SL(2,R)-MODULE STRUCTURE OF THE EIGENSPACES OF THE CASIMIR OPERATOR

Esther Galina
Jorge Vargas

Abstract

In this paper, on the space of smooth sections of a $S L(2, R)$-homogeneous vector bundle over the upper half plane we study the $S L(2, R)$ structure for the eigenspaces of the Casimir operator. That is, we determine its Jordan-Hölder sequence and the socle filtration. We compute a suitable generalized principal series having as a quotient a given eigenspace. We also give an integral equation which characterizes the elements of a given eigenspace. Finally, we study the eigenspaces of twisted Dirac operators.

§1. Introduction

Let $G=S L(2, \mathbf{R})$ and K be a fixed maximal compact subgroup K of G. Let (τ, V) be a representation of K, we denote

$$
\begin{aligned}
& C^{\infty}(G / K, V)=\left\{f: G \rightarrow V / f \text { is } C^{\infty} \text { and } f(g k)=\tau(k)^{-1} f(g) \quad \text { for all } k \in K\right\} \\
& L^{2}(G / K, V)=\left\{f: G \rightarrow V / f(g k)=\tau(k)^{-1} f(g) \quad \text { for all } k \in K,\|f\|_{2}^{2}<\infty\right\}
\end{aligned}
$$

where $\left\|\|_{2}\right.$ is computed with respect to Haar measure. On $L^{2}(G / K, V)$ we fix the obvious topology. On $C^{\infty}(G / K, V)$ we fix the topology of uniform convergence on compacts of the functions and their derivatives. Both spaces are representations of G under the left regular action $L_{g} f(x)=f\left(g^{-1} x\right)$ for all $g, x \in G$.

Let Ω the Casimir element of the universal algebra $\mathcal{U}\left(g_{o}\right)$ of the Lie algebra g_{o} of G, Ω define a G-left invariant operator on $C^{\infty}(G / K, V)$. Here, we obtain the G-module structure of each eigenspace of the Casimir operator

$$
\Omega: C^{\infty}(G / K, V) \quad \rightarrow \quad C^{\infty}(G / K, V)
$$

whenever V is an irreducible representation of K. Actually, we prove that whenever an eigenspace is irreducible, then it is infinitesimally equivalent to a principal series representation, and when an eigenspace is reducible then we have an exact sequence

[^0]$0 \rightarrow W \rightarrow A_{\lambda}^{n} \rightarrow M \rightarrow 0$, where A_{λ}^{n} is the λ-eigenspace of Ω in $C^{\infty}(G / K, V), W$ is a Verma module and M an irreducible Verma module.

As a corollary we obtain the eigenvalues and eigenspaces of

$$
\tilde{\Omega}: L^{2}(G / K, V) \rightarrow L^{2}(G / K, V)
$$

From this, it results that if λ is an eigenvalue of $\tilde{\Omega}$ the corresponding eigenspace is a proper subset of the respective one of Ω. We also compute the L^{2}-eigenspaces of the Dirac operator \mathbf{D}.

Knapp-Wallach [K-W] obtained an integral operator which sends an adjusted principal series onto the K-finite vector of the $L^{2}-$ kernel of the Dirac operator \mathbf{D}. In this work we obtain a similar result for each L^{2}-eigenspace of \mathbf{D} (c.f §4).

Let $\phi_{\lambda, n}$ be the Eisenstein function (cf. ${ }^{* * *}$) in $C^{\infty}(G / K, V)$ that belongs to the λ-eigenspace of Ω, we prove:
(i) a continuous function that satisfies the integral equation

$$
\int_{K} f(g k x) d k=f(g) \phi_{\lambda, n} \text { for all } g, x \in G
$$

is smooth and is an eigenfunction of Ω corresponding to the eigenvalue λ.
(ii) Any λ-eigenfunction of Ω satisfies the integral equation in (i).

Now, we stablish some notations,

$$
\begin{align*}
& K=\left\{k_{\theta}=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right): \quad \theta \in \mathbf{R}\right\} \\
& A=\left\{a_{t}=\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \quad: \quad t \in \mathbf{R}^{+}\right\} \\
& M=\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} \tag{1.2}\\
& N=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): \quad x \in \mathbf{R}\right\} \\
& A^{+}=\left\{a_{t} \in A \quad: \quad 1<t\right\} \\
& A^{-}=\left\{a_{t} \in A \quad: \quad 0<t<1\right\}
\end{align*}
$$

We will use the decompositions $G=K A N$ and $G=K A K=K \overline{A^{+}} K=K \overline{A^{-}} K$ $[K]$. If we denote by

$$
X=\left(\begin{array}{rr}
0 & 1 \tag{1.3}\\
-1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad H=\frac{1}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

the Iwasawa decomposition of the Lie algebra g_{o} of G is $g_{o}=k_{o} \oplus a_{o} \oplus n_{o}$ where $k_{o}=\mathbf{R} X, a_{o}=\mathbf{R} H, n_{o}=\mathbf{R} Y$. We denote by g, k, a, n their complexifications.

The Casimir operator Ω is an element of the universal algebra $\mathcal{U}(g)$ of g, moreover, the center of $\mathcal{U}(g)$ is $\mathbf{C}[\Omega][\mathrm{L}]$. It is defined by

$$
\begin{equation*}
\Omega=\frac{1}{2}\left(H^{2}-H-Y X\right) \tag{1.4}
\end{equation*}
$$

If

$$
W=\left(\begin{array}{cc}
0 & -i \tag{1.5}\\
i & 0
\end{array}\right) \quad E_{+}=\frac{1}{2}\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right) \quad E_{-}=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
-i & -1
\end{array}\right)
$$

another expression of Casimir operator is

$$
\begin{equation*}
\Omega=\frac{1}{8}\left(W^{2}+2 W+4 E_{-} E_{+}\right) \tag{1.6}
\end{equation*}
$$

$W, \quad E_{+}$and E_{-}satisfy the relations

$$
\bar{W}=-W \quad \overline{E_{ \pm}}=E_{\mp} \quad\left[E_{+}, E_{-}\right]=W \quad\left[W, E_{ \pm}\right]= \pm 2 E_{ \pm}
$$

Let θ be the usual Cartan involution on g_{o}. Therefore, k_{o} is the subspace of fix points of θ. Let p_{o} be the (-1)-eigenspace of θ.

The Killing form in g_{o} is

$$
B(X, Y)=4 \operatorname{Trace}(X Y)
$$

Thus $\left\{\frac{1}{2} E_{+}, \frac{1}{2} E_{-}\right\}$is an orthonormal base of p with respect to the hermitian form

$$
-B(X, \theta \bar{Y})
$$

The Iwasawa decomposition for E_{+}and E_{-}is

$$
\begin{align*}
& \frac{1}{2} E_{+}=\frac{1}{4} W+\frac{1}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
0 & i \\
0 & 0
\end{array}\right) \\
& \frac{1}{2} E_{-}=-\frac{1}{4} W+\frac{1}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{ll}
0 & i \\
0 & 0
\end{array}\right) \tag{1.7}
\end{align*}
$$

§2.Eigenspaces of Ω

Since K is abelian, the irreducible representations of K are onedimensional. They are $\left(\tau_{n}, V_{n}\right)$ with $n \in \mathbf{Z}$, where

$$
\operatorname{dim} V_{n}=1 \text { and } \tau_{n}\left(k_{\theta}\right) v=e^{i n \theta} v \quad \text { for all } v \in V_{n}
$$

Given $n \in \mathbf{Z}$, the elements of the center of the universal enveloping algebra of g will be considered acting on $C^{\infty}\left(G / K, V_{n}\right)$ as left invariant operators.

For all $\lambda \in \mathbf{C}$ define

$$
\begin{equation*}
A_{\lambda}^{n}=\left\{f \in C^{\infty}\left(G / K, V_{n}\right) \quad / \quad \Omega f=\frac{\lambda^{2}-1}{8} f\right\} \tag{2.1}
\end{equation*}
$$

Since Ω is a continuous linear operator on $C^{\infty}\left(G / K, V_{n}\right)$, it follows that A_{λ}^{n} is a closed subspace of $C^{\infty}\left(G / K, V_{n}\right)$. Thus, A_{λ}^{n} is a subrepresentation of $C^{\infty}\left(G / K, V_{n}\right)$ with infinitesimal character $\chi_{\lambda_{\delta}}$, where δ is the linear functional of a_{o} such that $\delta(H)=\frac{1}{2}$ and $\chi_{\lambda \delta}$ is the character of \mathbf{C} multiplication by $\frac{\lambda^{2}-1}{8}$.

We denote by $A_{\lambda}^{n}[m]$ the K-type τ_{m} of A_{λ}^{n}.

PROPOSITION 2.1.

Given $n \in \mathbf{Z}, \lambda \in \mathbf{C}$, the representation A_{λ}^{n} of G is admissible and finitely generated. Moreover,
(i) $\operatorname{dim} A_{\lambda}^{n}[m] \leq 1 \quad$ for all $m \in \mathbf{Z}$
(ii) If $A_{\lambda}^{n}[m] \neq\{0\}$, then n and m have the same parity.

