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1. Introduction

The set of supersymmetric vacua modulo gauge transformation of a SYM theory is known

as the moduli space. The classical moduli space Mc is parametrized by a basic set of

holomorphic gauge invariant operators xi(φ), i = 1, . . . , n, φ the elementary chiral matter

fields. Generically, the x′s are subjected to polynomial constraints ca(x(φ)) ≡ 0, a =

1, . . . , r, then Mc ⊂ Cn is the algebraic set {x ∈ Cn| ca(x) = 0, a = 1, . . . , r}, the zero set

of r polynomials in n complex variables [1, 2]. For those SYM theories having multiple

quantum supersymmetric vacua, the quantum moduli spaceM is parametrized by the vevs

< xi > of the basic invariants, and M is also an algebraic subset of Cn. In fact either

M or a branch of it equals Mc for most theories. However, if the matter content of a

theory is in a gauge group representation whose Dynkin index µρ equals the adjoint index

µadj , and the theory does not have D-flat points that break the gauge group to U(1)k, then

one of the constraints that define Mc, say cr, gets quantum modified to either cr(x) = Λp

or cr(x) = xkΛ
p, smoothing out the singularities of the affine variety Mc [3]–[6]. These

are the theories with a quantum modified moduli space (QMMS), of which those defined

by a single constraint (r = 1) are the subject of this paper. All classical moduli spaces

are contractible, and then homotopically trivial. The QMMS, instead, are suspected of

being smooth complex manifolds of a nontrivial homotopy type, although these facts have

only been proved for SQCD with equal number of colors and flavors, and for SP (2N)

with 2N + 2 fundamentals [7, 8]. The interest in the topology of M is due to the fact

that, if nontrivial, some special (topological) terms can be added to the effective action

of the theory. Also, topological stable field configurations such as Skyrmions or vortexes

may be possible. Among the interesting topological invariants are π2(M), in connection

with the existence of vortexes [9], and π3(M), which, if nontrivial, implies the existence of
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skyrmions [10, 9]. Also, if π4(M) is trivial and H5(M,R) is non trivial, the theory admits

Wess-Zumino-Witten terms in its effective action [11, 9]. The calculation of these homotopy

and cohomology groups looks like a formidable task at first sight, since theM’s are complex

algebraic sets defined by polynomials in a large number of variables. Non supersymmetric

gauge theories usually exhibit a single H orbit of vacua, H the global symmetry group.

Their moduli spaces are then homogeneous spaces H/Ho, whose topology is well known.

In the supersymmetric case, however, M is a non compact space where H does not act

transitively. In fact M contains strata of H orbits of different kinds. The only exceptions

are SP (2N) with (2N + 2) matter fields and SQCD with Nc = NF ≡ N , in the special

case N = 2 [7]. The reason why N = 2 SQCD is special is that the fundamental and

antifundamental of SU(N) are equivalent when N = 2, and so the flavor group, which is

SU(N)×SU(N)×U(1) if N > 2, gets enlarged to SU(4) when N = 2. It is under this larger

flavor group that the quantum moduli space of SQCD with N = 2 becomes a single orbit,

and thus a homogeneous space. The fact that the moduli spaces of SQCD with two colors

and flavors, and SP (2N) with (2N + 2) matter fields are homogeneous is what allowed

the computation of their homotopy and cohomology groups in [7]. Unfortunately, it does

not seem to be possible to apply this idea to other QMMS by, for example, extending H to

a (possibly anomalous) larger symmetry group H ′ chosen to act transitively on M. This

may explain why the only other available calculation of the homotopy type of a QMMS,

SQCD with Nc = Nf ≥ 2, performed in [8], uses a completely different technique, which,

however, cannot be extrapolated to other examples either, because it strongly depends on

the specific form of the SQCD constraint.

In this paper we prove that some relevant topological facts of the N = 2 SQCD and

Sp(2N) with (2N + 2) QMMS hold generically for QMMS defined by a single constraint

equation, of SYM theories based on simple gauge groups. These theories are listed in [5, 6],

where they were classified into two broad classes: (i) invariant QMMS, defined by p(x) =

Λd, p(x) a flavor singlet polynomial of mass dimension d and (ii) covariant QMMS, defined

by p(x) = xkΛ
d−dk , p(x) a dimension d operator carrying a flavor U(1) charge equal to that

of xk, an invariant of mass dimension dk. In both cases the classical moduli space is the set

defined by p(x) = 0. This fact, together with some particular aspects of the stratification

of the classical moduli spaces of theories with a QMMS, allowed us to prove that both

types of QMMS have trivial πj(M) for j = 0, 1, 2, 3, 4, i.e., they are 4−connected. Here we

use the standard convention that π0(M) is the set of connected components of M. π0 is

not a group, the triviality of π0(M) merely means that M is a connected set.

