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We present a manifestly conformally invariant formulation of Maxwell equations 
on asymptotically flat space-times. It is shown how to construct regular self-dual 
and antiself-dual fields from suitable radiation data, and the general solution as a 
sum of fields with both types of duality. The basic variable in this formalism is a 
scalar field F defined as the phase of the parallel propagator (associated with the 
Maxwell potential) from interior points to future null infinity along null geodesics. 
Field equations equivalent to the source free Maxwell’s equations are derived for 
F. A perturbative solution based on Huygens’ principle is proposed. Exact solu- 
tions are found for H-spaces. The use of these results on gravitational lensing is 
discussed. 0 1996 American Institute of Physics, [SOO22-2488(96)00507-51 

I. INTRODUCTION 

The global behavior of electromagnetic radiation on curved space-times is used in astrophys- 
ics to study several interesting phenomena. In gravitational lensing one studies the global behavior 
of null geodesics in a gravitational field produced by sources with compact support. Several 
authors have also used parallel propagation of vectors on null geodesics to study the behavior of 
polarized light. Recently, a non-local formalism for general relativity (GR) was presented’.2 where 
the fundamental variable contains all the information of the null geodesics of the given space- 
time, thus providing a useful tool to study electromagnetic radiation in the geometrical optics 
limit. 

It has also been emphasized that when the wavelength of the radiation is of the same order of 
magnitude of the gravitational radius of an intervening compact object, diffraction effects have to 
be taken into account. That is, in this case one needs wave optics on a curved background. 
However, it is difficult to find global solutions of Maxwell’s equations on a general space-time 
since a Green function for this problem is generally not available. In practice, one either tries to 
find a Green function perturbatively, or assumes a flat background except on a small region of 
interest, or considers space-times with high degrees of symmetry. 

We present here a new formulation of Maxwell theory where the basic variable, 

(I.11 

a line integral of the Maxwell potential along a specific path 7, is a non-local object and where 
regularity of this variable is equivalent to regularity of the Maxwell field on a global scale. We 
derive field equations for this variable whose regular solutions automatically yield global solutions 
of the Maxwell’s equations. Even the perturbed solutions of these non-local equations are, by 
construction, regular fields on a global scale. The formalism has another interesting feature, 
namely, the background geometry enters the field equations only through its conformal 
structure.12 Thus, this non-local formulation of Maxwell theory is manifestly conformally invari- 
ant. It is also well adapted to discuss different global problems concerning electromagnetic radia- 
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tion. In the geometrical optics limit one recovers the description of the null geodesics via the 
non-local formulation of GR. In the full theory the formalism defines in a precise way Huygens or 
non-Huygens propagation of electromagnetic radiation on a curved background. 

Before presenting technical details we briefly review some results already obtained using the 
basic variable in our formalism. In recent years this variable has received considerable attention 
not only for Maxwell Theory, but also for Yang-Mills Theory and General Relativity.3-6 In 1975 
Wu and Yang7 suggested that the parallel propagator of a Maxwell potential A, along a path y, 

exp( -i/?,dxo) =exp(-iF), (1.2) 

was better suited than the Maxwell field or potential to describe electromagnetism. [Note that our 
variable F is the phase of the propagator introduced in (1.2).] 

In 1980 Sparlings9 obtained the field equations for the phase of the parallel propagator 
associated with a self-dual’ Maxwell field along null geodesics in Minkowski space. A brief 
description of his method follows. 

Denoting by x points in the space-time, (~(,l,r) points in the future null boundary ?, the 
Sparling equation has the simple form 

W= -A&,5,5), 0.3) 

where F, the phase of the parallel propagator (1.2), is the line integral of the Maxwell potential 
along a null geodesic that begins at a point x and ends at null infinity intersecting the generator 
(&c) of p; the “eth operator” 6 is essentially ~?/a& and A,, the “restricted” free data at J’+, is 
obtained by evaluating the data A( u,f;, r) at the intersection of the future light cone of x with ?, 
the “light cone cut”. In a general, asymptotically flat (in future null directions) space-time, the 
light cone cuts are 2-surfaces embedded in .p, described parametrically as 

u=z(x,La. (I.41 

In Minkowski space-time the Z function has a simple form in standard Lorentz coordinates x0, 

z(x,La=x”u5,5)? 0.5) 

where I,( 5, c) spans the sphere of null covectors at n. Its explicit form in Minkowski coordinates 
is given in Appendix B. 

Using the Green function of the eth operator one obtains the regular solution of (1.3) which, 
after a reconstruction procedure, yields the general solution of the self-dual Maxwell equations in 
Minkowski space. 

Notice that in a similar way [starting from the complex conjugate of (1.3)] one obtains the 
field equations for the antiself-dual case. Furthermore, adding both solutions yields a general real 
Maxwell field satisfying the source free equations. Thus (1.3), a single equation for a scalar field, 
is equivalent to the full set of Maxwell equations on Minkowski space. 

Is it possible to generalize the Sparling equation to curved space-times? Since one knows 
that, due to the linearity of the theory, self-dual data must produce a self-dual field, in principle it 
is possible to find a suitable generalization of Sparling’s formalism for a “self-dual” parallel 
propagator on a curved space-time. 

In this paper we present this generalization. We introduce the phase of the parallel propagator 
for a self-dual field associated with a special set of open curves, i.e., null geodesics that start at an 
interior point of the space-time and end at p. We obtain the field equation for this propagator 
equivalent to the self-dual Maxwell’s equations on curved space-times. This is a single equation 
on a complex non-local function where the free data enters as a source term. 
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The cut function Z (1.4) that describes the light cone cuts of 5’+ plays a fundamental role in 
our approach. As shown in Refs. 1 and 2, all the information about the conformal geometry of 
space-time is encoded in Z. Since Maxwell’s equations are conformally invariant, the function Z 
contains precisely the needed information of the background space-time geometry. As a result we 
obtain a manifestly conformally invariant formulation of regular Maxwell’s fields on space-times 
which are asymptotically flat at future null infinity. 

