormal basis, we have that,

$$<\phi(\tau_k)v_y, v_x> = < q_{y_k,y_{k+1}}v_{\sigma_k(y)}, v_x> = < v_y, \overline{q_{x_{k+1},x_k}}v_{\sigma_k(x)}>$$

then,

$$(\phi(\tau_k))^*(v_x) = \overline{q_{x_{k+1},x_k}} v_{\sigma_k(x)}$$

therefore, $\phi(\tau_k)$ is self-adjoint if and only if $q_{x_{k+1},x_k} = \overline{q_{x_k,x_{k+1}}}$ for all $x \in X$. In particular, if $x_k = x_{k+1}$ then $q_{x_k,x_{k+1}}$ is a real number. In the same way, $\phi(\tau_k)$ is unitary if and only if $|q_{x_k,x_{k+1}}|^2 = 1$ for all $x \in X$.

Now, we will give a subfamily of irreducible representations.

Theorem 2.2. If $\phi(\tau_k)$ is a self-adjoint operator for all k, and for any pair $x, y \in X$, there exists $j, 1 \leq j \leq n-1$, such that $|q_{x_j,x_{j+1}}|^2 \neq |q_{y_j,y_{j+1}}|^2$, then (ϕ, V) is an irreducible representation of the braid group \mathbb{B}_n .

Proof. Let $W \subset V$ be a non-zero invariant subspace. It is enough to prove that W contains one of the basis vectors v_x . Indeed, given $y \in X$, there exists a permutation σ of the coordinates of x, that sends x to y. This happens because the elements of X are *n*-tuples obtained by permutation of the coordinates of the fixed *n*-tuple (z_1, \ldots, z_n) . Suppose that $\sigma = \sigma_{i_1} \ldots \sigma_{i_l}$, then $\tau := \tau_{i_1} \ldots \tau_{i_l}$ satisfies that $\phi(\tau)(v_x) = \lambda v_y$, for some non-zero complex number λ . Then W contains v_y and therefore, W contains the basis $\beta = \{v_x : x \in X\}$.

As $\phi(\tau_k)$ is a self-adjoint operator, it commutes with P_W , the orthogonal projection over the subspace W. Therefore, $(\phi(\tau_k))^2$ commute with P_W . On the other hand, note that $(\phi(\tau_k))^2(v_x) = |q_{x_k,x_{k+1}}|^2 v_x$, hence, $(\phi(\tau_k))^2$ is diagonal in the basis $\beta = \{v_x : x \in X\}$. Then, the matrix of P_W has at least the same blocks than $(\phi(\tau_k))^2$ for all $k, 1 \leq k \leq n-1$.

If for some k, the matrix of $(\phi(\tau_k))^2$ has one block of size 1×1 , then the matrix of P_W has one block of size 1×1 . In other words, there exists $x \in X$ such that v_x is an eigenvector. If the eigenvalue associated to v_x is non-zero, then $v_x \in W$.

It rest to see that the matrix of $(\phi(\tau_k))^2$ has all its blocks of size 1×1 . By hypothesis, for each pair of vectors in the basis β , v_x and v_y , there exists $k, 1 \leq k \leq n-1$, such that $|q_{x_k,x_{k+1}}|^2 \neq |q_{y_k,y_{k+1}}|^2$. Fix any order in X and let x and y the first and second element of X. Then there exists k such that v_x and v_y are eigenvectors of $(\phi(\tau_k))^2$ of different eigenvalue. Hence $(\phi(\tau_k))^2$ has the first block of size 1×1 . As $(\phi(\tau_j))^2$ commute with $(\phi(\tau_k))^2$ for all j, $(\phi(\tau_j))^2$ also has this property.

By induction, suppose that for all j $(\phi(\tau_j))^2$ has its r-1 first blocks of size 1×1 . Let x', y' the elements r and r+1 of X, then there exists k' such that $v_{x'}$ and $v_{y'}$ are eigenvectors of $(\phi(\tau_{k'}))^2$ of different eigenvalue. Hence, $(\phi(\tau_{k'}))^2$ has the r block of size 1×1 . Therefore $(\phi(\tau_j))^2$ too because it commute with $(\phi(\tau_{k'}))^2$, for all j. Then we obtain that all the blocks are of size 1×1 .

Note that if the numbers $q_{x_k,x_{k+1}}$ are all equal and |X| > 1, then ϕ is not irreducible because the subspace W, generated by the vector $v = \sum_{x \in X} v_x$, is an invariant subspace.

2.1. Examples

We are going to compute some explicit examples of this family of representations. We will show that the standard representation ([5], [6]) is a member of this family.