The paper is organized as follows: in section 2 we review some fundamental aspects of

the stratification of the classical moduli space of a SYM theory according to the unbroken

gauge subgroup at different vacua, and also study the Higgs flows among theories with a

QMMS. The required stratification results, due to Luna, Procesi and Schwarz, [1, 12, 13],

are collected in Theorem 1. A SYM theory is represented [G, ρ], G the gauge group, ρ the

G representation of the matter content. Higgs flow is indicated [G, ρ] → [G ′, ρ′], or just

G → G′ when the matter content is irrelevant. Theorem 2, proved in this section, states

that all theories with a QMMS flow to [SU(2), 4 + singlets]. In section 3 we re-derive

the results in [7, 8] on the topology of MSQCD using alternative techniques. One of the
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derivations uses very recent algebraic geometric results due to Dimca and Paunescu [14],

that we introduce as Theorem 3. In section 4 we prove our main result, Theorem 4, which

states that all QMMS defined by a single equation are 4-connected. The proof uses the

three previous theorems. Section 5 contains the conclusions. For quick reference, we have

gathered in a brief appendix a number of useful algebraic topology definitions and theorems.

2. Stratification of the classical moduli space

We recall some facts about the classical moduli space of a supersymmetric gauge the-

ory [1]. φ ∈ Cq = {φ} denotes a spacetime constant configuration of the elementary

matter chiral fields. G is the gauge group, ρ its representation on {φ}, ρ = ⊕k
i=1Fiρi its

decomposition into irreducible representations. xi(φ), i = 1, . . . , n is a basic set of ho-

mogeneous, holomorphic G invariant polynomials on Cq. The invariants are subjected

to polynomial constraints ca(x(φ)) ≡ 0, a = 1, . . . , r. There is precisely one G orbit of

D−flat points in every fiber {φ ∈ Cq|x(φ) = xo, ca(xo) = 0} [1], then, for theories with

zero superpotential, the classical moduli space Mc ≡ {D − flat points}/G equals the set

{x ∈ Cn| ca(x) = 0, a = 1, . . . , r} = x(Cq) ⊆ Cn. Given g ∈ G, the isotropy subgroups at

φ and gφ are conjugated: Ggφ = gGφg
−1. Since there is precisely one G orbit of D-flat

points in the fiber x(φ) = xo, a conjugacy class (Gxo) can be associated to xo ∈ Mc. The

stratum Σ(H) ⊂ Mc is defined by Σ(H) = {x ∈ Mc|(Gx) = (H)}, i.e., two points of Mc

lie in the same stratum if their associated D-flat points have conjugate isotropy subgroups.

Mc is the disjoint union of its strata. We will say (H1) ≤ (H2) if H1 is conjugated to a

subgroup of H2. This is a partial order relation, given two classes, it may well happen that

neither (H1) ≤ (H2) nor (H2) ≤ (H1) (see [15] for examples). There is a unique minimal

class (GP ), and certainly a unique maximal class, namely (G). Σ(GP ) is called the principal

stratum. The vacua at Σ(H) correspond to D-flat points that break G to a subgroup H,

GP being the maximally broken subgroup of G. It can be shown that (H2) ≤ (H1) if and

only if it is possible to flow by Higgs mechanism from the H1 gauge theory to the H2 one.

(H) is said to be subprincipal if its minimal among non principal classes. In general, there

will be many subprincipal classes. A number of useful results related to the stratification

of Mc, due to Luna and Schwarz, are collected in the theorem below:

Theorem 1 (Luna, Schwarz). [1, 12, 13]

1. There are only finitely many strata. The strata are smooth complex manifolds, whose

closures are irreducible algebraic subsets of Mc

2. The closure of the stratum of the class (H) equals the union of the strata of greater

or equal classes.

Σ(H) =
⋃

(L)≥(H)

Σ(L) .

3. If x is a singular point of Mc then x /∈ Σ(HP ).
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4. Consider Higgs mechanism at the D-flat point φ ∈ Cq. Let Nφ be a Gφ invariant

complement to the eaten field space Lie (G)φ, Nφ = ρφ ⊕ sI its decomposition into

Gφ singlets and non singlets, then

Cq = Lie (Gφ)φ⊕ ρφ ⊕ sI . (2.1)

The restriction of the map x : Cq →Mc to the singlet subspace sI is a local coordinate
chart x : sI → Σ(Gφ) for the stratum. In particular, the dimension of the stratum

equals s, the number of singlets.