In section II we review the geometrical meaning of Z, show its relationship to the underlying 
conformal metric and obtain some results that are used in the derivation of the field equation for 
our variable. In section III, we present the non-local variable F and give its kinematical relation 
with the Maxwell field. We derive field equations for F equivalent to the self-dual and antiself- 
dual Maxwell’s equations and show how to recover a general Maxwell field from knowledge of F. 
A perturbative method for solving the field equation is presented and then used to show the 
non-Huygens nature of Maxwell fields propagating on curved space-times. A variation of this 
method to study fields on space-times which are small deviations from Minkowski space is 
suggested. In section IV the formalism is applied to obtain exact solutions in H spaces. The zeroth 
and first order solution to the field equation on small deviations from Minkowski space are also 
calculated. Section V contains a summary of the results and a brief discussion on the use of this 
formalism to approach the problems of scattering and gravitational lensing. In Appendix A we 
derive the equation for F in the general case (i.e., complex Maxwell fields without a definite 
duality), show the equivalence with the self-dual formulation and show how to recover the field 
strength and potential from F. Appendix B contains some review material on differential equa- 
tions involving the eth operator and their Green functions, necessary for the article to be self- 
contained. Appendices C and D contain auxiliary calculations. 

II. GEOMETRICAL PRELIMINARIES 

A. The notion of duality 

On the space-time (M,gab) a volume form eabcd is chosen satisfying the normalization 
condition 

EabcdPbCd’ - 4!, ml> 

where, as usual, indices are raised using the inverse of the metric. Up to a sign (i.e., a choice of 
orientation), (11.1) singles out a unique volume form, which, together with the inverse of the 
metric, is used to construct the dual operator, a conformally invariant linear operator acting on 
2-forms as 

W &-)*w&,’ ’ E 2 nbcdif-%dfWef. (11.2) 

From (II. 1) and (11.2) it follows that **w&= - w,, , and so the possible eigenvalues of the 
dual operator are +i. A 2-form is called self-dual (SD) [antiself-dual (ASD)] if it is an eigenvector 
corresponding to the eigenvalue i[ - i]. Under the inner product gacgbdWabQcd SD and ASD 
2-forms are orthogonal to each other. It is important to note that every 2-form can be written as a 
sum of eigenvectors of the dual operator: 

(11.3) 

wnf[ w;b] is commonly referred to as “the SD [ASD] part of W&.” This decomposition allows 
a compact form for (source free) Maxwell’s equations, explicitly exhibiting their conformal in- 
variance, 

draF;ccl = 0, df,F,, = 0. (11.4) 
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For real fields, the second equation is the complex conjugate of the first one, and Maxwell’s 
equations reduce to a first order equation on a complex potential Ab+, 

3 E,bCdd[&id;= z+,A;~, (11.5) 

instead of the usual second order equation on a real potential. It is clear from (II.4) and (11.3) that 
SD [ASD] closed 2-forms satisfy Maxwell’s source free equations, and also that any solution of 
these equations is the sum of a SD closed 2-form and an ASD one. It follows that the problem of 
solving Maxwell’s equations on (M,gJ amounts to finding SD and ASD closed 2-forms satis- 
fying appropriate “initial conditions”. The first step is to construct the dual operator (11.2), which, 
being conformally invariant, can be readily obtained from the Z function, as it is shown in the 
following subsection. 

B. A non-local description of space-time 

The theory of light cone cuts of null infinity L* offers a completely different approach to 
general relativity. Instead of using a local field, the metric gab, to describe the geometry of the 
space-time, one introduces a non-local function that plays an equally important role, as it contains 
all the information of the conformal structure of space-time. In particular, it yields the null 
geodesics. A brief description of the kinematical features of this theory follows. The dynamics as 
well as other properties of this non-local variable are not presented here (in our formulation of 
Maxwell theory the background geometry is assumed fixed) but they can be found in (Refs. 1 and 
2) and references therein. 

Assume the space-time (M,gab) is asymptotically flat at future null infinity, p. The inter- 
section of the future null cone from .C’ E h4 with .? is a 2-surface called a light cone cut of null 
infinity. Introducing on p Bondi coordinates (u, 5, c) this cut can be locally described as 

u=Z(x=,&E). (11.6) 

Assuming the smooth function Z is given, we introduce the following scalars: 

u=Z(x*,~,~) w=6i, cZ=bZ, r=i36Z, W.7) 

where the a (eth) and 6 (eth-bar) operators, defined in (Bl) and (B2), are essentially partial 
derivatives with respect to 5 and 2 respectively. For each (&~ES’ the scalars (II.7) define a 
coordinate system. An alternative notation found in the literature is 

(u,w,G,r)=(e”,e+,e-,el)=ei, 

with its gradient and dual vector basis denoted by Of,, and q, respectively. In past references, 
however, the following associated vector basis has been used: 

ia=e;l, $fa=-ea_,, $a=-@+, +=g, 

and we will keep the above convention in this work. 

(11.8) 

The coordinates (11.7) have an interesting geometrical interpretation: the points xa satisfying 
u = Z(xa, 5, r) =const. form the past light cone of (u,[, c) at Y+, w and G determine the direction 
angle of a geodesic on that cone and r uniquely locates a point on that geodesic.“.” It follows that 
any null geodesic is characterized by the parameters (u, o, G, 5, c), and that the tangent at x to the 

affinely parametrized geodesic [u = Z(X, 5, c), w=BZ(x,&& E = aZ(x,~,~);~,~] is the null vector 

z”tX,~,~~gabz.,tX,~,~. (11.9) 
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By letting (&c) range over the sphere, this vector ranges over the -future- cone of null directions 
at s’. Thus, the function Z determines the conformal structure of the space-time. As done in Ref. 
1, we exploit the fact that Z depends smoothly on (c,c) to obtain the components 
gij(x,[,c)=gubOfaqb of the metric in the coordinate systems (11.7). The starting point is the fact 
that (11.9) is null, which immediately implies that 

(II. 10) 

Note that this result is true for any value of (c,F). Thus, B and 6 of (11.10) are also equal to zero. 
However, explicitly taking 6 and 6 of (11.10) plus the fact that the metric does not depends on (&a 
yields 

8~=2gab(x)eP,BePb=2g0+=o, 6goo=2go-=o. (II. 11) 

Thus, we have obtained three (trivial) components of the conformal metric. As the above 
equations suggest, the metric components in this coordinate system are obtained by taking a 
sufficient number of 6 and 6 derivatives of (11.10). 