Remark: The converse of (ii) is also true. It follows from proposition 2.4.
We need some results to prove the proposition 2.1
Let $f \in A_{\lambda}^{n}[m], f$ is a spherical function of type (m, n) because

$$
f\left(k_{\theta} g k_{\psi}\right)=e^{-i m \theta} f(g) e^{-i n \psi} \quad \text { for all } g \in G, k_{\theta}, k_{\psi} \in K
$$

Since $G=K A K$, the values of f are determined by its values on A. Besides, if $m \neq n$ then $\left.f\right|_{K} \equiv 0$. In fact, the equallity $f\left(k_{\theta}\right)=f\left(k_{\theta} \cdot 1\right)=e^{-i m \theta} f(1)$, implies that $\left.f\right|_{K} \neq 0 \Leftrightarrow f(1) \neq 0$, now since f is spherical of type (m, n) we have that $f\left(k_{\theta}\right)=f\left(1 . k_{\theta}\right)=f(1) e^{-i n \theta}=f(1) e^{-i m \theta}$, therefore if $\left.f\right|_{K}$ were nonzero we would have that $m=n$.

The subgroup A is Lie isomorphic to \mathbf{R}^{+}(positive real numbers with the usual product) by the isomorphism $\alpha\left(a_{t}\right)=t^{2}$.

Lemma 2.2.

If $f \in A_{\lambda}^{n}[m]$, the function $F: \mathbf{R}^{+} \rightarrow \mathbf{C}$ associated to f given by $F(\alpha(a))=$ $f(a)$ for all $a \in A$ satisfy the differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2}}{d z^{2}}-\frac{2 z^{3}}{1-z^{2}} \frac{d}{d z}-\frac{z^{2}}{\left(1-z^{2}\right)^{2}}\left(m^{2}+n^{2}\right)+\frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}} n m-\frac{\lambda^{2}-1}{4}=0 \tag{2.2}
\end{equation*}
$$

The equation has regular singularities at the points $0, \pm 1, \infty$.

A proof of this lemma is in $[\mathrm{Ca}-\mathrm{M}]$.

Proof of the Proposition 2.1. Since Ω is an elliptic operator in $C^{\infty}\left(G / K, V_{n}\right)$, if $f \in A_{\lambda}^{n},\left.f\right|_{A}$ is real analytic. Therefore, the function $F: \mathbf{R}^{+} \rightarrow$ defined in (2.2) is a real analytic function. Hence there is a holomorphic extension of F to a neighborhood of \mathbf{R}^{+}in the right half plane.

On the other hand by the Frobenius theory for differential equations with regular singular points [C-page 132] the equation (2.2) has an analytic solution on a neighborhood of 1 if and only if m and n have the same parity. Moreover, any holomorphic solution of (2.2) is a multiple of the power series

$$
\begin{equation*}
(z-1)^{\frac{1}{2}|m-n|} \sum_{j=0}^{\infty} c_{j}(z-1)^{j} \quad c_{0}=1 \tag{2.3}
\end{equation*}
$$

In fact, the indicial equation of (2.2) is

$$
s(s-1)+s-\frac{1}{4}(m-n)^{2}=0
$$

and its roots are $\pm \frac{1}{2}(m-n)$. Thus, as the roots differ by an integer, the exponent of the first term of (2.3) is $\frac{1}{2}|m-n|$, if this number were not an integer the function (2.3) would not be analytic on a neighborhood of 1 , this forces the same parity for n and m.

As the other singularities of (2.2) are $0,-1, \infty$, there is an extension of the analytic solution on a neighborhood of 1 to an analytic solution on a neighborhood of \mathbf{R}^{+}. So (i) and (ii) holds.

Remark. Since A_{λ}^{n} has infinitesimal character $\chi_{\lambda \delta}$ and A_{λ}^{n} is admissible by Proposition 2.1, A_{λ}^{n} has finite length by a known rwsult of Harish-Chandra [V,Corollary 5.4.16].

Corollary 2.3 .

Given $n \in \mathbf{Z}, \lambda \in \mathbf{C}$, the K-type τ_{n} occurs in any subrepresentation of A_{λ}^{n}. Moreover, A_{λ}^{n} has a unique irreducible G-submodule.

Proof. Let W be a nontrivial closed submodule of A_{λ}^{n} and denote by W_{K} the set of K-finite elements in W, we consider the map

$$
\operatorname{Hom}_{G}\left(W, A_{\lambda}^{n}\right) \longrightarrow \operatorname{Hom}_{K}\left(W_{K}, V_{n}\right)
$$

$$
\begin{equation*}
T \quad \longrightarrow(v \rightarrow \tilde{T} v=T v(1)) \tag{}
\end{equation*}
$$

This map is well defined. In fact, if $v \in W_{K}$,

$$
\tilde{T}(k v)=T(k v)(1)=\left(L_{k} \cdot T v\right)(1)=T v\left(k^{-1}\right)=\tau_{n}(k) T v(1)
$$

Moreover, it is inyective. In fact, suppose that $\tilde{T} \equiv 0$, so $T v(1)=0$ for all $v \in W_{K}$. As T is a continuous linear transformation, W_{K} is a dense subset of W [L-page 24], and there exists a sequence $\left\{v_{m}\right\}$ in W_{K} such that $v_{m} \rightarrow w$ for each $w \in W$, then

$$
T v_{m} \rightarrow T w \quad \Longrightarrow \quad 0=T v_{m}(1) \rightarrow T w(1)
$$

that is, $T w(1)=0$ for all w. Now, for $w \in W$,

$$
T w(g)=\left(L_{g^{-1}} \cdot T w\right)(1)=T\left(g^{-1} w\right)(1)=0 \quad \text { for all } g \in G
$$

so $T \equiv 0$. If W is a closed submodule of A_{λ}^{n}, by $\left(^{*}\right) W[n] \neq 0$, and by $(i) W[n]=$ $A_{\lambda}^{n}[n]$. This concludes the first statement of the corollary. The second follows from the equality $W[n]=A_{\lambda}^{n}[n]$.

Fix $n \in \mathbf{Z}, \lambda \in \mathbf{C}$, let δ be the linear functional on a_{o} such that $\delta(H)=\frac{1}{2}$, $\log a_{t}=t H$, and denote by $(-1)^{n}$ the character of M such that $\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array} \rightarrow(-1)^{n}$. As usual, define

$$
\begin{align*}
& \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)= \tag{2.4}\\
& \quad=\left\{f: G \rightarrow \mathbf{C} \quad C^{\infty}\right. \text { such that } \\
& \left.f(x \operatorname{man})=e^{-(\lambda+1) \delta(\log a)}(-1)^{n}\left(m^{-1}\right) f(x) \text { for all } x \in G, \text { man } \in M A N\right\}
\end{align*}
$$

the representation of G induced by the representation $(-1)^{n} \otimes e^{\lambda \delta} \otimes 1$ of MAN. G acts by left translation. Recall that $\mathrm{I}_{\text {MAN }}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ has infinitesimal character $\chi_{\lambda \delta}$ and $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ is irreducible if and only if $\lambda \not \equiv(n+$ 1) $\bmod (2)[B]$.

Define linear transformations

$$
\begin{array}{ccc}
\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{ \pm \lambda \delta} \otimes 1\right) & \xrightarrow{T} & A_{\lambda}^{n} \tag{2.5}\\
f & \longrightarrow
\end{array}\left(x \rightarrow T f(x)=\int_{K} f(x k) \tau_{n}(k) d k\right)
$$

Whenever it becomes necessary to sea which is the domain of the operators, we will write $T_{ \pm}$, otherwise we will write T.

The linear transformation T is well defined because

$$
T f\left(x k^{\prime}\right)=\int_{K} f\left(x k^{\prime} k\right) \tau_{n}(k) d k=\tau\left(k^{\prime}\right)^{-1} \int_{K} f(x k) \tau_{n}(k) d k
$$

Besides, since $\mathrm{I}_{\text {MAN }}^{G}\left((-1)^{n} \otimes e^{ \pm \lambda \delta} \otimes 1\right)$ has infinitesimal character $\chi_{\lambda \delta}, T$ is a left G-morphism and left infinitesimal translation by Ω agrees with right infinitesimal translation, $\left(L_{\Omega} . f=R_{\Omega} . f \quad\right.$ for all $\left.f \in C^{\infty}\left(G / K, V_{n}\right)\right)$. Hence the image of T is contained in A_{λ}^{n}.
T is not zero because

$$
T \tau_{-n}(1)=\int_{K} \tau_{-n}(k) \tau_{n}(k) d k=\int_{K} d k \neq 0
$$

Note that A_{λ}^{n} and $A_{\lambda^{\prime}}^{n}$ is the same eigenspace of Ω if $\lambda^{2}=\left(\lambda^{\prime}\right)^{2}$. So, if $\lambda \in \mathbf{Z}$ we will always assume that $\lambda \geq 0$.

PROPOSITION 2.4.