Recall that an algebraic set X is the set of zeroes of a finite set of polynomials and is

said to be irreducible if it is not the proper union of two algebraic sets. There is a notion

of tangent space at x ∈ X, and x is said to be a singular point of X if the dimension

of the tangent at x is different from the dimension of X (see, e.g., [16]). Point 3 in

the theorem states the well known fact that singular points of Mc correspond to vacua

with enhanced gauge symmetry. In eq. (2.1), [Gφ, ρφ + sI] is the theory towards which

the original theory [G, ρ] flows by Higgs mechanism at the vacuum φ, Lie (G)φ being the

eaten fields. We rarely keep track of the leftover singlets sI, because they are dynamically

irrelevant. In what follows, however, we will need to know the dimensions of certain strata,

which, according to Theorem 4, equal the number of singlets.

It is useful to display isotropy classes in decreasing order from left to right, with ordered

strata connected by a line. The resulting diagram encodes all patterns of gauge symmetry

breaking.

As an example, the diagram

(G1) − (G5)

Á Â
(G) − (G2) − (G4) − (GP )

Â Á
(G3)

(2.2)

tells us that the sequence of Higgs flows G → G3 → G4 → GP is possible (since (G) ≥

(G3) ≥ (G4) ≥ (GP )), whereas the sequence G → G2 → G5 → GP is not (since (G2) ¤
(G5)). In this example there are two subprincipal classes, (G4) and (G5). According to

Theorem 1.2

Σ(G5) = Σ(G5) ∪Σ(G1) ∪ Σ(G) , Σ(G4) = Σ(G4) ∪Σ(G2) ∪ Σ(G3) ∪ Σ(G) , (2.3)

therefore, from Theorem 3, if φ is a singular point of Mc

φ ∈Mc −Σ(GP ) = Σ(G5) ∪ Σ(G4) . (2.4)

Theories with a QMMS flow among themselves, and have trivial GP . The following theorem

shows that any sequence of Higgs flows from the QMMS theory [G, ρ] to the trivial theory

[1, singlets] has the form [G, ρ]→ · · · → [SU(2), 4 +singlets]→ [1, singlets]. Surprisingly,

this fact will turn out to be relevant to the computation of topological invariants of the

quantum modified moduli spaces M of these theories.
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Theorem 2. If [G, ρ] is a theory with a QMMS and [G′, ρ′] is a subprincipal stratum, then

G′ = SU(2) and ρ′ = 4 + sI.

By definition of subprincipal stratum, [G′, ρ′] can only flow to a trivial theory by Higgs

mechanism. Since [G′, ρ′] is a QMMS theory, the theorem can be re-stated as follows:

if every non zero D-flat point of the QMMS theory [G′, ρ′] completely breaks G′, then

G′ = SU(2) and ρ′ = 4 +sI. Note that every non zero D-flat point of [SU(2), 4 +sI] does
break SU(2) completely. Note also that G′ cannot contain U(1) factors, it must either be

simple or semisimple. We will consider separately both cases.

If G′ is simple, then [G′, ρ′] is among the QMMS theories listed in [5, 6]. With the

exception of [SU(2), 4 ], which can only flow to a trivial theory, every one of these theories

flows by Higgs mechanism to another QMMS theory, with a simple or semisimple gauge

group (most of the flows involving SU and Sp theories are given in [5], we have calculated

the remaining ones.) This means that the only theory based on a simple gauge group that

can be a subprincipal stratum of a larger theory is [SU(2), 4 + sI].
Assume now that G′ is semisimple, and for simplicity, that it contains only two simple

factors G′ = G(1) × G(2) (our arguments generalize easily to the case where G′ contains

more factors.) Let

ρ′ =
∑

iα

ciα(ρ
(1)
i , ρ(2)α ) (2.5)

be the decomposition of ρ′ into irreducible representations (irreps), ρ
(1)
i a set of irreps of

G(1), ρ
(2)
α irreps of G(2). As a G(1) SYM theory, [G(1) ×G(2), ρ

′] has matter content

ρ(1) =
∑

i

(

∑

α

ciαdα

)

ρ
(1)
i , dα = dim (ρ(2)α ) . (2.6)

The theory [G(1), ρ
(1)] satisfies the index constraint µ = µadj and does not flow to a U(1)

gauge theory, then it is a QMMS theory based on a simple gauge group, and so is listed

in [5, 6]. We will call this theory the G(1) projection of (2.5).