Taking 66 of (11.10) we obtain 

Taking d2 of (11.10) we get 

g -+=- 01 
g . (II. 12) 

g + +- + gabz,,h,b = 0, 

where 12~6~2. Assuming A is expressed in the 8’ coordinates as A( 8’,5,5) one has A*b=h,iefb. 
Using the previous results we immediately obtain 

g f + = -go’A,, . (II. 13) 

We can continue this procedure until all the components (up to a choice of go’) are obtained 
‘. It is worth mentioning that knowledge of A determines all the non-trivial gii( 8’,5,5). The final 
form of the metric is given by 00 0 1 

(11.14) 

where the h” depend explicitly on A ‘. (In the derivation of our field equations, however, they 
will not be needed since we are only looking for the projection of the metric on the null surfaces 
Z=const). 

Thus, in this approach the function Z serves a dual purpose: e2Z=A determines the conformal 
metric and (11.7) are natural coordinates that allow simple expressions for many relevant tensor 
fields, as the metric itself. In the particular case A=0 we obtain conformal Minkowski space and, 
for each (&c), (11.7) becomes a null coordinate system (Appendix B). In general, 6’ is a null 
coordinate, and simple expressions for both the null cone congruence from a point X’ and the 
geodesic deviation vectors of this congruence are obtained using the 8’ coordinates. Since these 
results will be used in following sections, we present them now. The detailed calculations can be 
found in Appendix C. 
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If we denote by J/(X: ,l,cr) the parametric form of the null cone with apex at a point 
X: E M, r = aaZ(x”, 5, c) - a&Z(x&l, c) [refer to (C. l)-(C.3)], then a null geodesic on this cone is 
characterized by a iixed value of (J,l) ( a g enerator of ?). Neighboring rays around this fixed null 
geodesic, corresponding to different values of 5, are described by the geodesic deviation vector 
Mu=&“. As shown in Appendix C [see (C.6)], M” can be written as 

M”=(1+55) 
Jx”tx0,5,5,r) 

a 
=(r-r~)~a+(A-Ao)fia-B(r-ro)~a, (II. 15) 

where the subindex 0 means that the corresponding scalar is evaluated at the apex x0. 
Finally, we present the explicit form of the dual of the light cone 2-surface element itakfb] in 

our basis since this result is later used in the derivation of the field equations. We start by noting 
from (11.9), (11.14) and (11.8) that 

ffbg,b=g 
'tja+golA,r,++gol~~~ 

(II. 16) 

The determinant of (11.14) yields the volume form 

duAdwAd&dr, p = 1 - A,,x,, , 

which, together with (11.8), (11.2) and (11.16), gives 

,. . *&$fb]= &-jlj2 .,,,,,,=~ [i~&b,+~,r&d&,,~- 

(11.17) 

(II. 18) 

(11.15) and (11.18) yield 

*i[&fb] = - i[&db] + 2j?$,&fb] + 2&&b]], (II. 19) 

where 

f= ~[(r-r~)h-(l+h)(~-~o)A,r], 

(11.20) 
g= 3 [(1+h)(r-r0)~,,-(2+h)(~-~o)l, 

and h = ll~p - 1. Alternatively, using (11.3), 
n - ,. ,. c 

&z”b; = - LfL[aMb] +gL[aMb]l* (II.2 1) 

Note that in the A-0 limit itaM,] is ASD. Thusf and g represent the departure of iraMbl from 
being an ASD 2-form. 

Ill. A NON-LOCAL VARIABLE FOR MAXWELL FIELDS 

A. Definitions and kinematical relations 

Let A, be a Maxwell potential whose projection to T+ has vanishing contraction with vectors 
tangent to the generators, Fab = 2V,,Ab1 be its field strength. We define our basic variable F as 
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F(x,.QJ= - j-),ZUds= - Ila,iadr. (III. 1) 

where the integral is taken along the null geodesic I,( l,c) that connects the point x with the 
generator (&a of p, s is an affine length and the second equality follows directly from (11.16). 
F is a non-local function on the space of null directions of space-time with a simple geometrical 
meaning: G=eiF gives the parallel transport along I,( 5, c) between x and the point at which 
/,({,r) intersects ?. As A, is a regular potential with a smooth extension to p, the integrand 
of (111.1) behaves as sm2 when s-+m, thus giving a finite F. Conversely, if F is assumed to be 
regular, then the integrand “peels” appropriately. 

We consider now the problem of obtaining A, from a given regular F, i.e., inverting (111.1). 
This will be particularly important when we impose field equations on F since the potential A, 
will then be a derived object. It follows from (111.1) and (11.9) that F satisfies 

Z,,(v”F-A”(x))=O. (111.2) 

Taking a sufficient number of B and 8 derivatives of (111.2) we obtain the components of A”(x) in 
the @ basis: 

Z,,(Ab-VbF)=O, 

(111.3) 
&Z,/,(Ab-vbF)=ZVbvb&F ? 

6@,(Ab- VbF) =&Z7,Vb6F+ t%bVb&F+Z,bVba&F, 

from where 

~a=va~+(8a_e~~+e;2e,~)v~~F+(ea+e~~+e~e.~)v~d~+e~e~~v~ir~F. 

Note that (111.4) naturally induces a gauge transformation giving a new potential, 

(111.4) 

A;=&- v,F. 

Consider now the 2-surface A,( 5, c) swept by I,( 5, r) as 5 moves in [&l+d{] with f- fixed, 
denote by aA,( 5, c) its closed boundary constructed from two neighboring null geodesics I,( 5, a 
and I,( [+ dL,c), closed at Z” by the connecting vector MadlIP. Using the phase of the 
holonomy operator, 

..X= I dA,( is?) 
A,dx”= 

I Ax( is?) 
Fobdxadxb, (111.5) 

one can find a useful relationship between F, the field strength F,, and the free Maxwell data at 
.7+. 

We recall that source free Maxwell fields are uniquely determined by the data -- 
(A(~,5,l),A(~,l,5>) on the “initial value” surface ? 12. These functions are defined by the 
following equations: 

A(u,~,~)=limA.M”, ~(u,~,~)=limA,@, (111.6) 
.r+ .7+ 
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where the limit is taken along I,( 5, r;>, x is any point satisfying Z(x, J,c) = u, and Ma and M”, 
given in (C.6) and c.c., are geodesic deviation vectors of the future null cone of x (see Appendix 
C). A and x are, respectively, associated to the SD and ASD parts of the field by the following 
equations (obtained from Ref. 13): 

limF,Mafib = t& litiibMaMb = - i?A. (111.7) 
.7+ .7+ 

Thus, A=0 [A =0] for SD [ASD] fields. For real fields, x is the complex conjugate of A, the two 
degrees of freedom of the radiation fields are contained in a single complex function. 