Given $n \in \mathbf{Z}$,
(i) If $\lambda \in \mathbf{C} \backslash \mathbf{Z}$, or $\lambda \in \mathbf{Z}$ and $\lambda \not \equiv(n+1) \bmod (2)$, A_{λ}^{n} is infinitesimally equivalent to $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$.
(ii) If $\lambda \in \mathbf{Z}_{\geq 0}, \lambda+1 \equiv n \bmod (2)$ and $\lambda>|n|, A_{\lambda}^{n}$ is infinitesimally equivalent to $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{-\lambda \delta} \otimes 1\right)$.
(iii) If $\lambda \in \mathbf{Z}_{\geq 0}$, $\lambda+1 \equiv n \bmod (2)$ and $\lambda<n$, the (g, K)-module structure of A_{λ}^{n} is the following

$$
\begin{aligned}
& E_{+} A_{\lambda}^{n}[m] \neq 0 \quad \text { for all } m \text { such that } A_{\lambda}^{n}[m] \neq 0 \\
& E_{-} A_{\lambda}^{n}[m] \neq 0 \quad \text { for all } m \neq \pm \lambda \text { such that } A_{\lambda}^{n}[m] \neq 0 \\
& E_{-} A_{\lambda}^{n}[\pm \lambda+1]=0
\end{aligned}
$$

(iv) If $\lambda \in \mathbf{Z}_{\geq 0}, \lambda+1 \equiv n \bmod (2), n<0$ and $\lambda<-n$, the (g, K)-module structure of A_{λ}^{n} is the following

$$
\begin{aligned}
& E_{-} A_{\lambda}^{n}[m] \neq 0 \quad \text { for all } m \text { such that } A_{\lambda}^{n}[m] \neq 0 \\
& E_{+} A_{\lambda}^{n}[m] \neq 0 \quad \text { for all } m \neq \pm \lambda+1 \text { such that } A_{\lambda}^{n}[m] \neq 0 \\
& E_{+} A_{\lambda}^{n}[\pm \lambda+1]=0 .
\end{aligned}
$$

Remark 1: Under the hypothesis (iii) or (iv) we have that A_{λ}^{n} is not a quotient of $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{ \pm \lambda \delta} \otimes 1\right)$.

Remark 2: A_{λ}^{n} is irreducible if and only if $\lambda \not \equiv(n+1) \bmod (2)$.
We need the following lemma to prove (iii) of proposition 2.4.

Lemma 2.5.

Given $n \in \mathbf{Z}$, let $\lambda \in \mathbf{Z}_{\geq 0}, \lambda+1 \equiv n \bmod 2$ and $\lambda<n$, there exist $m \in \mathbf{Z}$, $m<-\lambda$ such that $A_{\lambda}^{n}[m]$ is not zero.

Proof of Lemma 2.5. Let m be an integer such that

$$
\begin{equation*}
m \equiv n \bmod 2 \quad m<-\lambda \quad \frac{1}{2}(n-m) \quad \text { is even } \tag{2.6}
\end{equation*}
$$

The conditions on m and n ensure the existence of a smooth solution F of (2.2) on the interval $(0, \infty)$. In fact, using the Frobenius method for differential equations with regular singularities, that (2.2) has a analytic solution in a neighbordhood of 1 if and only if m and n have the same parity. Besides, the singularities of (2.2) are $0, \pm 1, \infty$. Therefore, this solution extends to a solution on the interval $(0, \infty)$. Moreover, any smooth solution of (2.2) in the interval $(0, \infty)$ is a multiple of the power series

$$
(z-1)^{\frac{1}{2}|m-n|} \sum_{j=0}^{\infty} c_{j}(z-1)^{j} \quad c_{0}=1
$$

Therefore, F has a zero of order $\frac{1}{2}|m-n|$ at 1 .
We have to prove that F extends to an element of $A_{\lambda}^{n}[m]$. This will take some work.

Let $N_{K}(A)$ be the normalizer of A on K.
Consider $C_{\tau_{n-m}}^{\infty}(A)$ to be the set of smooth funtions on A such that
(j) $\phi\left(k a k^{-1}\right)=\tau_{n-m}(k) \phi(a) \quad$ for all $a \in A, k \in N_{K}(A)$
(jj) $\frac{\phi(a)}{\delta(\log a)^{\frac{1}{2}(n-m)}}$ is a smooth function and even on A.
Let $f: A \rightarrow \mathbf{C}$ given by $f(a)=F(\alpha(a))$, with α the isomorphism between A and \mathbf{R}^{+}defined in (2.2). Let's prove that the function f is in $C_{\tau_{n-m}}^{\infty}(A)$. In fact, the normalizer of A on K, is exactly

$$
N_{K}(A)=\{ \pm I\}=\left\{k_{\frac{\pi}{2}}, k_{-\frac{\pi}{2}}\right\}
$$

As $n-m$ and $\frac{1}{2}(n-m)$ are even numbers,

$$
\tau_{n-m}(\pm I)=\tau_{n-m}\left(k_{ \pm \frac{\pi}{2}}\right)=e^{ \pm i(n-m) \frac{\pi}{2}}=1
$$

So, f satisfy (j) if and only if $f(a)=f\left(a^{-1}\right)$ for all $a \in A$, or equivalently $F(x)=F\left(x^{-1}\right)$ for all $x \in \mathbf{R}^{+}$. Let's prove that $F(x)=F\left(x^{-1}\right)$. Let h be the function given by $h(z)=F\left(z^{-1}\right)$, we want to prove that $h=F$. We claim that h satisfies the same differential equation that F does. In fact, let $w=z^{-1}$, then

$$
\begin{aligned}
\frac{d h}{d z}(z) & =\frac{d F}{d w}(w) w^{\prime} \\
& =-w^{2} \frac{d F}{d w}(w) \\
\frac{d^{2} F}{d z^{2}}(z) & =-2 w w^{\prime} \frac{d F}{d w}(w)+w^{4} \frac{d^{2} F}{d w^{2}}(w) \\
& =2 w^{3} \frac{d F}{d w}(w)+w^{4} \frac{d^{2} F}{d w^{2}}(w)
\end{aligned}
$$

and

$$
\begin{gathered}
-\frac{2 z^{3}}{1-z^{2}}=-\frac{2 w^{-3}}{1-w^{-2}}=\frac{2 w^{-1}}{1-w^{2}} \\
-\frac{z^{2}}{\left(1-z^{2}\right)^{2}}=-\frac{w^{-2}}{\left(1-w^{-2}\right)^{2}}=-\frac{w^{2}}{\left(1-w^{2}\right)^{2}} \\
\frac{z(1+z)}{\left(1-z^{2}\right)^{2}}=\frac{w^{-1}\left(1+w^{-2}\right)}{\left(1-w^{-2}\right)^{2}}=\frac{w\left(w^{2}+1\right)}{\left(1-w^{2}\right)^{2}}
\end{gathered}
$$

So,

$$
\begin{aligned}
& z^{2} \frac{d^{2} h}{d z^{2}}(z)-\frac{2 z^{3}}{1-z^{2}} \frac{d h}{d z}(z)+ \\
& \left(-\frac{z^{2}}{\left(1-z^{2}\right)^{2}}\left(m^{2}+n^{2}\right)+\frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}} n m-\frac{\lambda^{2}-1}{4}\right) h(z)= \\
& =w^{2} \frac{d^{2} F}{d w^{2}}(w)+\left(2 w-\frac{2 w^{-1}}{1-w^{2}} w^{2}\right) \frac{d F}{d w}(w)+ \\
& \quad+\left(-\frac{w^{2}}{\left(1-w^{2}\right)^{2}}\left(m^{2}+n^{2}\right)+\frac{w\left(1+w^{2}\right)}{\left(1-w^{2}\right)^{2}} n m-\frac{\lambda^{2}-1}{4}\right) F(w)
\end{aligned}
$$

The right hand side is exactly the equation(2.2) on F, so it is zero. Both h and F are smooth functions on $(0, \infty)$ and solutions of the differential equation (2.2). So, by (2.6) they are multiple of each other in a neighborhood of 1 . Hence, we write,

$$
\begin{aligned}
& h(z)=(z-1)^{\frac{1}{2}|n-m|} \psi_{h}(z) \\
& F(z)=(z-1)^{\frac{1}{2}|n-m|} \psi_{F}(z)
\end{aligned}
$$

with ψ_{h} and ψ_{F} power series, such that $c \psi_{h}(z)=\psi_{F}(z)$ for a suitable nonzero complex number. Therefore,

$$
h(z)=F\left(z^{-1}\right)=\left(z^{-1}-1\right)^{\frac{1}{2}|n-m|} \psi_{F}\left(z^{-1}\right)=(z-1)^{\frac{1}{2}(n-m)} z^{-\frac{1}{2}|n-m|} \psi_{F}\left(z^{-1}\right)
$$

Thus, $\psi_{h}(z)=(z-1)^{-\frac{1}{2}(n-m)} \psi_{F}\left(z^{-1}\right)$. This imply that

$$
c \psi_{h}(z)=(z-1)^{-\frac{1}{2}(n-m)} \psi_{F}\left(z^{-1}\right)
$$

Hence, $F(z)=F\left(z^{-1}\right)$ in a neighborhood of 1 . As F is real analytic in $(0, \infty)$, $F(z)=F\left(z^{-1}\right)$ for all $z \in \mathbf{R}^{+}$. Equivalently, $f(a)=f\left(a^{-1}\right)$ for all $a \in A$. Thus, f satisfies (j).