An inspection of the tables in [5, 6] shows that, with the exception of [Sp(2n), (2n+2) ]

and [SU(2), 4 ], all QMMS theories are of the form [G,
∑

i fiρi] with fi ≤ dim ρi ≡ di, i.e.,

the number of flavors of an irrep is less that or equal to its dimension. For later use, we

have gathered in table 1 below all theories having an fi ≥ di−2. If we assume a semisimple

subprincipal stratum such that neither the G(1) projection nor the G(2) projection of (2.5)

gives [Sp(2n), (2n + 2) ] or [SU(2), 4 ], then the number of flavors of a given irrep in a

projection never exceeds its dimension, and, according to (2.6), if ciα 6= 0 it must be

fi ≥ dα ≥ fα

and also

fα ≥ di ≥ fi .

This implies

fi ≤ di ≤ fα ≤ dα ≤ fi (2.7)
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Theories having an irrep ρi with fi = di + 2

1 Sp(2n) (2n+ 2)

2 SU(2) 4

Theories having an irrep ρi with fi = di

3 SU(N) N( + ¯)

4 Sp(4) + 4

Theories having an irrep ρi with fi = di − 1

5 SU(N) + (N − 1)¯ + 3 , N > 4

6 SU(4) + 3¯ + 3

Theories having an irrep ρi with fi = di − 2

7 SU(5) + 4¯ + 3

8 SU(4) 2 + 2( + ¯)

9 SU(5) 2 + + 3¯

10 SU(6) 2 + 4¯

11 Sp(6) + 4

12 Sp(4) 2 + 2

Table 1: Theories with a QMMS with fi ≥ di − 2 flavors of matter in an irrep ρi of dimension di

and so all these numbers must be equal, meaning that the projections of (2.5) must be

among entries 3 and 4 of table 1. This leaves us with the following possibilities:

SU(N)× SU(N) ( , ) + (¯, ¯)

( , ¯) + (¯, )

( , ) +N(¯, 1) +N(1, ¯)

SU(4)× Sp(4) ( , ) +
(

1,
)

+ 4(¯ , 1)

Sp(4)× Sp(4) ( , ) +
(

, 1
)

+
(

1,
)

(2.8)

Theories containing an SP (4) factor above flow to a QMMS theory with a semisimple gauge

group by a vev 〈(1, )〉, [SU(N)× SU(N), ( , ) +N(¯, 1) +N(1, ¯)] flows to SQCD by a

vev 〈N(1, ¯)〉, [SU(N)×SU(N), ( , )+(¯, ¯)] flows to a diagonal SU(N) by a vev 〈( , )〉,

and also [SU(N) × SU(N), ( , ¯) + (¯, )] flows to a diagonal SQCD. Thus, none of the

theories (2.8) can be subprincipal. We conclude that the only possibility for a semisimple

subprincipal stratum is that one of the projections, say G(1), be either [Sp(2n), (2n+ 2) ]

or [SU(2), 4 ]. A reasoning similar to that leading to eq. (2.7) shows that if this is the case

then the G(2) projection must contain an irrep ρα with a number of flavors fα ≥ dα − 2.

All such theories, obtained by inspection of the tables in [5, 6], are listed in table 1. It

is a tedious but straightforward exercise to check that every one of the 24 combinations

(i, j), i = 1, 2 and j = 1 − 12 flows to a nontrivial theory by Higgs mechanism, therefore

none of them can be subprincipal.

The reader may think that this theorem implies that the classical moduli space of a

QMMS theory has a single subprincipal stratum. This is not correct, a theory may have

many [SU(2), + singlets] strata. This happens when different D-flat points break the

gauge group to non conjugated SU(2) subgroups.
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As an example, consider the covariant QMMS theory [SU(4), 3 + + ¯] [5]. The

D-flat point

A1 = A2 = 0 A3 =











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











, Q =











0

0

0

1











, Q̄ =
(

0 0 0 1
)

(2.9)

breaks SU(4) to its subgroup

SU(2)1 =

{(

g 0

0 1

)

, g ∈ SU(2)

}

(2.10)

whereas the D-flat point Q = 0, Q̄ = 0 and

A1 =











0 −1 0 0

1 0 0 0

0 0 0 −2

0 0 2 0











, A2 =











0 −2 0 0

2 0 0 0

0 0 0 −1

0 0 1 0











, A3 =











0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0











, (2.11)

breaks it down to the diagonal

SU(2)2 =

{(

g 0

0 g−1

)

, g ∈ SU(2)

}

. (2.12)