Defining the differential holonomy as 

I 
0: 

Wx,5,5)= F,,iaMbdr, 
x 

(111.8) 

i.e. %=Hdl/P, it follows directly from (111.5) and (111.6) that 

BF(x,~,~+AR(x,~,~==H(x,~,~, (111.9) 

where the complex scalar AR(x,<,r) is the restriction of the free data A(u,f,5> at .Y+ to the cut 
u=Z(x,l,5>, i.e., 

AR(x,&tj=A(u=Z,&a. (III. 10) 

In an analogous way, using the holonomy phase 3 around the loop JiX( 5, c) [ A,( 4’,z) being 
the 2-surface swept by I,( 5, r) as r moves in [c r+ dc] with 5 fixed] and defining 

(III. 11) 

one obtains 

~F(x,~,~+AR(x,~,~=H(x,~,~, 
with A,(x,<,r) the restriction of x(u,l,c) to the cut 

&(x,L~=A(u=Z,5,~ 

(III. 12) 

(III. 13) 

(we will omit the subindex R from now on). 
Equations (111.8) and (111.9) give i3F as a functional of the field strength Fab and the free data 

A(u,c,c). One can invert (IILS), using (111.9), to obtain F,, in terms of bF and C.C. This is done 
in Appendix A. The desired relationship is 

&F,b(x)~“~b= (6F;~;$‘F)*r 1 =&[F] and C.C. 
,r .r .r 

(III. 14) 

Note that Fob does not depend on (J,c), whereas iahb does. Thus, evaluating (III. 14) for 
different values of ([,c) yields different components of Fab(x). Alternatively, we can take a 
sufficient number of d and b derivatives of (111.14) [as was done in (111.3)] to obtain the compo- 
nents of Fab in the Bfa basis. 
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B. The field equations for F 

We now want to find the equation satisfied by F when the field strength Fab is a (closed) SD 
2-form. The fact that F,, is closed was already used in the definition of F and in eq. (111.9) as an 
application of the Stokes theorem. 

A SD field satisfies 

Fnb=Fa+b. (111.15) 

Thus, integrating (III. 15) on A,( 5, c) yields 

F,+(i[“Mbl)dr= Fab(,$,Mbl)+dr, (III. 16) 

where the last equality follows from the vanishing contraction between SD and ASD 2-forms. 
Inserting (11.21) in (111.16) and using (111.9) and (111.14) yields the following integro-differential 
equation for F in the SD case (the + sign is used to indicate that the associated field is SD), 

bF++A+ 
I 

My(f6$F+]+g6[F+])dr=0. (III.17) 
x 

Equation (111.17) is the desired generalization of the Sparling equations9 to curved space- 
times. 

A similar calculation yields the equation for F in the ASD case, 

C3F- -!-A-t 
I 

m(f&[F-]+&‘[F-])dr=O. (III. 18) 
+ 

A few remarks follow. 
1. The kernel of the eth operator-acting on spin weight 0 functions- is the set of constant 

functions on the sphere (Appendix B). It then follows from (111.17) and (111.14) that the solutions 
of eq. (111.17) have the ambiguity of an arbitrary additive function h(x). The origin of this term 
can be traced back to the definition of F.14 If we integrate (111.17) using the Green function 
Ge,tt( [, El’ ,r ) for d given in (B.8) (subindices indicate the spin weight for each variable), we 
obtain the following compact form for (111.17): 

F-RF]& (III. 19) 

where 

Fs-- I s2Go,-~‘(5,~5’,~)A,(x,5’.5f)ds’ (111.20) 

and 

ttI.]--fs,G~,-l,(i,i;T’,f’) f (f&]+&[.])dr’ 

In (111.21), the line integral is along Z,(l’,p), and extends from x to p. By omitting the term 
h(x) on the r.h.s. of (111.19) we have selected the’ particular solution (i.e., chosen the gauge14) 
satisfying the condition JszF(x,l,5)dS=0. This follows from the fact that 
JszG~,lt(~,~[‘,~)dS = 0.15 Analogous comments to this and the following remarks apply to the 
ASD case. 
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2. We know that there is a one to one correspondence between the free data A( u,l, c) and the 
solution of the source free Maxwell’s equations. Therefore it is appropriate to ask if the regular 
solutions to (III. 19 j uniquely correspond to a given A ( U, 5, F) . Although this issue is very involved 
due to the non-local nature of the equation, inJhose cases where a norm 11.11 can be defined on the 
linear space V of admissible functions F(x, 5, l), such that the linear operator LG is continuous and 
has a norm less than 1 (meaning supv I~~F]II/IIFII <I), th e uniqueness of the solution of (111.19) 
is easily proved. In this case the operator Z- .Y is known to be invertible, with its inverse given by 
the -convergent- power series, 

[I-sq-‘=Z+~+.!P+~+... . (111.22) 

The definition of (\‘,I[. 11) is a technically involved problem we defer for future work. Note however 
that, as Y=O when h=O, any natural norm will satisfy the condition j].?+~ 1 when A=0 [this limit 
corresponds to a small deviation from -conformal- Minkowski space (Appendix B)]. 

From now on, we will assume that the linear operator .Y is such that (111.19) has a unique 
solution. 

3. Although we have only proved that SD Maxwell’s equations imply (III. 19), the converse is 
also true. The equivalence of both sets of equations follows from the uniqueness of the solution of 
(III. 19). A is the data for a unique SD Maxwell field F,, . If B, is the potential satisfying the 
conditions in Ref. 14 and 

ls2[ /;B,Zlds]dS=O, 

then (III. 1) constructed from B, is a solution of (III. 19) (remark 1). Now, F constructed in this 
way is the only solution of (111.19). It follows from remark 1 that, when applied to a solution of 
(111.17), (111.4) yields a potential A,(x) =B,(x) + V,h(x) for the SD field Fob(x). 

4. The equation satisfied by F in the general case is derived in Appendix A. It is shown that 
we can first solve for the SD and ASD parts and then add them up, i.e., if 

F=F’+F-, (III.23) 

where F+ and F- are solutions of (III. 17) and (111.18), respectively, then F yields -via (111.4) or 
(III. 14)- a regular solution of the full source free-Maxwell’s equations with “initial data” (A,x) 
on the characteristic surface p. 

5. The function Z plays two distinct roles in the field equations (111.17), (111.18). It determines 
the restriction of the free data A(z) to the cut u = Z and it also enters the integral term via (11.20) 
and (111.14). 