2.1.1. Standard Representation

Let $z_1 = 1$ and $z_j = 0$ for all j = 2, ..., n. Then the cardinality of X is n and dim V = n too. For each $x \in X$, let $q_{x_k, x_{k+1}} = 1 + (t-1)x_{k+1}$, where $t \neq 0, 1$ is a complex number. Therefore $\phi : \mathbb{B}_n \to \operatorname{Aut}(V)$, given by $\phi(\tau_k)v_x = q_{x_k, x_{k+1}}v_{\sigma_k(x)}$, is equivalent to the standard representation ρ , given by

$$\rho(\tau_k) = \begin{pmatrix}
1 & & & \\
& 1 & & \\
& & \ddots & & \\
& & 0 & t & \\
& & 1 & 0 & \\
& & & \ddots & \\
& & & & 1
\end{pmatrix}$$

where t is in the place (k, k+1). In fact, if $\{\beta_j : j = 1, ..., n\}$ is the canonical basis of \mathbb{C}^n , and if x_j is the element of X with 1 in the place j and zero elsewhere, define

$$\begin{aligned} \kappa : \mathbb{C}^n \to V \\ \beta_j \mapsto v_{x_j} \end{aligned}$$

c

Irreducible Representations of the Braid Group \mathbb{B}_n 5

Then $\alpha(\rho(\tau_k)(\beta_j)) = \phi(\tau_k)(\alpha(\beta_j))$ for all j = 1, ..., n. Hence the representations are equivalent.

2.1.2. Example

Let $z_1, \ldots, z_n \in \{0, 1\}$, such that $z_1 = z_2 = \cdots = z_m = 1$ and $z_{m+1} = \cdots = z_n = 0$. Then the cardinality of X is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$. If V_m is the vector space with basis $\beta_m = \{v_x : x \in X\}$, then dim $V_m = \frac{n!}{m!(n-m)!}$. For each $x := (x_1, \ldots, x_n) \in X$, let

$$q_{x_k,x_{k+1}} = \begin{cases} 1 & \text{if } x_k = x_{k+1} \\ t & \text{if } x_k \neq x_{k+1} \end{cases}$$

where t is a real number, $t \neq 0, 1, -1$.

We define $\phi_m : \mathbb{B}_n \to \operatorname{Aut}(V_m)$, given by

$$\phi_m(\tau_k)v_x = q_{x_k,x_{k+1}}v_{\sigma_k(x)}$$

For example, fixing the lexicographic order in X, if n = 5 and m = 3, then dim $V_m = 10$, the ordered basis is

$$\begin{split} \boldsymbol{\beta} &:= \{ v_{(0,0,1,1,1)}, v_{(0,1,0,1,1)}, v_{(0,1,1,0,1)}, v_{(0,1,1,1,0)}, v_{(1,0,0,1,1)}, \\ v_{(1,0,1,0,1)}, v_{(1,0,1,1,0)}, v_{(1,1,0,0,1)}, v_{(1,1,0,1,0)}, v_{(1,1,1,0,0)} \} \end{split}$$

and the matrices in this basis are

$$\phi_{3}(\tau_{3}) = \begin{pmatrix} 1 & & & & \\ 0 & t & & & \\ & t & 0 & & & \\ & & 1 & & & \\ & & 0 & t & & \\ & & t & 0 & & \\ & & & 1 & & \\ & & & 0 & t & & \\ & & & t & 0 & & \\ & & & t & 0 & & \\ & & & & t & 0 & \\ & & & & & t & 0 & \\ & & & & & t & 0 & \\ & & & & & t & 0 & \\ & & & & & & t & 0 & \\ & & & & & & t & 0 & \\ & & & & & & t & 0 & \\ & & & & & & t & 0 & \\ & & & & & & t & 0 & \\ & & & & & & & t & 0 & \\ & & & & & & & t & 0 & \\ & & & & & & & t & 0 & \\ & & & & & & & t & 0 & \\ & & & & & & & t & 0 & \\ & & & & & & & & t & 0 & \\ \end{array} \right)$$

With this notation, we have the following results,

Theorem 2.3. Let n > 2, then (ϕ_m, V_m) is an irreducible representation of \mathbb{B}_n , for all $1 \le m < n$.

Proof. We analyze two cases, $n \neq 2m$ and n = 2m. Suppose that $n \neq 2m$. Let $x \neq y \in X$, then there exists $j, 1 \leq j \leq n$, such that $x_j \neq y_j$. If j > 1, we may suppose that $x_{j-1} = y_{j-1}$, then $q_{x_{j-1},x_j} \neq q_{y_{j-1},y_j}$, therefore $|q_{x_{j-1},x_j}|^2 \neq |q_{y_{j-1},y_j}|^2$. If j = 1, and $n \neq 2m$, there exists $l = 2, \ldots, n$ such that $x_{l-1} \neq y_{l-1}$ and $x_l = y_l$, then $|q_{x_{l-1},x_l}|^2 \neq |q_{y_{l-1},y_l}|^2$. Then, by theorem 2.2, ϕ_m is an irreducible representation.