The easiest way to see that these two SU(2) subgroups are not conjugated is to notice

that the eigenvalues of an element of SU(2)1 are (eiα, e−iα, 1, 1) whereas those of an SU(2)2
element are (eiα, e−iα, eiα, e−iα). This theory has seven strata, ordered according to the

diagram:
Sp(4) − SU(2)× SU(2) − SU(2)2

Á Â Â
SU(4) − SU(3) SU(2)1 − 1

(2.13)

The possible Higgs flows are:

[

SU(4), 3 + + ¯
] 〈 +¯ 〉
−→ [SU(3), 3( + ¯) + I] 〈 +¯ 〉

−→ [SU(2)1, 4 + 6I] 〈 〉
−→ [1, 11I] ,

[SU(4), 3 + + ¯]
〈 〉
−→ [Sp(4), 2 + 2 + 3I]

〈 〉
−→ [SU(2)× SU(2), ( , ) + 2( , I) + 2(I, ) + 5I]
〈( , )〉
−→ [SU(2)2, 4 + 6I] 〈 〉

−→ [1, 11I] , and (2.14)

[SU(4), 3 + + ¯]
〈 〉
−→ [Sp(4), 2 + 2 + 3I]

〈 〉
−→ [SU(2)× SU(2), ( , ) + 2( , I) + 2(I, ) + 5I]
〈2(I, )〉
−→ [SU(2)1, 4 + 6I]
〈 〉
−→ [1, 11I]. (2.15)

We will come back to this example in section 4.
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3. Computing πj(MSQCD) in three different ways

Supersymmetric SQCD with N colors and flavors is the best known example of a theory

with a QMMS. The elementary fields are the quarks Qiα and Q̄jβ, the basic invariants are

the mesons M i
j = QiαQ̄jα and baryons B = det Q, B̄ = det Q̄. These are subjected to the

constraint

detM− BB̄ = 0 , (3.1)

which is quantum modified to [3, 4]

detM− BB̄ = Λ2N . (3.2)

In the particular case N = 2, (3.2) can be re written [7]

~z · ~z =

6
∑

i=1

zi
2 = Λ4 , (3.3)

where the components zi of the SO(6) vector ~z are linearly related to (M,B, B̄). As

mentioned in the introduction, in this case the flavor group gets enlarged to SU(4) ∼

SO(6). This group acts transitively on the QMMS, which can therefore be regarded as

SO(6,C)/SO(5,C) = (SU(4)/Sp(4))c. All this observations, made in [7], imply that, in the

case N = 2, M is homotopically equivalent to S5, as explicitely shown by the deformation

retraction (here ~z ∈ C6 is written as ~z = ~x+ i~y):

φ(~x+ i~y, s) =

√

Λ4 + s2~y · ~y

Λ4 + ~y · ~y
~x+ i s~y, 0 ≤ s ≤ 1 . (3.4)

Since the quantum modification removes the origin and smoothes the classical moduli

space, one may think, in view of Theorem 1, thatM might be some sort of deformation of

the principal stratum of Mc, and that we might obtain topological information of M by

looking at the principal stratum ofMc. Two color, two flavor SQCD is a good example to

show that this idea is wrong. The principal stratum of the classical moduli space of this

theory is defined by

~z · ~z =

6
∑

i=1

zi
2 = 0 , ~z 6= ~0 (3.5)

The deformation retraction

φ(z, s) =

[(

√

2

~z · ~z∗
− 1

)

s+ 1

]

z , 0 ≤ s ≤ 1 (3.6)

shows that the principal stratum is homotopically equivalent to the Stiefel manifold [17]

V(6,2) = {~x, ~y ∈ R6|~x · ~x = ~y · ~y = 1, ~x · ~y = 0} . (3.7)

This set has many different possible interpretations, two of which are: (i) ordered sets

(~x, ~y) of 2 orthonormal vectors in R6, (ii) bundle of unit tangent vectors of S5 (here ~y is

– 8 –
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regarded as a unit vector, tangent at ~x ∈ S5). Homotopy groups of Stiefel manifolds can

be found, e.g., in [18], the topology of V(6,2) is completely different to that of S5, there is

no relation between M and the principal stratum of Mc.

In the computation of the homotopy type of the moduli space (3.2) for N > 2 in [8],

new coordinates (B = B1 + iB2, B̄ = B1 − iB2) are introduced such that (3.2) gives

det M = Λ2N − B1
2 − B2

2, then it is shown that there is a retraction of this set onto

the one defined by the same equation but with real −ΛN ≤ Bi ≤ ΛN , i = 1, 2, which is

a double suspension of the set {M | det M = 1} = SL(N,C) ∼ SU(N). The homotopy

groups of M can then be obtained from those of SU(N) using Freudenthal’s suspension

theorem (∼ denotes same homotopy type, the definition of suspension and the statement

of Freudenthal’s theorem can be found in the appendix).