Two different perturbative methods to solve (111.17) may be suggested based on the informa- 
tion we have about Z: 

(a) If the conformal geometry of the space-time is fully known (Z is given) we can construct 
the linear operator (111.21), and then apply (111.22) to solve (111.19), 

F=[l-.~YJ-‘.~=[1+.Y+Ttn+W3+...].~ (111.24) 

Note that if F, is the sum of the first n terms in (111.24) then 

F= lim F,, F,+l=SfF,]+.~, (111.25) 
n-em 

an iterative process that could have been suggested directly from (111.19). 
(b) If the space-time is a small deviation from -conformal- Minkowski space, then A=0 

(Appendix B) and we can expand F around A=O. The expansion is obtained by rearranging 
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(111.24) guided by the observation that f only contains terms A” with n 22, g contains terms with 
n Z 1 (11.20) and 5 contains terms n 2 1 (III.2 1). Slightly modifying (111.25) by keeping track of 
the different powers of A we generate an iterative method to solve (III. 17) in nearly Minkowskian 
backgrounds. The first two terms are explicitly calculated in part B of the following section. 

6. The leading order term .9-(x,5,5) in the expansion series (111.24) represents the Huygens’ 
part of the field, i.e., the contribution of A, (the restriction of the data A to the light cone cut of 
x). It is clear that the other terms are non-Huygens. As an example, to calculate FYat x we need 
to know .j7 in the future cone of x [this follows from (111.21) and (111.14)]. From (111.20), the 
restriction of the data to the whole region of .3’+ enclosed by the light cone cut of x is needed, not 
only its value at the cut. A similar reasoning shows that to calculate all the other terms in (111.24) 
we only need the data in this region, as expected from general principles (the field at x can not 
affect its value out of the cut on p). This shows that, on a general background, Maxwell fields 
do not obey the Huygens’ principle. In the perturbation scheme (111.24) one assumes that the 
background geometry is such that the Huygens’ part is dominant. The (finite) perturbation series 
will therefore be a good approximation to the solution whenever the support of the Green function 
for Maxwell’s equations lies mainly on the characteristic surfaces. 

IV. APPLICATIONS 

A. Propagation of Maxwell fields on self-dual space-times 

It is well known that SD and ASD Maxwell fields have zero stress-energy tensor and thus are 
solutions of the Einstein-Maxwell equations on a vacuum space-time. If the vacuum space-time 
is self-dual these solutions represent the (classical) interaction of photons with non-linear 
gravitatons.16 Before proceeding further with our formalism, we present a brief review of the 
geometry of asymptotically flat self-dual space-times, the so called H-spaces. For a detailed 
account the reader is referred to Ref. 16. 

Given an arbitrary null hypersurface whose intersection with 3+ is described by the “cut” 
u = Z( 5, c), the condition for it to have asymptotically vanishing shear is that it satisfies the so 
called “good cut equation”:16 

~2Z=%G,l,B, (IV. 1) 

where gB(u,l,5> is the asymptotic shear associated with the Bondi cut u =constant. Note that 
(IV. 1) is a non-linear second order p.d.e for a function Z on the sphere. Since a, is complex and 
Z real, in general eq. (IV.1) has no real solutions. 

However, if we allow Z to be complex and if a,(u,l,c) can be extended to a holomorphic 
function of three independent complex variables (u, 5, c), one can show that the good cut equation 
(IV.]) has a four-parameter family of (complex) solutions Z(x,&, a. The space of solutions 
{Z(X,{,~>,X E C”} is called H-space and can be given the structure of a complex manifold. One 
can also show that the function Z induces a holomorphic metric gab on H that satisfies the vacuum 
equations and has a self-dual Weyl tensor.16 

Since a, represents (from the standard formulation of GR) outgoing gravitational waves, one 
has available a natural linear structure of superposition of incoming waves that yields a non-linear 
superposition of self-dual metrics [eq. (IV.l) is intrinsically non-linear]. Moreover, despite all the 
non-linearity of the theory, the scattering of self-dual gravitational waves is trivial. The solutions 
of (IV.1) are usually called “non-linear gravitons.” Although self-dual solutions of Einstein’s 
equations seem to be a mathematical device with no physical interest, they play a key role in the 
canonical approach to quantum gravity.5 

To obtain the general solution of Maxwell’s equations on H-spaces we will assume the Z 
function, which is obtained by solving (IV. l), is given and repeat the steps leading to (11.14). 
However, in this case the conformal factor is chosen as g O1 = 1.16 From this condition and the fact 
that V,n = (daldu)Z,= oBZa [see (IV. l)], we can readily write down the metric components gii, 
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gijwla= 1 

00 0 1 

0 0 -1 0 
0 -1 -x 

,r 
gl- 1 ’ 

1 0 g’- g” 

(IV.2) 

with 

g’-- $fJ;i*, g”=-2++- g”&. (IV.3) 

We also observe from (11.20) and (IV.l) that, for H-spaces, 

f=F=g=O, g= ; [(r-ro)~,,-2(X-&-J)], (IV.4) 

i.e., in H-spaces the SD part of iLaMb vanishes. Therefore, for self-dual space-times (111.17) 
adopts the simple form 

bF= -A(Z(x,~fiL?i. (IV.5) 

The solution of eq. (IV.5) is 

F(x,l,~= - (IV.6) , 

Note from (IV.5) that two terms on the r.h.s. of (III.4) vanish. The remaining term is simplified by 
the explicit form of the metric, eq. (IV.2), giving 

(IV.7) 

Introducing the normalized null tetrad {Z,- &‘,,,wfl}, where 

2Ta=Vau, As*= V&J, “2&= v&Ii+ + (6K*,)V,u- f &v,o, 
(IV.8) 

Na= V,u + V,r+ (9 a2X,,- + X,,&)V,u - $ (Zlh,,)V,o, 

and performing the natural gauge transformation A,--+A, -V,F, we can rewrite (IV.7) in a more 
convenient form. The details are given in Appendix D. The final result is 

A,(x) = & I ,ds~(z(x,5,~.S,~-m,(x,~,~, (IV.9) 

FadX) = & I S2dS[A~~=~b]+~Vln~b,], (IV. 10) 

where A=(tNc?u)A. 
To check that Fab satisfies the field equations, we only have to prove that it is a SD field. 