We want to prove that f satisfies $(j j)$. The function $\delta(\log a)^{-\frac{1}{2}(n-m)}$ is even on A because

$$
\begin{align*}
\delta\left(\log _{t}\right)^{-\frac{1}{2}(n-m)} & =(t \delta(H))^{-\frac{1}{2}(n-m)} \\
& =(-t \delta(H))^{-\frac{1}{2}(n-m)} \tag{2.6}\\
& =\delta\left(\log a_{t}^{-1}\right)^{-\frac{1}{2}(n-m)}
\end{align*}
$$

Thus, the function $f(a) \delta(\log a)^{-\frac{1}{2}(n-m)}$ is even. The function $f(a) \delta(\log a)^{-\frac{1}{2}(n-m)}$ is smooth because f is real analytic and has a zero of order $\frac{1}{2}(n-m)$ at 1 . Therefore, we have proved that $f \in C_{\tau_{n-m}}^{\infty}(A)$. We want to extend f to an element of $A_{\lambda}^{n}[m]$

Let $C^{\infty}(G / K)\left[\tau_{n-m}\right]$ be the space of smooth complex valued functions on G / K such that $f(k x)=\tau_{n-m}(k) f(x)$ for all $k \in K, x \in G$.

We need to prove:

Sublemma 2.6.

The restriction map from $C^{\infty}(G / K)\left[\tau_{n-m}\right]$ to $C_{\tau_{n-m}}^{\infty}(A)$ is biyective.
Proof of sublemma 2.6. : The equallity $G=K A K$ implies that the restriction map is inyective. To prove that is suryective we appeal to a theorem of Helgason. Let \mathcal{H} be the set of harmonic polynomial functions on p_{o}. We consider the usual action of K on \mathcal{H}. That is, the one determinated by the isotropy representation of K in p_{o}. We now set ourselves in $\S 10$ of $[\mathrm{H}-1]$, with $\delta=\tau_{n-m}$. Since $n \equiv \bmod (2)$, we have that $\tau_{n-m} \in \hat{K}_{o}$. Let $\operatorname{deg} Q^{\delta}(\lambda)=p(\delta)$. A formula due to Kostant and cited on pag 203 of $[\mathrm{H}-1]$ says that $p(\delta)=d(\delta)=$ degree of the harmonic homogeneous polynomials in the δ-isotypic component of \mathcal{H}. To compute $d(\delta)$ we proceed as follow: If e_{1}, e_{2} is an orthonormal basis for p_{o}, we know that $k(\theta) \dot{e}_{1}=\cos (2 \theta) e_{1}-$ $\sin (2 \theta) e_{2}, k(\theta) \dot{e}_{2}=\sin (2 \theta) e_{1}+\cos (2 \theta) e_{2}$. Since $(n-m) / 2$ is a whole number the polynomial function on $p_{o},\left(e_{1}+i e_{2}\right)^{(n-m) / 2}$ is harmonic and has degree $(n-m) / 2$, moreover $\left.k(\theta) \dot{\left(e_{1}\right.}+i e_{2}\right)^{(n-m) / 2}=e^{i(n-m) \theta}\left(e_{1}+i e_{2}\right)^{(n-m) / 2}$. Thus, we have that $p(\delta)=(n-m) / 2$. Therefore, our space $C_{\tau_{n-m}}^{\infty}(A)$ contains the space $\mathcal{D}^{\tau_{n-m}}(A)$ of page 211 in $[\mathrm{H}-1]$. Hence, lemma 10.1 of [$\mathrm{H}-1]$ implies that the restricction map from $\mathcal{D}^{\tau_{n-m}}(G / K)$ into $\mathcal{D}^{\tau_{n-m}}(A)$ is a linear homeomorphism. We remark that $\mathcal{D}^{\tau_{n-m}}(G / K) \subset C^{\infty}(G / K)\left[\tau_{n-m}\right]$. A density argument together with the fact that K is compact imply sublemma 2.6.

We proceed with the proof of lemma 2.5. For this end, we now have that the function f admits a smooth extension $\tilde{f}: \exp p_{o} \rightarrow \mathbf{C}$ which satisfies

$$
\begin{align*}
\tilde{f}\left(k a k^{-1}\right) & =\tau_{n-m}(k) \tilde{f}(a) \tag{2.7}\\
& =\tau_{m}(k)^{-1} \tilde{f}(a) \tau_{n}(k)
\end{align*}
$$

The diffeomorphism between G and $\exp p_{o} K$ ensures that the function $\hat{f}: G \rightarrow \mathbf{C}$ given by

$$
\hat{f}(p k)=\tilde{f}(p) \tau_{n}(k)^{-1} \quad \text { for all } p \in \exp p_{o}, k \in K
$$

is well defined and it is smooth. Also, \hat{f} is in the K-type τ_{m} of $C^{\infty}\left(G / K, V_{n}\right)$. In fact, for $x \in G$ we write $x=k_{2} a k_{2}^{-1} k_{1}$ with $k_{1}, k_{2} \in K$, and $a \in A$, hence

$$
\begin{aligned}
\left(L_{k} \hat{f}\right)(x)=\hat{f}\left(k^{-1} k_{2} a k_{2}^{-1} k_{1}\right) & =\tilde{f}\left(k^{-1} k_{2} a k_{2}^{-1} k\right) \tau_{n}\left(k^{-1} k_{1}\right)^{-1} \\
& =\tau_{n-m}\left(k^{-1} k_{2}\right) f(a) \tau_{n}\left(k^{-1} k_{1}\right)^{-1} \\
& =\tau_{n-m}\left(k^{-1}\right) \tau_{n-m}\left(k_{2}\right) f(a) \tau_{n}\left(k^{-1} k_{1}\right)^{-1} \\
& =\tau_{n-m}\left(k^{-1}\right) \tilde{f}\left(k_{2} a k_{2}^{-1}\right) \tau_{n}\left(k^{-1}\right)^{-1} \tau_{n}\left(k_{1}\right)^{-1} \\
& =\tau_{n}\left(k^{-1}\right) \tau_{m}(k) \tilde{f}(p) \tau_{n}\left(k^{-1}\right)^{-1} \tau_{n}\left(k_{1}\right)^{-1} \\
& =\tau_{m}(k) \tilde{f}(p) \tau_{n}\left(k_{1}\right)^{-1} \\
& =\tau_{m}(k) \hat{f}(x)
\end{aligned}
$$

A comutation like the one in [Wa] page 280, implies that

$$
(\Omega \hat{f})(x)=\tau_{m}\left(k_{2}^{-1}\right) \tau_{n}\left(k_{2}^{-1} k_{1}\right)\left(z^{2} \frac{d^{2} F}{d^{2} z}+\ldots\right)=0
$$

because F satisfies the equation 2.2.
This concludes the proof of lemma 2.5

Proof of the Proposition 2.4. (i) As T is not the zero function and since $\lambda \not \equiv$ $n+1 \bmod (2)$ the module $\mathrm{I}_{\text {MAN }}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ is irreducible. Thus T is inyective. The K-types τ_{m} which occur in $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ are indexed by all the m with the same parity as n. Since T is one-to-one they must occur in A_{λ}^{n}. By proposition $2.1(i),(i i)$, they are exactly the K-types of A_{λ}^{n}. Thus, T is suryective at the level of (g, K)-modules.
(ii) Since $\lambda \geq 0, \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{-\lambda \delta} \otimes 1\right)$ has only one irreducible submodule F which is finite dimensional and whose K-types are parametrized by $\{m:-(\lambda-1) \leq$ $m \leq \lambda-1, m \equiv n(2)\}$. The structure of $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{-\lambda \delta} \otimes 1\right)$ is

$$
\begin{array}{llll}
\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{-\lambda \delta} \otimes 1\right) & \supset W_{+} & \supset W_{-} & \supset F \quad \supset \quad 0
\end{array}
$$

where W_{+}is the G-submodule spanned by the K-types $\{-(\lambda-1),-(\lambda-3), \ldots, \lambda-$ $1, \lambda+1, \ldots\}$ and W_{-}is the one spanned by the K-types $\{\ldots, \lambda-3, \lambda-1\}$. As $\lambda>|n|$ the K-type τ_{n} occur in F. On the other hand, we have verified that T maps non trivially the K-type τ_{n}, so F is not a submodule of $\operatorname{Ker} T$. Since F is contained in every nonzero submodule of $\mathrm{I}_{\text {MAN }}^{G}\left((-1)^{n} \otimes e^{-\lambda \delta} \otimes 1\right) . T$ is 1:1; by a similar argument to the one used on (i) we get that T is suryective.
(iii) Suppose that $n, \lambda>0 \lambda<n, \lambda \not \equiv n+1(2)$. Then the image of T_{-}is the discrete serie $H_{\lambda \delta}$ of infinitesimal character $\chi_{\lambda \delta}$. We recall that the K-types of $H_{\lambda \delta}$ are parametrized by $\{\lambda+1, \lambda+3, \ldots\}$. In fact, the nonzero quotients of $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{-\lambda \delta} \otimes 1\right)$ are $H_{\lambda \delta}, H_{-\lambda \delta}, H_{\lambda \delta} \oplus H_{-\lambda \delta}$ or itself. Now, the irreducible finite-dimensional submodule occurs in $\operatorname{Ker} T_{-}$, otherwise $T_{-}(F)$ would be an irreducible submodule of A_{λ}^{n} and do not have the K-type $\tau_{n}(\lambda<|n|!)$, that contradicts corollary 2.3. This contradiction ensures that T_{-}is not inyective. By corollary $2.3, A_{\lambda}^{n}$ has only one irreducible submodule, $\operatorname{Im} T_{-} \neq H_{\lambda \delta} \oplus H_{-\lambda \delta}$. Furthermore, since the irreducible submodule contains the K-type τ_{n}, so $\operatorname{Im} T_{-}=H_{\lambda \delta}$. Therefore $H_{\lambda \delta}$ is the irreducible submodule of A_{λ}^{n}.