As mentioned in the introduction, this idea cannot be extrapolated to other QMMS,

because it strongly uses the form (3.2) of the SQCD constraint. An alternative approach

is to use the results by Oka in [19] about fibers of weighted homogeneous polynomials. A

weighted homogeneous polynomial (w.h.p.) p : Cn → C is one that satisfies an equation of

the form

p(zw1x1, . . . , z
wnxn) = zdp(x1, . . . , xn) (3.8)

for some positive integers wi called weights. Classical moduli spaces defined by a single

constraint are of the form p(x) = 0, with p(x) a w.h.p. The weight of xi is its mass

dimension, d being the mass dimension of p. These sets are contractible, therefore trivial.

This is easily seen from (3.8), if p(x1, . . . , xn) = 0 then p(zw1x1, . . . , z
wnxn) = 0. A

deformation retract ofMc to the point x = 0 is then given by (zw1x1, . . . , z
wnxn), z ∈ [0, 1].

If the classical moduli space p(x) = 0 gets quantum modified and p(x) is a flavor singlet,

the resulting invariant QMMS [5] is the set

p(x1, . . . , xn) = Λd . (3.9)

If, instead, p(x) transforms non trivially under a flavor U(1), we get a covariant type of

QMMS

p(x1, . . . , xn) = Λd−wnxn , (3.10)

where the U(1) charges of p and xn agree, and the invariants have been properly numbered.

The scale of the theory is irrelevant, the moduli spaces defined by Λ and Λ′ are made

diffeomorphic by the map xi → zwixi, z = Λ′/Λ.

The derivative of (3.8) with respect to z, at z = 1

s
∑

i=1

xiwi∂ip(x) = dp(x) (3.11)

shows that if x is a critical point of p (∂ip(x) = 0) then p(x) = 0. In particular, the fibers

(level sets) {x|p(x) = u}, u 6= 0 are smooth. Generically, the fiber over cero of a w.h.p.

contains singular points, these are the well known singularities ofMc. Oka’s theorem states

that if a w.h.p. splits into w.h.p’s on different sets of variables p(x) = q(y)+r(z), x = (y, z)

then,

{x|p(x) = 1} ∼ {y|q(y) = 1} ∗ {z|r(z) = 1} . (3.12)
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Figure 1: The join of Sn−1 with a two point set gives Sn.

Here A∗B means the join of the sets A and B (see the appendix and [23]) which is obtained

by taking the disjoint union of the two spaces and connecting every point in A to every

point in B by a line segment (joining sets is an associative and commutative operation).

The relation between the cohomology groups of A ∗ B to those of A and B is given, e.g.

in [20, 23]. Oka’s theorem is certainly well suited to study invariant QMMS’s, since they

are non singular fibers of w.h.p. As an example, consider the Nc = Nf = 2 SQCD moduli

space (3.3). Iterating Oka’s theorem we arrive at

M(N=2)SQCD ∼ {2 points} ∗ {2 points} ∗ {2 points} ∗ {2 points} ∗ {2 points} ∗ {2 points} .

(3.13)

Using the associative property of joins we compute first {1, 2} ∗ {a, b} ∼ S 1 (see figure 1a-

b), then ({1, 2} ∗ {a, b}) ∗ {N,S} ∼ S1 ∗ {N,S} ∼ S2 (figure 1.c-d). More generally, Sn−1 ∗

{N,S} ∼ Sn, withN and S the poles of Sn, and Sn−1 its equator. ThenM(N=2)SQCD ∼ S5

follows.

In the general caseNc = Nf ≥ 2, the w.h.p. that definesM, p(M,B, B̄) = det M−BB̄

is the sum of the polynomial on N 2 variables q(M) = det M , whose non singular fiber

{M | det M = 1} = SL(N,C) ∼ SU(N), and the polynomial in two variables r(B, B̄) =

BB̄, whose non zero fiber can be given as global coordinates B ∈ C − {0} ∼ S 1. We

conclude that

MSQCD ∼ SU(N) ∗ S1 = (SU(N) ∗ {2 points}) ∗ {2 points} . (3.14)

Since joining with a two point set gives the suspension (appendix), (3.14) is equivalent to

the result in [8] thatM∼ double suspension of SU(N). Back to the particular case N = 2,

we recover M∼ SU(2) ∗ S1 ∼ S3 ∗ S1 ∼ S5. In any case, (3.14) implies M is 4-connected

and has π5(M) = Z(= H5(M,Z)), in view of Hurewicz theorem in the appendix.