Since s[a2b] is, by construction, SD (IV.8), we should only show that V[,“abl is SD, that is, it 
has vanishing contraction with any ASD 2-form. In particular, if we introduce the ASD 2-form 
basis, 

s[aJb] 7 -qaiYb] + J+aJBbl* 
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we should check that 

where 
-- 

v,, .&b]=.d&,](AA,,). 

The first equality is immediate, whereas the second and third follow from the following 
relationships in H-space,17 

h,;= - + ax,, , x,,= f &i, ) 

- - 
n,,= + x,,- $ ++,- ; BbA,,+ f &62&- h (Sh,,)2. 

(IV.1 1) 

The solution to the ASD field equation (III. 18) can be obtained following a similar approach to the 
one outlined above. In this case, however, the equations are more involved since the integral term 
in (111.18) is not trivial. (Note that the ASD fields are not just the complex conjugate of SD fields, 
as the underlying manifold is complex in this case.) There is an alternative approach based on the 
observation from (IV.8) that for each (l,c) E S2, the 2-form, 

is closed and ASD and thus, it is a particular solution of Maxwell equations. 
If we multiply (IV.12) with any complex scalar function of (u, 5, r) and then integrate on the 

sphere we should obtain the general ASD field. Taking eqs. (IV.9) and (IV.10) as a reference, we 
make the following ansatz for the general solution of the ASD field equations: 

A,(x) = & I s~dsA(z(x,i.~,~,~~~~(x,~,~, (IV. 13) 

It only remains to check that x in (IV.13) is in fact the asymptotic value of the Maxwell connec- 
tion, as had previously been defined. This is done in Appendix D. 

As pointed out in Appendix B, the function (B.5) Z’“‘(x,~,~) with x E C4 is the general 
regular solution of the good cut equation (IV.l) when a,=O. This function describes the light 
cone cuts of complex Minkowski space-time. Complex Minkowski space-time is therefore a 
particular case of H space where (IV.10) and (IV.14) reduce to D’Adamard l8 solutions of Max- 
well equations. Thus, (IV.10) and (IV.14) are the generalizations of D’Adamard formula to H 
spaces. 

B. Small deviations from Minkowski space 

When discussing the propagation of light on vacuum space-times, it is often a good approxi- 
mation to consider the background geometry as a small deviation from Minkowski space. In those 
cases we can replace F by the first terms in the expansion F= C,,F(“) in powers of A, as 
Minkowski space is characterized by the equation A=O. We will apply method b of remark 5 in 
section III to calculate the first two terms of this perturbative solution. This method is based on the 
facts that g in (111.24) contains no @(A’) term and that Z is a linear functional of A, 
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z=z(O)+ I sZGo,-2,hdS’~Z’o’+Z”). (IV. 15) 

In (IV.15) G0,-2t is the Green function (B.9) for e2 and Z(O) the general solution of the equation 
@Z=O, given in inertial coordinates in (B.5). 
Order 0 

At C(A’), Z=Z(‘) (IV. 15), f=g = 0 (11.20) and (III. 17) reduces to the Sparling equation (1.3), 
as expected. The solution is given by the first term in (III.24), with .iTcalculated using Z”). We 
can readily write down the field strength from (IV.10) and (B.7). This is just the D’Adamard 
formula, 

(IV. 16) 

Order 1 
As pointed out above, .Y in (111.24) contains no order zero term. Therefore, the first order 

expansion of F agrees with that of (I+ .Y)J? From (11.20) we obtain the first order approximations 
forf andg, 

f=O, g= 4 [(r-r,)h,,-2(R-A,)]. (IV.17) 

Thus, the linear expansion of F is 

F’O’+F”‘=- A(Z’O’,~‘,~)+A(Z’O),~‘,~)Z”‘+ /~g$“)dr’]d,Sr, 

(IV. 18) 

with p= F$,‘l”&’ and g in (IV. 17). 
Although in principle the Z function is assumed to be given, the background geometry is 

usually described in terms of the metric and its associated tensors. In those cases, the process of 
obtaining Z or A is involved (one must solve the geodesic deviation). However, it can be 
shown2 that in the linear gravity approximation 

A=aB(Z”),l,a- ~x(r’-r)Yo(Z(o’,bZ(o),dZ(o),r~,~,~)drr. 
r 

(IV. 19) 

If the space-time is a small deviation from Minkowski space and if the Weyl tensor, rather than 
Z or A, is given, one can then use (IV.19) in (IV.15) and (IV.18) to obtain the linear gravity 
approximations of Z and F. 

V. SUMMARY AND CONCLUSIONS 

We have presented a manifestly conformally invariant formulation of Maxwell theory on 
asymptotically hat space-times. The field equations for our basic variable, the phase of the 
parallel propagator associated with self-dual (or antiself-dual) Maxwell fields, contain the free data 
A ( U, 5, c) (or x) at Jf as a source term and the solution of those equations is the generalization 
of D’Adamard’s formula to curved space-times. A method to reconstruct the Maxwell field was 
given. In particular, adding a solution of (111.17) and its complex conjugate yields a real field that 
satisfies the source free Maxwell’s equations. Since the free data has a well defined physical 
interpretation, namely, it represents incoming radiation, the solutions to the field equations repre- 
sent the scattering of light due to the background curvature. 
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Exact solutions of the field equations were obtained when the background geometry was 
self-dual. A Huygens perturbation series was presented. The terms in the series can be given a 
physical interpretation. The zeroth order term represents a Huygens propagation on curved spaces. 
The first and higher order term yield the tails of the electromagnetic wave produced by the 
scattering of the field in the non-trivial geometry. 

Since this formalism is specially adapted to discuss the evolution of electromagnetic radiation 
on a curved space-time we now address a few questions that can be answered without involved 
calculations or too many technical details. 

We start with a question that was partially answered in Ref. 19; do SD or ASD Maxwell fields 
have trivial scattering in self-dual space-times? Since for H spaces oB is the same at 5’+ and 2 -, 
it follows from (IV.1) that cuts Z at .? or at Y7- are the same. Inserting this condition in (IV.10) 
and (IV.14) implies that the free data A at .2’+ or .Y7- are also the same. Thus, we conclude that 
electromagnetic radiation does not interact with self-dual gravitational waves. 

A question that arises in the context of gravitational lensing is: does the curvature of space- 
time rotate the polarization vector of an electromagnetic wave? The difficulty with this question is 
that one should assign a meaning to the word “rotate” since it implies a comparison of vectors at 
different locations. An analogous, question is: can the curvature of space-time change the helicity 
on an electromagnetic wave? 