The structure of $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ is the following

$$
\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right) \supset H_{\lambda \delta} \oplus H_{-\lambda \delta} \quad \begin{array}{ll}
\supset H_{\lambda \delta} \\
& \supset H_{-\lambda \delta} \quad \supset 0
\end{array}
$$

T_{+}is not inyective; otherwise $T_{+}\left(H_{-\lambda \delta}\right)$ is an irreducible submodule of A_{λ}^{n} and does not have the K-type τ_{n}. Also Ker $T_{+} \neq H_{\lambda \delta} \oplus H_{-\lambda \delta}$; otherwise, the finite dimensional representation F is a subrepresentation of A_{λ}^{n}, contradicting corollary 2.3. Thus,

$$
\operatorname{Im} T_{+} \cong \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right) / H_{-\lambda \delta}
$$

This implies that

$$
\left(\operatorname{Im} T_{+}\right)_{K}=\bigcup_{\substack{m \geq-(\lambda-1) \\ m \equiv n(2)}} A_{\lambda}^{n}[m]
$$

which is the Verma module of lowest weight $-(\lambda-1)$. Thus,

$$
\begin{array}{ll}
E_{+} A_{\lambda}^{n}[m] \neq 0 & \text { for all } m \geq-(\lambda-1) \\
E_{-} A_{\lambda}^{n}[m] \neq 0 & \text { for all } m \geq-(\lambda-1) \text { and } m \neq-\lambda+1
\end{array}
$$

By lemma 2.5 there exists a K-type $A_{\lambda}^{n}[m] \neq 0$ for some $m<-\lambda$. This ensure that $A_{\lambda}^{n}[m] \neq 0$ for all $m<-\lambda$ and $m \equiv n \bmod (2)$, on the other hand, A_{λ}^{n} would have a lowest weight submodule with lowest weight less than $-\lambda \delta$. The infinitesimal character of this lowest weight submodule would be different from $\chi_{\lambda \delta}$, giving a contradiction. Following the same argument, E_{+}acts nontrivially on each $A_{\lambda}^{n}[m], m<-\lambda$.

For the case $\lambda=0$ and $\lambda+1 \equiv n \bmod (2)$ the proof is easier.
$(i v)$ It has the same proof of (iii). This concludes the proof of proposition 2.4.

Remark 1: Given $n \in \mathbf{Z}$ and $\lambda \in \mathbf{C}$, the K-types $A_{\lambda}^{n}[m]$ are not zero for all m with the same parity of n.

Remark 2: In view of [S], in cases (i) and (ii) A_{λ}^{n} is equivalent to the maximal model of $\mathrm{I}_{M A N}^{G}$ which is the induced representation with hiperfunctions coefficients. In case (iii) A_{λ}^{n} is a quotient of the maximal model of a generalized principal series.

Remark 3: Given $n \in \mathbf{Z}_{\geq 0}$ and $\lambda \geq 0$ as in (iii) of proposition 2.4 , the G-module structure of A_{λ}^{n} is

$$
\cdots \quad \bullet \quad-(\lambda+1) \bullet \underset{0}{\stackrel{\neq 0}{\leftrightarrows}} \bullet-(\lambda-1) \quad \ldots \quad \lambda-1 \bullet \underset{0}{\stackrel{\neq 0}{\leftrightarrows}} \bullet_{\lambda+1} \quad \bullet \quad \ldots
$$

the right arrows represent the action of E_{+}and the left ones the action of E_{-}. That is, we have proved

Corollary 2.6.

Let $\lambda \in \mathbf{Z}_{\geq 0}$ and $\lambda \equiv n+1 \bmod (2)$. A composition series for A_{λ}^{n} is

$$
0 \rightarrow V \rightarrow A_{\lambda}^{n} \rightarrow M \rightarrow 0
$$

where V is the Verma module of lowest weight $-(\lambda-1)$ and M is the irreducible Verma module of highest weight $-(\lambda+1)$.

PROPOSITION 2.7.

Given $n \in \mathbf{Z}$ and λ as in (iii) of proposition 2.4 (i.e. $\lambda \equiv n+1 \bmod (2)$ and $\lambda \geq 0$ an integer $)$, then A_{λ}^{n} is quotient of a generalized principal series $\mathrm{I}_{M A N}^{G}\left(W_{0}\right)$ where $W_{0}=\mathbf{R}^{2}$ and the representation of MAN is

$$
\pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{t}
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \rightarrow(-1)^{n} \exp t\left(\begin{array}{cc}
\lambda & 1 \\
0 & -\lambda
\end{array}\right)
$$

Proof. For $f=\left(f_{1}, f_{2}\right) \in \mathrm{I}_{\text {MAN }}^{G}\left(W_{0}\right)$ let

$$
S: \mathrm{I}_{M A N}^{G}\left(W_{0}\right) \rightarrow C^{\infty}\left(G / K, V_{n}\right)
$$

defined by

$$
(S f)(x)=\int_{K} f_{1}(x k) \tau_{n}(k) d k+\int_{K} f_{2}(x k) \tau_{n}(k) d k
$$

Since $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ is contained in $\mathrm{I}_{M A N}^{G}\left(W_{0}\right)$ via the map $f \rightarrow F=$ $(f, 0)$ and S restricted to $\mathrm{I}_{M A N}^{G}\left(W_{0}\right)$ is equal to T_{+}, hence $\operatorname{Im}(S)$ contains $\operatorname{Im}\left(T_{+}\right)$. An easy calculation shows that $\operatorname{Im}(S)$ contains properly $\operatorname{Im}\left(T_{+}\right)$. Now, corollary 2.6 implies that any K-finite vector in A_{λ}^{n} outside of $\operatorname{Im}\left(T_{+}\right)$is cyclic in $A_{\lambda}^{n} / \operatorname{Im}\left(T_{+}\right)$. Therefore, S is onto.

Now, consider the Casimir operator acting on the subspace of compactly supported functions in $C^{\infty}\left(G / K, V_{n}\right)$. We denote by $\tilde{\Omega}$ the unique essentially selfadjoint extension of Ω to a dense subspace of

$$
\mathrm{L}^{2}\left(G, V_{n}\right)=\left\{\begin{array}{l}
\left.\left.f: G \rightarrow \mathbf{C} / \begin{array}{c}
f(x k)=\tau_{n}(k)^{-1} f(x) \\
\int_{G}|f(x)|^{2} d x<\infty
\end{array}\right\}, ~\right\} . ~
\end{array}\right.
$$

(cf [A-S]).

PROPOSITION 2.8.

If $W_{\lambda}^{n}=\left\{f \in L^{2}\left(G / K, V_{n}\right) / \tilde{\Omega} f=\frac{\lambda^{2}-1}{8} f\right\}$, then W_{λ}^{n} is non zero if and only if $\lambda \in \mathbf{Z}-\{0\}, \lambda+1 \equiv n \bmod (2)$ and $|\lambda|<|n|$. Moreover, $W_{\lambda}^{n}=W_{-\lambda}^{n}$ is isomorphic to the discrete series of Harish-Chandra parameter $\lambda \delta$.

Proof. Suppose that $\lambda \in \mathbf{Z}-\{0\}, \lambda+1 \equiv n \bmod (2)$ and $|\lambda|<|n|$. As $\tilde{\Omega}$ is elliptic, a Connes-Moscovici result [C-M] ensure that W_{λ}^{n} is a sum of discrete series, actually , it is irreducible by the Frobenius Reciprocity. The K-finite elements of $L^{2}\left(G / K, V_{n}\right)$ are in the set of K-finite elements of $C^{\infty}\left(G / K, V_{n}\right)$, so $W_{\lambda}^{n}[m] \subset A_{\lambda}^{n}[m]$ for all $m \in \mathbf{Z}$. By proposition 2.4, A_{λ}^{n} has subspaces infinitesimally equivalent to a discrete series for λ such that

$$
\lambda \in \mathbf{Z} \quad \lambda \equiv n+1 \bmod (2), \quad 0<|\lambda|<|n|
$$

This "discrete series" subspaces are really contained in $L^{2}\left(G / K, V_{n}\right)$. In fact, if $f \in A_{\lambda}^{n}[m]$ and it belongs to a "discrete series", then f satisfies the differential equation (2.2) or the one which results from the identification of A^{+}with $\mathbf{R}_{>0}$ via $a_{t} \leftrightarrow t$. Then the theory of leading exponents as in $[\mathrm{K}]$ says that $f\left(a_{t}\right) e^{-(\lambda-1) t}$ at $t=\infty$. Now, the integral formula for the Cartan decomposition together with $\lambda>0$ imply that f is square integrable. For negative λ we have a similar proof.