Although Oka’s theorem looks very well adapted to the problem at hand, there is a

problem: the only invariant QMMS defined by a polynomial constraint that can be usefully

separated in polynomials of different variables seems to be SQCD’s.

In a recent paper by Dimca and Paunescu [14], an alternative approach to study the

topology of hypersurfaces defined by complex polynomial equations is given. Their main

result is the following:
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Theorem 3 (Dimca, Paunescu). [14] Let f(x1, . . . , xn) be an arbitrary polynomial,

wi > 0 an arbitrary weight assignment to xi, f = fd+ fe+ . . . f0 the decomposition of f in

weighted homogeneous components of degrees d > e > · · · > 0. Let

S = {x ∈ Cn|∂ifd = 0, fe = 0} . (3.15)

Any fiber f(x) = c is q−connected, with q = n− 2− dimS

Let us see what this theorem says for SQCD with N colors and flavors, eq. (3.2).

Assigning the usual weights wM = 2, wB = wB̄ = N we get fd = det M − BB̄, fe = 0

and S = {(M,B, B̄) ∈ CN2+2|B = B̄ = 0, rank M ≤ N − 2}. We are interested in the

non singular fiber of a polynomial f in n = N 2 + 2 variables. S is the algebraic set of

N by N matrices of rank ≤ N − 2, its dimension is N 2 − 4 [15], then (3.15) says that

both MSQCD (and certainly McSQCD, which is another fiber of the same polynomial) is

N2 + 2 − 2 − (N 2 − 4) = 4 − connected. From Hurewicz theorem (appendix) we know

that H5(MSQCD,Z) ' π5(M). However Theorem 3 does not tell us what this group is

(had we obtained q = 5 then also H5 would be trivial and the theory would not admit

Wess-Zumino terms.) In the SQCD case, we know that Theorem 3 has given us the best

possible estimate for the connectedness of M, but this may not always happen. Note

the following subtlety [14], the theorem works for any (positive) weight assignment to

the xi’s, and a given weight assignment is likely to give better estimates than others if

it makes most monomials belong to fd (as happens with the natural weight assignment

in both types of QMMS constraints.) Back to SQCD, if instead of the natural weight

assignment given by the mass dimension of the operators we use wM = wB = wB̄ = 1,

then fd = det M,fe = BB̄, and S = {(M,B, B̄) ∈ CN2+2|BB̄ = 0, rank M ≤ N − 2}.

With this weight assignment we obtain dim S = N 2 − 3, then q = 3. Although it is

certainly correct that MSQCD is 3−connected, this is not the best estimate.

Although Theorem 3 gives only partial information about the topology of M, it has

the advantage that can be applied to any QMMS, since it does not make any assumptions

on the polynomial that defines M. This makes it very powerful, especially because there

is a way to estimate dim S, without even knowing the polynomial that defines it! This is

the subject of the next section.

4. Computing πj(M) for all hypersurface-like QMMS

Theorem 4. If M is a quantum modified moduli space defined by a single constraint

then M is 4-connected, i.e, it is connected and has trivial homotopy groups πj(M) for

j = 1, 2, 3, 4.

Proof. Consider first the invariant QMMS [5, 6]

M = {x ∈ Cn|p(x) = Λd} ⊂ Cn, (4.1)

n the number of basic invariants. If di is the mass dimension of xi and d the mass dimension

of p(x), then

p(zd1x1, z
d2x2, . . . , z

dkxk) = zdp(x1, x2, . . . , xk), (4.2)
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showing that p is a weighted homogeneous polynomial. The derivative of (4.2) with respect

to z at z = 1 gives
s
∑

i=1

xidi∂ip(x) = dp(x) . (4.3)

According to Theorem 3, the set (4.1) is q−connected, with

q = n− 2− dim(S) , (4.4)

S = {x ∈ Cn|∂ip(x) = 0} . (4.5)

From equation (4.2) follows that ∂ip(x) = 0 implies p(x) = 0, then x ∈ Mc. Moreover, x

is a singular point of Mc, since ∂ip(x) = 0. According to Theorem 1.3 x lies outside the

principal stratum, or, equivalently, in the union of the closures of the subprincipal strata,

since this set contains all non-principal strata (see Theorem 1.2 and the example given in

eqns. (2.2), (2.3) and (2.4)). Thus, the dimension of S is smaller than or equal to that of

the highest dimensional subprincipal stratum. Theorem 2 says that the only possible kind

of subprincipal stratum is [SU(2), 4 + sI]. We conclude that

dim S ≤ dimΣ(SU(2)) . (4.6)

The dimension of the SU(2) strata is given by the number s of singlets (Theorem 1). If

φ ∈ Ck is a D-flat point that breaks G to SU(2), then Ck splits into the SU(2) invariant

subspaces Lie(G)φ⊕4 ⊕s singlets. Since the dimension of the Gφ orbit is dim Lie(G)φ =

dim G− dimSU(2) = dimG− 3, it follows that

dimΣ(SU(2)) = s = k − dimLie(G)φ − dim 4

= k − dim G− 5

= dimMc − 5

= n− 6 (4.7)

From (4.4), (4.6) and (4.7)

q = n− 2− dim S ≥ n− 2− dimΣ(SU(2)) = 4 , (4.8)

from where we conclude M is 4-connected.