To answer this question we first discuss the notion of helicity in our formalism. In Minkowski 
space one can show that self-dual Maxwell fields yield positive and negative helicity states via the 
positive or negative frequency decomposition of the free data A(u,l,5) at .p.20 Since asymptoti- 
cally flat space-times share the same null boundary with Minkowski space, it is possible to define 
the notion of asymptotic helicity for the electromagnetic radiation. The Fourier transform of the 
data, A( o,l,r), defines, for positive or negative frequencies w, the corresponding asymptotic 
helicity states for the incoming radiation. The scattering of Maxwell fields is then studied by 
giving the initial data A,/ - at J-, solving the field equations in an entirely analogous way to 
what was done in section III, and then projecting the field to .p as in (111.7) to obtain A,/+. By 
analyzing the frequency content of A ,/+ we can determine whether or not helicity has been 
conserved. Our equations clearly suggest that helicity is not conserved. 

The problem of scattering and its applications to gravitational lensing is currently being 
studied. A thorough discussion using this formalism will be presented in a following work. 
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APPENDIX A: THE FIELD EQUATION FOR THE F FUNCTION 

We derive here an equation for F equivalent to the full set of source free Maxwell’s equations. 
T_o do this consider the 3-volume V limited by (i) AX( t, a, (ii) A,( 5, c+ d5), (iii) rX( 5, B, (iv) 
A,(5+d5,5) and (v) the cap on ?; the corresponding surface elements being 
~[“Mb’(x,~,~)(d~drlP), etc.” If the source free Maxwell’s equations, 

d,*,F,,, = 0, 

are integrated in V we obtain (the i factor is put for later convenience) 

0 = 
I 

i3 ! d~Fb,,dx”dxbdxC= 
I 

i*Fb,dxbdxC. 
V dV 
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The surface term is the sum of five integrals. As an example we calculate the surface integral over 
regions (i) and (ii): 

where 

C= i*F,bi’aMbldr= 

Analogously 

I _ dldc 
i*F,b= - 6c 

(iii)+(k) p2- 

(A3) 

(A4) 

Using (11.19), (A3) takes the following form: 

C=H+2 &+g$)dr 
I 

(A5) 

From (Al), (A2) and (A4) we get 

6C+bC+(i*F,bMafib),7+=0. 

Using (A5), (111.7), (111.9) and (III.12), we can rewrite (A6) as 

(‘46) 

6&+6~+6A+$ m(f$+F$)dr+b b(T$+g$)dr=O. 
I I 

(A7) 
‘0 ‘0 

Note that for SD [ASD] fields (A7) reduces to (111.17) [(III. 18)]. 
We now show how to recover the Maxwell field Fab from F(x,l,c). Using eq. (C6) we can 

rewrite (111.3) as 

Kd,~= J; Fab(r’)~atr’,~,~[tr’-r)~btr’,~,5)+(Atr’1~,~ 

-h(r,5,~)~'(r',5,51drr. (‘48) 

The integral is along Z,(t;,c), parametrized as in Appendix C, i.e., a point x’ in the geodesic is 
given by x’=x’(u,o,Z,r’;c,5). From (A8) 

LT,H= H,,= - I~~(r~,i,Bdr’-A,~l~~(r~,~,~dr~. 
r r 

Using this equation and its complex conjugate one can algebraically solve for 
J:$(r’,<,5)dr’. Taking one more radial derivative yields 

+ tW,,-A,,@‘),, 
1 -A,& 

=&[F] and cc., 
.r 

(A9) 

i.e., eq. (111.14). 
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Putting together (A7) and (A9) we obtain the following integro-differential equation for F: 

m(f&[F]+$b[F])dr +6 A+ 1 1 1 =O. (AlO) 
(AlO) is our version of the source free Maxwell equations on curved spaces. It is not hard to see 
from (AlO) that F is linear in the data (A,&, from where it follows that we can first solve for the 
SD part of the field (by setting x=0), and then add the solution for the ASD part (A =O), as in 
(111.23). 

APPENDIX B: GREEN FUNCTIONS FOR THE ETH OPERATOR 

The action of the eth operator on a spin weight s function f, is given byI 

gs+,=~fsEpl-s d  
ag  (PSfs), P=1+5C @I) 

Similarly, the action of the eth-bar operator is 

therefore the commutator is 

664b)f,=2sf,. (B3) 

From (Bl), it foliows that the only regular solution of the equation afo=O is a constant. As the 
linear operator @[.I (111.14) acting on an S2 constant gives zero, the solution F to the field 
equation (III. 17) has the indeterminacy of an additive function of the space-time coordinates f(x). 
As explained in remark 2 of Section III and in Ref. 14 this is a gauge term. Also from (Bl), the 
general (regular) solution Z (O) of the “good cut equation” (IV.l) with crB=O, 

A = &-(‘3) = 0 (B4) 

is found to be a linear combination of 1, c/P, DP and <aP.‘6 The choice of parametrization of 
the solution space gives a coordinate system for this H space (section IV). In particular, by 
choosing 

Z(O)(x 5 C) =xaz (5 ig , ? a 9 9 (B5) 

Md= ~(-l-itT+i,itf-i),-l+iT), 
it is easily shown that this H space is (complex) Minkowski space-time (equivalently, Z(O) gives 
the family of space-times conformal to Minkowski space), and that x are inertial coordinates. This 
is proven by first obtaining the metric tensor (IV.2) and then transforming to the x coordinates 
using (11.7) and (B5). The result is gab- -diag(- l,l,l,l,). Furthermore, the null tetrad (IV.8) is 
covariantly constant. In the X’ coordinates, 

where the usual notation for this tetrad in Minkowski space was introduced. 
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In a guide to construct Green functions for arbitrary combinations of 6 and 6 in terms of 
contractions of the tetrad (B7) is given. In particular, it is easy to verify from the information 
given there that 

Go -1,(5 Fl, r,- J- KGba-‘~~) 
9, 7, 

47f a,m(5’,~~ 
038) 

is the Green function for the 6 operator acting on spin-weight 0 functions. This function is used in 
the definition of .v in the solution of the field equation (111.17) 

Similarly, the Green function of e2 acting on spin-weight zero functions is 

- - 1 (I-E’)2 
Go,-245L;l’,5,)- G l.l, . 039) 

This is used in (IV.15) to obtain Z(‘). 