Note that if n = 2m, $x_0 = (1, \ldots, 1, 0, \ldots, 0)$ and $y_0 = (0, \ldots, 0, 1, \ldots, 1)$ satisfy $x_0 \neq y_0$ but $q_{x_{j-1},x_j} = q_{y_{j-1},y_j}$ for all j. So, we can not use theorem 2.2. But in the proof of the theorem, we really use that x and y are consecutive in some order. Considering the lexicographic order, x_0 and y_0 are not consecutive. In general, for each $x \in X$, there exists $y_x \in X$ such that $q_{x_j,x_{j+1}} = q_{y_j,y_{j+1}}$ for all $j = 1, \ldots, n-1$. We define y_x changed in x the zeros by ones and the ones by zeros. For example, if x = (1, 0, 0, 1, 0, 1), then $y_x = (0, 1, 1, 0, 1, 0)$. However, only $x = (0, 1, \ldots, 1, 0, \ldots, 0)$ satisfies that y_x is consecutive to x. Therefore P_W , the projection on the invariant subspace W, has its blocks 1×1 , except the block 2×2 associated to $\{v_x, v_{y_x}\}$. If some block 1×1 of P_W is non-zero, then P_W contains some v'_x of the basis β_m . Hence $W = V_m$. On the other case, $W \subseteq \{v_x, v_{y_x}\}$.

Irreducible Representations of the Braid Group \mathbb{B}_n 7

If the equality holds, $v_x \in W$ and $W = V_m$. Suppose that W is generated by $v = av_x + bv_{y_x}$, with $a, b \neq 0$. But $\phi_m(\tau_1)v = t(av_{\sigma_1(x)} + bv_{\sigma_1(y_x)})$, with $\sigma_1(x) \neq x$, $\sigma_1(y_x) \neq y_x$ and $\sigma_1(x) \neq y_x$ (if n > 2). Therefore $\phi(\tau_1)v \neq \lambda v$, for all $\lambda \in \mathbb{C}$. This is a contradiction because W is an invariant subspace.

The corank of a finite dimensional representation ϕ of \mathbb{B}_n is the rank of $(\phi(\tau_k) - 1)$. This number does not depend on k because all the τ_k are conjugate to each other (see p. 655 of [1]).

Theorem 2.4. If n > 2 and $1 \le m < n$, then (ϕ_m, V_m) is an irreducible representation of dimension $\binom{n}{m}$ and corank $\frac{2(n-2)!}{(m-1)!(n-m-1)!}$.

Proof. By theorem before, (ϕ_m, V_m) is an irreducible representation. The dimension of ϕ is the cardinality of X, then

$$\dim V_m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

We compute the corank of ϕ_m . Let $x \in X$ such that $\sigma_k(x) = x$, then $x_k = x_{k+1}$ and $q_{x_k,x_{k+1}} = 1$. Therefore $\phi_m(\tau_k)(v_x) = v_x$. Hence the corank of ϕ_m is equal to the cardinality of $Y = \{x \in X : \sigma_k(x) \neq x\}$. But it is equal to the cardinality of Xminus the cardinality of $\{x \in X : x_k = x_{k+1} = 0 \text{ or } x_k = x_{k+1} = 1\}$. Therefore

$$cork(\phi_m) = rk(\phi_m(\tau_k) - 1) = \frac{n!}{m!(n-m)!} - \frac{(n-2)!}{m!(n-m-2)!} - \frac{(n-2)!}{(m-2)!(n-m)!} = \frac{2(n-2)!}{(m-1)!(n-m-1)!} \square$$

In the example n = 5 and m = 3, we have that $cork(\phi_m) = 6$.

Note that if m = 1, the dimension of ϕ_m is n and the corank is 2. Therefore ϕ_1 is equivalent to the standard representation, because this is the unique irreducible representations of \mathbb{B}_n of dimension n [5].

Acknowledgment

The authors thanks to Aroldo Kaplan for his helpful comments.

Bibliography

- [1] Chow, W.-L.; "On the algebraical Braid Group", Annals of math., 49 (1948), 654-658.
- [2] Formanek, E.; "Braid Group Representations of Low Degree", Proc. london Mayh. Soc., 73 (1996), 279-322.
- [3] Jones, V; "Subfactor and Knots", CBMS 80, Pub AMS, USA 1991.
- [4] Levaillant, C; "Irreducibility of the BMW algebra of type A_{n-1} , PhD thesis (2008), California Institute of Techonology.

- [4] Larsen, M.; Rowell, E.; "Unitary braid representations with finite image", arXiv: math.GR/0805.4222v1.
- [5] Sysoeva, I.; "Dimension n representations of Braid Group on n Strings", Journal of Algebra 243 (2001), 518-538.
- [6] Tong, D.; Yang, S.; Ma, Z.; "A New Class of representations of braid group", Comm. Theoret. Phys. 26, No 4 (1996), 483-486.