For the converse we use the structure of the discrete series, Frobenius Reciprocity together with proposition 2.4. This concludes proposition 2.8.
$\S 3 . L^{2}$ and C^{∞}-eigenspaces of the Dirac operator
Let $g_{o}=k_{o} \oplus p_{o}$ be the Cartan decomposition of g_{o}, then p_{o} is the subspace of symmetric matrix of g_{o}.

If we fix a minimal left ideal S in the Clifford algebra of p_{o}, the resulting representation of $s o\left(p_{o}\right)$ brakes down in two irreducible representations. Such representation composed with the adjoint representation of k_{o} restricted to p_{o} lift up at a representation of K called the spin representation of K. Let $\left\{X_{1}, X_{2}\right\}$ be an orthonormal base of p_{o}, let c be the Clifford multiplication and fix an integer n. The Dirac operator

$$
\mathbf{D}: C^{\infty}\left(G / K, V_{n+1} \otimes S\right) \quad \rightarrow \quad C^{\infty}\left(G / K, V_{n+1} \otimes S\right)
$$

is defined by

$$
\begin{equation*}
\mathbf{D}=\sum_{i=1}^{2}\left(1 \otimes c\left(X_{i}\right)\right) X_{i} \tag{3.1}
\end{equation*}
$$

where X_{i} act as left invariant operators for all i. The spin representation S decompose into a sum of two irreducible subrepresentations $S=S^{+} \oplus S^{-}$(c.f. 4.2 bellow). If $X \in p_{o}$, then $c(X) S^{ \pm}=S^{\mp}$, so

$$
\begin{equation*}
\mathbf{D}^{ \pm}: C^{\infty}\left(G / K, V_{n} \otimes S^{ \pm}\right) \quad \rightarrow \quad C^{\infty}\left(G / K, V_{n} \otimes S^{\mp}\right) \tag{3.2}
\end{equation*}
$$

are well defined.
We also consider

$$
\tilde{\mathbf{D}}: L^{2}\left(G / K, V_{n+1} \otimes S\right) \quad \rightarrow \quad L^{2}\left(G / K, V_{n+1} \otimes S\right)
$$

Some properties of the Dirac operators \mathbf{D} and $\tilde{\mathbf{D}}$ are: both are elliptic G-invariant differential operator. As the Rimannian metric of G / K is complete, $\tilde{\mathbf{D}}$ and $\tilde{\mathbf{D}}^{2}$ are essentially selfadjoint in $L^{2}\left(G / K, V_{n+1} \otimes S\right)[\mathrm{W}]$, that is, the minimal extension is the unique selfadjoint closed extension over the set of smooth compactly supported funtions. Thus, we consider $\tilde{\mathbf{D}}$ equal to this extension which coincides with the maximal one $[\mathrm{A}]$. The eigenvalues of $\tilde{\mathbf{D}}$ are defined as the eigenvalues of the unique selfadjoint extension.

The following proposition is a corollary to proposition 2.8.

PROPOSITION 3.1.

If α is an eigenvalue of $\tilde{\mathbf{D}}$, then the α-eigenspace $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ is irreducible and it is a proper subspace of the α-eigenspace $\mathrm{W}_{\alpha}(\mathbf{D})$ of \mathbf{D}. The eigenvalues of $\tilde{\mathbf{D}}$ are $\alpha \in \mathbf{R}$ such that $\alpha^{2}=\frac{1}{8}(n+2)^{2}-\lambda^{2}$ with λ integer and $0<|\lambda| \leq n+1$.

Proof. For $G=S L(2, R)$ The Parthasarathy equality [A-S] is

$$
\begin{align*}
& \mathbf{D}^{2}=-\Omega+\frac{(n+1)^{2}-1}{8} I d \\
& \tilde{\mathbf{D}}^{2}=-\tilde{\Omega}+\frac{(n+1)^{2}-1}{8} I d \tag{3.3}
\end{align*}
$$

If α is a non-zero eigenvalue of $\tilde{\mathbf{D}}$,

$$
\begin{equation*}
\mathrm{W}_{\alpha^{2}}\left(\tilde{\mathbf{D}}^{2}\right)=\mathrm{W}_{\alpha}(\tilde{\mathbf{D}}) \oplus \mathrm{W}_{-\alpha}(\tilde{\mathbf{D}}) \tag{3.4}
\end{equation*}
$$

(cf [G-V]). Because of (3.3), the left hand side of (3.4) is the $-\alpha^{2}+(n+1)^{2}-1=$ $\frac{1}{8}\left(\lambda^{2}-1\right)$ eigenspace of the Casimir operator. Now, since $S=V_{-1} \oplus V_{1}$,

$$
\mathrm{E}^{2}\left(G / K, V_{n+1} \otimes S\right)=\mathrm{E}^{2}\left(G / K, V_{n}\right) \oplus \mathrm{E}^{2}\left(G / K, V_{n+2}\right)
$$

Hence proposition 2.8 implies that $0 \leq \lambda \leq n+1$ and

$$
\alpha^{2}=\frac{(n+1)^{2}-\lambda^{2}}{8}
$$

Moreover,

$$
\mathrm{W}_{\alpha^{2}}\left(\tilde{\mathbf{D}}^{2}\right)=A_{\lambda}^{n} \cap L^{2}\left(G / K, V_{n}\right) \oplus A_{\lambda}^{n+1} \cap L^{2}\left(G / K, V_{n+2}\right)
$$

Thus, $\mathrm{W}_{\alpha^{2}}\left(\tilde{\mathbf{D}}^{2}\right)$ is equal to the sum of two copies of the discrete series $H_{\lambda \delta}$. Since, $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ is isomorphic to $H_{\lambda \delta}$ we get that $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ is properly contained in $\mathrm{W}_{\alpha}(\mathbf{D})$.

Corollary 3.2.

$\left(\tau_{n}, V_{n}\right)$ and $\left(\tau_{n+2}, V_{n+2}\right)$ are K-types of $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ for every non-zero eigenvalue α of $\tilde{\mathbf{D}}$. For the case $\alpha=0,\left(\tau_{n+2}, V_{n+2}\right)$ is contained in $\operatorname{Ker} \tilde{\mathbf{D}}$ and $\left(\tau_{n}, V_{n}\right)$ is not.
§4. Szegö kernels associated to the eigenspaces of $\tilde{\mathbf{D}}$
In [K-W] Knapp and Wallach gave an integral operator to explicitly obtain a discrete serie as the image of a nonunitary principal serie when the discrete serie is realized as the kernel of Schmid operator. In $\S 3$ we have obtained that each eigenspace of the Dirac operator

$$
\tilde{\mathbf{D}}: L^{2}\left(G / K, V_{n+1} \otimes S\right) \quad \rightarrow \quad L^{2}\left(G / K, V_{n+1} \otimes S\right)
$$

is a discrete serie. The purpose of this section is to give an integral operator for each non zero eigenvalue α of $\tilde{\mathbf{D}}$ which will realize the eigenspace $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ as a quotient of an appropiated principal serie. From $\S 3$ it is easy to deduce which will be the principal serie corresponding to each eigenspace $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$, the problem is to obtain the G-invariant integral operator onto $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$. Let $G=S L(2, \mathbf{R})$ and K the maximal compact subgroup defined as in (1.2).

Let V_{n+1} be the $n+1$ irreducible representation of K, we assume that $n+1>0$. In $\S 3$, given an orthonormal base of p_{o} it was defined the Dirac operator $\tilde{\mathbf{D}}$. If we take $\left\{X_{i}\right\}_{i=1}^{2}$ an orthonormal base of the complexification p of p_{o}, another expresion of $\tilde{\mathbf{D}}$ is

$$
\begin{equation*}
\tilde{\mathbf{D}}=\sum_{i=1}^{2}\left(1 \otimes c\left(X_{i}\right)\right) \bar{X}_{i} \tag{4.1}
\end{equation*}
$$

where bar is conjugation with respect to g_{o}.
One form to obtain the representations $S^{ \pm}$is choosing the left minimal ideals of the Clifford algebra of p,

$$
S^{+}=\mathbf{C} E_{+} \quad S^{-}=\mathbf{C} E_{-} E_{+}
$$

where the product is Clifford multiplication. In $\operatorname{Cliff}(p)$ the following set of relations holds:

$$
\begin{equation*}
E_{+}^{2}=E_{-}^{2}=0 \quad E_{+} E_{-} E_{+}=-E_{+} \tag{4.2}
\end{equation*}
$$

Hence $S=V_{-1} \oplus V_{1}$. Thus, we have that

$$
V_{n+1} \otimes S=V_{n} \oplus V_{n+2}
$$

The set of K-finite elements of a principal serie $\mathrm{I}_{M A N}^{G}\left(\epsilon \otimes e^{\lambda \delta} \otimes 1\right)$ defined in (2.4), is the representation of K induced by ϵ of M, hence

$$
I_{M}^{K}(\epsilon)=\underset{i \in \hat{K}}{\oplus} V_{i} \otimes \operatorname{Hom}_{M}\left(V_{i}, \epsilon\right)
$$

So, if the representation ϵ occur at V_{n} and V_{n+2} as M-submodule, then $\epsilon=(-1)^{n}$. We denote by i_{j} the inclusions

$$
i_{j}:\left(\epsilon, W_{\epsilon}\right) \quad \rightarrow \quad\left(\tau_{j}, V_{j}\right) \quad j=n, n+2
$$