APPENDIX C: GEODESIC DEVIATION VECTOR 

Inverting (11.7) with ({,c) fixed we get 

Xa=Xa(U,W,E,r;~,~). 0) 

If x E IXO(S,c), the null geodesic with end points at x0 and the (&a generator of ?, then 

4x;l,5)=&d,5), 4~,5,5)=~(xo;5,5), ~b,L-,~=~~o;5,~, ca 

as can be easily seen from (11.9), (II.lO), (II.1 1) and the fact that Z”(x,J,r) is tangent to the 
geodesic at X. Thus, for x E CXO, the future null cone of x0, it follows from (Cl) and (C2) that 

Xa=X=(U=Z(Xo;~,~), w=BZ(xo,&~), c.ir=bZ(x,;&& r+BhZ(x,,&5);&g (C3) 

In (C3), r- has been redefined in order to obtain a coordinate system (r, 5, c) for CJO. The geodesic 
deviation vector IW”~&~ can be obtained from (C3) using (Bl) and (B2), 

-iia[r(x~,~,~)+~cF]++ia&fx~,~,~)+P $. (C4) 

The last term in (C4) is the partial derivative of (Cl) with respect to 5. To calculate this derivative, 
we note from (11.7), (Bl) and (B2) that, if x and (l,[) moves in such a way that u,o,~%,r remain 
fixed, then 

0=*u=sx”v&+~ 0, 0=&0=sx”v&+;[A-~~], 

O=GJ=*x”VahJ+~[r+&], O=Gr=S*“V,r+F at-. 

Using (B3) and the fact that V,u,V,r,V,o,V,6Jis the dual of the basis $,ia,-A?,-k’ we get 
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P $xa=P ~=-i”br+~“[*-5;]+t’[r+i;-l-o~. tw 

From (C4) and (CS) we obtain the following formula for the geodesic deviation vector: 

APPENDIX D: 

In this Appendix we complete the steps that lead to Eq. (IV.10) and we prove that in the ASD 
solution (IV.14), x is the data at p as had previously been defined. 

Since the r.h.s of (IV.7) does not depend on (J,c) one can perform an integration on the sphere 
without changing the result. Thus, 

A&)=2-&’ Is2[(vbBF)z,,az,,]ds+v~ & ,-2F(&[,i)dS. (Dl) 

The last integral on the right vanishes if the -c.c. of-the solution (111.24) of (111.17) is chosen (see 
remark 1 in Section III). If not, it merely reduces to an unimportant gauge term that we will omit. 
Using (IV6) we can rewrite the above expression as 

&(x)=-2& 
- -- 

d~d~‘ZI,tx,~,~)~Zb]tX,~,~)~Go,-1’ 

x t5,5;5’,~)Atz’,5’,5)z’b, W 

where A(u,5,5)‘(alau)A(u,5,~). (B3) and &Z,,aZ,l)=O [which follows from (IV.l)] yield 

6~(z,,~z,,) = b&z,,&,,) - 2(&6zb]) = - 2z@z,], 

which allows us to rewrite the dS integral in (D2) as 

- 2 
I - $2 

(6G)z,,dz,,dS= 
I 

,tac,_,~)ab(z,,szb,)dS 

= ,t~Go,-,~)62tz,,~z,,)d~ 
I 

= 6’2(z;,sz;,), (D3) 

where we have used the fact that Go,-tp is the Green function of the a operator. Inserting this 
result in (D2) gives 

A,(x) = & I s2ds’A(z~,5’,F)z’bzr’2(z;,a’z~l). 
Using (IV.2) the contraction can be calculated giving (IV.9). 

We now show that the free data in (IV.13) is the asymptotic value of the connection at Y+. 
From (III. 18), the (restricted) free data is given by the following limit, taken along lXO( 5, a: 

L(x~,~,~= - lim &(x,1,5). CD51 
x-+.7+ 
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If (1II.l) is calculated using (IV.13) then 

@,5,+3= & 1,2dS’1,ix ~S,dr’~(Z’(x~),5’,~)Zb(x’)bZ;(*‘), 
, > 

036) 

where again the natural coordinates of section II are used and 

x’=x’(u,w,G,r’;~,~), u=Z(x;l,c), w=bZ(x;~,~), G=bZ(x;J,~). (D7) 

Let us change coordinates and view a point x’ in 1,. {,a as the intersection of 1,(5,5) with the 
past cone of (u,l’,p) at .P [’ i.e., (u,l’,p) is the point at which Z,r(l’,r) intersects P]. 
Keeping (S,r) fixed, u parametrizes I,( 5, a, thus 

and 

dui(u,&p)b 
zb(x’)a’z;(x’) 1 ZC(x’)Zf(x’) ’ 

03) 

tD9) 

where 6’ is calculated without taking into account the (l’,r) dependence of x’ in (D7). Note 
that22 

6 
Zb(x’)ZZ~(x’) 

z=(x’)z;(x’) = 1 3(x’) ~2Cb(x’)~~,(x’)~~l(x’)+~Ji,r) cmx’)~tx’))2 @lo) 
Being 5!$&%~1 ASD and %‘ta &bl SD, their contraction is zero, so it is clear that in the x+.? 
limit (DlO) will be zero in the 525’ case, and a O/O indeterminacy if [=l’. Note that, if the H 
space is asymptotically flat, then limY+K,,(x,l,5> = 0, the limit taken along 1,(5,5>. To study the 
5-L’ case, we express Zf as a second order Taylor expansion of Z, around C&c). To do this, we 
obtain from (B. 1) and (B.2) the relationship between bZ, ,6Z, ,&Z, $2, ,h2ZC and the first and 
second partial derivatives of Z, , and then use (IV.l) and (IV.2). The result is 

zcz:= (~-g)(~--p)+; (pr)%, lP2+@({-g)3) 
1 1 

(g--l’)(~-5”)++ f (C-F)“K,, l[PP’]+@(5-l’)3) 1 
=z*z’ ( ‘ypq2 - A,,+ ml- 5’)3h (Dll) 

where the notation of Appendix B has been used. In the x--+.@- limit, K,,--+O. From (Dll) and 
om, 

I = - & 66’ ln(Z.Z’)=S-,,,(5,5;[‘,?). 0312) 

From (D9) and (D12), 
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(Dl3) 

and so x in (IV.13) is the (restricted) free data, as we wanted to show. 
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