As W_{ϵ} and V_{j} are one dimensional

$$
W_{\epsilon}=\mathbf{C} w \quad V_{j}=\mathbf{C} v \otimes u
$$

where $w \in W_{\epsilon}, v \in V_{n+1}$ and $u \in S^{ \pm}$.
Then the inclusions i_{j} are determined by the constants a_{j} such that

$$
i_{j}(w)=a_{j} v \otimes u \quad \text { where } u= \begin{cases}E_{+} & j=n \tag{4.3}\\ E_{-} E_{+} j & =n+2\end{cases}
$$

If $\operatorname{sg} \alpha$ is the sign of the real number α, fix

$$
\begin{aligned}
& a_{n}=\left(\frac{\lambda+n+1}{-\lambda+n+1}\right)^{\frac{1}{2}} \operatorname{sg} \alpha \quad \text { con } 0 \neq \lambda \in \mathbf{Z},|\lambda| \leq n \\
& a_{n+2}=1
\end{aligned}
$$

Let $G=K A N$ be the Iwasawa decomposition of G. According to this decomposition we write an element of G by

$$
x=\kappa(x) e^{H(x)} n(x)
$$

Let $S(x, t)$ be the function on $G \times K$ defined by

$$
\begin{equation*}
S(x, t)=e^{(\lambda-1) \delta H\left(x^{-1} t\right)}\left(\tau_{n}\left(\kappa\left(x^{-1} t\right)\right) i_{n}+\tau_{n+2}\left(\kappa\left(x^{-1} t\right)\right) i_{n+2}\right) \tag{4.4}
\end{equation*}
$$

Let $\tau=\tau_{n}+\tau_{n+2}$ on $V_{n} \oplus V_{n+2}$, so (4.4) implies

$$
\begin{equation*}
S(x k, t)=\tau(k)^{-1} S(x, t) \quad \text { for all } k \in K \tag{4.5}
\end{equation*}
$$

We will call $S(x, t)$ the Szegö kernel associated to the parameters $(\lambda, n+1)$. If $f \in \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$, the Szegö map associated to the parameters $(\lambda, n+1)$ is

$$
\begin{align*}
S(f)(x) & =\int_{K} S(x, t) f(t) d t \tag{4.6}\\
& =\int_{K} e^{(\lambda-1) \delta H\left(x^{-1} t\right)} \tau\left(\kappa\left(x^{-1} t\right)\right)\left(i_{n}+i_{n+2}\right) f(t) d t
\end{align*}
$$

The equation (4.5) ensure that the image of the Szegö map is in $C^{\infty}\left(G / K, V_{n} \oplus\right.$ V_{n+2}).

Let $\tilde{\mathbf{D}}$ defined as in $\S 3$

PROPOSITION 4.1.

Given $n \in \mathbf{Z}, \alpha$ a non zero eigenvalue of $\tilde{\mathbf{D}}$, and λ a negative integer which satisfies the equality

$$
\alpha=\frac{1}{8}\left(-\lambda^{2}+(n+1)^{2}\right)^{\frac{1}{2}} \operatorname{sg} \alpha
$$

Then, the Szegö map of parameters $(\lambda, n+1)$ is a G-invariant operator onto the eigenspace $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$.

Before proving this result we will see that Szegö map is not the zero map. Let $f \in C^{\infty}\left(K / M, W_{\epsilon}\right)$ where $\epsilon=(-1)^{n}$, given by

$$
f(k)=i^{-1} \tau_{n}(k)^{-1} i_{n} w
$$

Extend f to G so that $f \in \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$.

$$
\begin{aligned}
\left(S(f)(1), i_{n} w\right) & =\int_{K}\left(\tau(t)\left(i_{n}+i_{n+2}\right)\left(i_{n}^{-1} \tau_{n}(t)^{-1} i_{n} w\right), i_{n} w\right) d t \\
& =\int_{K}\left(i_{n} w+\tau_{n+2}(t) i_{n+2}\left(i^{-1} \tau_{n}(t)^{-1} i_{n} w\right), i_{n} w\right) d t \\
& =\int_{K}\left\|i_{n} w\right\|^{2} d t \\
& \neq 0
\end{aligned}
$$

because $\tau_{n+2}(t) i_{n+2}\left(i^{-1} \tau_{n}(t)^{-1} i_{n} w\right) \in V_{n+2}$ which is orthogonal to V_{n}.
To see that the Szegö map is G-invariant we need next lemma

Lemma 4.2.

Let S be the Szegö map with parameters $(\lambda, n+1)$. If $f \in \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ then

$$
S(f)(x)=\int_{K} \tau(t)\left(i_{n}+i_{n+2}\right) f(x t) d t
$$

Proof of Lemma 4.2. Using the change of variable

$$
\int_{K} h(k) d k=\int_{K} h\left(\kappa\left(x^{-1} t\right)\right) e^{-2 \delta H\left(x^{-1} t\right)} d t
$$

for $h(k)=\tau(k)\left(i_{n}+i_{n+2}\right) f(x k)$ the following equality holds

$$
\begin{aligned}
& \int_{K} \tau(k)\left(i_{n}+i_{n+2}\right) f(x k) d k= \\
& =\int_{K} \tau\left(\kappa\left(x^{-1} t\right)\right) e^{-2 \delta H\left(x^{-1} t\right)}\left(i_{n}+i_{n+2}\right) f\left(x \kappa\left(x^{-1} t\right)\right) d t
\end{aligned}
$$

As A normalize N,

$$
\begin{aligned}
x^{-1} t & =\kappa\left(x^{-1} t\right) e^{H\left(x^{-1} t\right)} n\left(x^{-1} t\right) \\
x \kappa\left(x^{-1} t\right) & =\operatorname{tn}\left(x^{-1} t\right)^{-1} e^{-H\left(x^{-1} t\right)} \\
& =t e^{-H\left(x^{-1} t\right)} n^{\prime} \quad \text { with } n^{\prime} \in N
\end{aligned}
$$

So, $f\left(x \kappa\left(x^{-1} t\right)\right)=f\left(t e^{-H\left(x^{-1} t\right)} n^{\prime}\right)=e^{(\lambda+1) \delta H\left(x^{-1} t\right)} f(t)$. And

$$
\begin{aligned}
\int_{K} \tau(k)\left(i_{n}+i_{n+2}\right) f(x k) d k & =\int_{K} \tau\left(\kappa\left(x^{-1} t\right)\right) e^{(\lambda-1) \delta H\left(x^{-1} t\right)}\left(i_{n}+i_{n+2}\right) f(t) d t \\
& =\int_{K} S(x, t) f(t) d t
\end{aligned}
$$

Proof of the Proposition 4.1. By the lemma 4.2 the Szegö map is G-equivariant for left regular actions. As $\tilde{\mathbf{D}}$ also commute with the action of G, it is enough to see that if $f \in \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$

$$
\tilde{\mathbf{D}}(S f)(1)=\alpha S f(1)
$$

If $f \in \mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$, the image of f is in $W_{\epsilon}=\mathbf{C} w$ with $\epsilon=(-1)^{n}$, then $f(t)=h(t) w$ with h a complex valued function. So,

$$
\begin{aligned}
S f(x) & =\int_{K} S(x, t) w h(t) d t \\
\tilde{\mathbf{D}} S f(1) & =\int_{K} \tilde{\mathbf{D}}(S(x, t) w)_{x=1} h(t) d t
\end{aligned}
$$

from which we only need prove that

$$
\begin{aligned}
D(S(x, t) w)_{x=1} & =\alpha S(1, t) w \\
& =\alpha \tau(t)\left(i_{n} w+i_{n+2} w\right)
\end{aligned}
$$

Let X_{1}, X_{2} be an orthonormal base of p. Then,

$$
\begin{aligned}
& \tilde{\mathbf{D}}(S(x, t) w)_{x=1}= \\
& =(I \otimes c)\left(\sum_{i=1}^{2}\left(X_{i} S(x, t) w\right)_{x=1} \otimes \bar{X}_{i}\right) \\
& =(I \otimes c)\left(\left.\sum_{i=1}^{2} \frac{d}{d u}\right|_{u=0} e^{(\lambda-1) \delta H\left(\exp \left(-u X_{i}\right) t\right)} \tau\left(\kappa\left(\exp \left(-u X_{i}\right) t\right)\right)\left(i_{n}+i_{n+2}\right) w \otimes \bar{X}_{i}\right. \\
& =(I \otimes c)\left(\left.\sum_{i=1}^{2} \frac{d}{d u}\right|_{u=0} e^{(\lambda-1) \delta H\left(\exp \left(-u \operatorname{Ad}\left(t^{-1}\right) X_{i}\right)\right.} \tau\left(\kappa\left(t \exp \left(-u A d\left(t^{-1}\right) X_{i}\right)\right)\right)\right. \\
& =(I \otimes c)\left(\tau(t) \otimes A d(t) \sum_{i=1}^{2}\left(A d\left(t^{-1}\right) X_{i}\right) S(1,1) w \otimes \overline{A d\left(t^{-1}\right) X_{i}}\right)
\end{aligned}
$$

As $\left\{A d\left(t^{-1}\right) X_{i}\right\}_{i=1,2}$ is another orthonormal base of p, and

$$
\tau(t)(I \otimes c)=(I \otimes c)(\tau(t) \otimes A d(t))
$$

then

$$
\tilde{\mathbf{D}}(S(x, t) w)_{x=1}=\tau(t) \tilde{\mathbf{D}}(S(x, 1) w)_{x=1}
$$

So we must prove

$$
\begin{aligned}
\tilde{\mathbf{D}}(S(x, 1) w)_{x=1} & =\alpha S(1,1) w \\
& =\alpha\left(i_{n}+i_{n+2}\right) w
\end{aligned}
$$

Let $\frac{1}{2} E_{-}, \frac{1}{2} E_{+}$be the orthonormal base of p given in $\S 1$, then

$$
\tilde{\mathbf{D}}(S(x, t) w)_{x=1}=
$$

$$
=(I \otimes c)\left(\left.\frac{d}{d u}\right|_{u=0} e^{(\lambda-1) \delta H\left(\exp \left(-u \frac{1}{2} E_{-}\right)\right)} \tau\left(\kappa\left(\exp \left(-u \frac{1}{2} E_{-}\right)\right)\right)\left(i_{n}+i_{n+2}\right) w \otimes \frac{1}{2} E_{+}\right.
$$

$$
\left.+\left.\frac{d}{d u}\right|_{u=0} e^{(\lambda-1) \delta H\left(\exp \left(-u \frac{1}{2} E_{+}\right)\right)} \tau\left(\kappa\left(\exp \left(-u \frac{1}{2} E_{+}\right)\right)\right)\left(i_{n}+i_{n+2}\right) w \otimes \frac{1}{2} E_{+}\right)
$$

By (1.7)

$$
\begin{aligned}
\tilde{\mathbf{D}}(S(x, t) w)_{x=1}=(I \otimes c) & \left(-(\lambda-1) \delta \frac{1}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(i_{n}+i_{n+2}\right) w \otimes \frac{1}{2} E_{+}-\right. \\
& -(\lambda-1) \delta \frac{1}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(i_{n}+i_{n+2}\right) w \otimes \frac{1}{2} E_{+}- \\
& -\tau\left(\frac{1}{4}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right)\left(i_{n}+i_{n+2}\right) w \otimes \frac{1}{2} E_{+}- \\
& \left.-\tau\left(-\frac{1}{4}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right)\left(i_{n}+i_{n+2}\right) w \otimes \frac{1}{2} E_{-}\right)
\end{aligned}
$$

By (4.2) and (4.3) applying $I \otimes c$, the following holds

$$
c\left(\frac{1}{2} E_{+}\right) i_{n} w=c\left(\frac{1}{2} E_{-}\right) i_{n+2} w=0
$$

and by (4.4)

$$
\begin{aligned}
c\left(\frac{1}{2} E_{-}\right) i_{n} w & =\frac{1}{2} a_{n} i_{n+2} w \\
c\left(\frac{1}{2} E_{+}\right) i_{n+2} w & =-\frac{1}{2} \frac{1}{a_{n}} i_{w}
\end{aligned}
$$

So that

$$
\begin{aligned}
& \tilde{\mathbf{D}}(S(x, t) w)_{x=1}= \\
& \quad=-\frac{1}{8}(-\lambda+1) \frac{1}{a_{n}} i_{n} w+\frac{1}{8}(-\lambda+1) a_{n} i_{n+2} w+\frac{1}{8}(n+2) \frac{1}{a_{n}} i_{n} w+\frac{1}{8} n a_{n} i_{n+2} w \\
& \quad=\frac{1}{8}(\lambda+n+1) \frac{1}{a_{n}} i_{n} w+\frac{1}{8}(-\lambda+n+1) a_{n} i_{n+2} w
\end{aligned}
$$

because

$$
\begin{aligned}
& \delta\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=1 \\
& \tau_{j}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) v=j v \quad \text { si } v \in V_{j \delta} \quad j=n, n+2
\end{aligned}
$$

The coefficients of $i_{n} w$ and $i_{n+2} w$ are

$$
\begin{aligned}
\frac{1}{8}(\lambda+n+1) \frac{1}{a_{n}} & =\frac{1}{8}(\lambda+n+1)\left(\frac{-\lambda+n+1}{\lambda+n+1}\right)^{\frac{1}{2}} \operatorname{sg} \alpha \\
& =\frac{1}{8}\left(-\lambda^{2}+(n+1)^{2}\right)^{\frac{1}{2}} \operatorname{sg} \alpha \\
& =\alpha \\
\frac{1}{8}(-\lambda+n+1) a_{n} & =\frac{1}{8}\left(-\lambda^{2}+(n+1)^{2}\right)^{\frac{1}{2}} \operatorname{sg} \alpha \\
& =\alpha
\end{aligned}
$$

That is,

$$
\tilde{\mathbf{D}}(S(x, 1) w)_{x=1}=\alpha S(1,1) w
$$

Now, we will prove that the Sezgö map of parameters $(\lambda, n+1)$ for negative λ maps onto $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$. We know by proposition 3.1 that $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ is irreducible. As S is non zero, if $\operatorname{Im}(S)$ is square integrable, then $\operatorname{Im}(S)=\mathrm{W}_{\alpha}(\tilde{\mathbf{D}}) . \operatorname{Im}(S)$ is a subset of the eigenspace $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ of the Dirac operator $\tilde{\mathbf{D}}$. But $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$ is a subset of $\mathrm{W}_{\alpha^{2}}\left(\tilde{\mathbf{D}}^{2}\right)$. According with the notation of $\S 2$, as $\tilde{\mathbf{D}}^{2}$ differ with the Casimir operator Ω by a constant, $\mathrm{W}_{\alpha^{2}}\left(\tilde{\mathbf{D}}^{2}\right)$ is isomorphic to $A_{\lambda}^{n} \oplus A_{\lambda}^{n+2}$. But the only quotient of $\mathrm{I}_{M A N}^{G}\left((-1)^{n} \otimes e^{\lambda \delta} \otimes 1\right)$ isomorphic to a subspace of $A_{\lambda}^{n} \oplus A_{\lambda}^{n+2}$ is infinitesimally equivalent to a discrete serie. Let $\phi \in \operatorname{Im}(S)$ in a non zero K-type, as the action of this K-type is one and the set of K-finite elements of the square integrable function space is a subset of the K-finite elements of the C^{∞}, then ϕ is square integrable. So $\operatorname{Im}(S)$ is a subset of $\mathrm{W}_{\alpha}(\tilde{\mathbf{D}})$. The irreducibility concludes the proof.

REFERENCES.

[A] M.Atiyah - "Elliptic Operators, Discrete Groups and von Neumann Algebras" Astérisque - Vol.32-33, 1976.
[A-S] M.Atiyah and W.Schmid - "A Geometric Construction of the Discrete Series for Semisimple Lie groups" Inventiones Mathematicae - Vol.42, 1977.
[B] W.Barker -" ${ }^{p}$ Harmonic Analysis in $S L(2, \mathbf{L})$ " Memoirs of the American Mathematical Society.
[C] Coddington y Levinson -"Theory of Ordinary Differencial Equations" Mc Graw Hill, New York, 1955.
[C-M] A.Connes and H.Moscovici - "The L^{2}-index Theorem for Homogeneous Spaces of Lie groups" Annals of Mathematics -Vol. 115, N.2, 1982.
[Ca-M] W.Casselman and D.Milicic - "Asymtotic Behavior of Matrix Coefficients of Admissible Representations" Duke Math.- J.49, 1982,869-930.
[G-V] E.Galina and J.Vargas - Eigenvalues and eigenvectors for the twisted Dirac operator over $S U(n, 1)$ and $\operatorname{Spin}(2 n, 1)$ accepted by Transactions of the American Math. Soc.
[H-1] S.Helgason -"A Duality for Simetric Spaces with Applications to Group Representations, II. Differencial Equations and Eigenspace Representations" Advances in Mathematics - Vol.22, N.2, 1976, 187-219.
[H-2] S.Helgason -"Group and Geometric Analysis" Academic Press,1984. Inc.
[K] A.Knapp -"Representation Theory of Real Reductive Groups" Princeton University Press. 1986.
[K-W] A.W.Knapp and N.R.Wallach -"Sezgö Kernels Associated with Discrete Series" Inventiones Mathematicae - Vol.34, F.3, 1976, 163-200.
[S] W.Schmid - "Boudary Value Problems for Group Invariant Differential Equations" Astérisque, hors serie, 1985.
[V] D.Vogan - "Representations of Real Reductive Lie Groups" Birkhäuser, Boston, 1981.
[Wa] Wallach, Harmonic analysis on homogeneous spaces, Marcell Deker, 1974.
[W] J.A.Wolf - "Essential Self Adjointness for the Dirac Operator and its Square" Indiana University Mathematical Journal-Vol 22, N.7, Jan. 1973.

Fa.M.A.F. Ciudad Universitaria. CP:5000-Córdoba - Argentina

[^0]: 1991 Mathematics Subject Classification. 1980 Mathematics Subject Classification (1985 Revision). Primary 22E47.

 Key words and phrases. Eigenspaces of the Casimir.
 This work was supported by CONICET, CONICOR and Fa.M.A.F. (Argentina),ICTP (Trieste, Italy)