Consider now the covariant QMMS

M = {x ∈ Cn|p(x)− Λd−dnxn = 0} ⊂ Cn . (4.9)

In this case (4.5) has to be replaced with

S = {x ∈ Cn|∂ip(x) = 0 and xn = 0} (4.10)

which is the set of critical points of the classical moduli space with xn = 0. Once again,
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this set is included in the SU(2) strata, and (4.8) follows. At first sight, the extra condition

xn = 0 may suggest that we could get a better by one estimate of the dimension of S. This

would imply the 5−connectedness of the covariant QMMS, and, in view of of Hurewicz the-

orem, that these theories do not admit Wess-Zumino-Witten terms. However, this analysis

is wrong. Computing the dimension of an algebraic set like S in Theorem 3 is a subtle issue

(see, e.g., [16]). The algebraic set S decomposes into irreducible components, S = S1∪S2∪

· · · ∪Sp (Sj irreducible means that it is not the proper union of two algebraic sets), the di-

mension of S being the maximum dimension of an irreducible component. In an irreducible

set X, the dimension of the tangent space may change from point to point, the dimension of

X is the minimal dimension of a tangent space. As an example, consider again the covariant

QMMS theory [SU(4), 3 + + ¯] from the end of section 2. The basic invariants are [5]

M = QαQ̄α , Bi = Ajαα1Akα2α3Qα4Q̄αεα1α2α3α4
εijk ,

P = Aiαα1Ajβα2Q̄αQ̄βA
kα3α4εα1α2α3α4

εijk ,

Sij = Aiα1α2Ajα3α4εα1α2α3α4
,

R = Aiα1α2Ajα3β1Akβ2β3Qα4Qβ4εα1α2α3α4
εβ1β2β3β4

εijk . (4.11)

The classical constraints is [5]

p(M,B, S, P,R) ≡M 2detS + c1S
ijBiBj + c2PR = 0 , (4.12)

with c1 and c2 nonzero constants. The QMMS is defined by

M2detS + c1S
ijBiBj + c2PR = Λ8M . (4.13)

The set Σ of critical points of p(M,B, S, P,R) has two irreducible components, defined by

Σ1 : (M,B, S, P,R) such that



























detS = 0

M2 cof (S)ij + c1BiBj = 0

SijBj = 0

P = R = 0

(4.14)

Σ2 : (M,B, S, P,R) such that



























M = 0

M2 cof (S)ij + c1BiBj = 0

SijBj = 0

P = R = 0 .

(4.15)

The set S in Theorem 3 is S = {(M,B, S, P,R) ∈ Σ|M = 0} = Σ2. Note that (4.15)

is equivalent to M = Bi = P = R = 0, Sij an arbitrary (symmetric) tensor, so Σ2 has

dimension six. In (4.14), Sij and M determine Bi from the second equation, which satisfies

the third equation. So we can freely choose a symmetric, singular S ij andM , meaning that

dim Σ1 also equals six. From Theorem 3M is q−connected with q = 12− 2− dim S = 4.

The extra condition, M = 0 does not make dim S < dim Σ, instead, it projects onto one of

the two six dimensional irreducible components of the set Σ of singular points of Mc. As
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a result, the estimate from Theorem 3 is that M is 4−connected, not 5−connected as one

might have first thought. Note from (2.9), (2.11), (4.14) and (4.15) that Σi = Σ(SU(2)i), i =

1, 2, the fact that there are two irreducible components of Σ is related to the fact that there

are two SU(2) strata in this theory. Although this example shows that Theorem 4 gives the

best possible estimate for the connectedness of M, the possibility of having a 5-connected

QMMS is not ruled out. It may well happen that the extra condition xn = 0 in (4.10)

does lower the dimension of S for a particular covariant QMMS. Also, since the converse of

Theorem 1.3 is not true, i.e., smooth points with enhanced gauge symmetry can be found

in Mc [2], it is possible to have a strict inequality in (4.6), then also in (4.8). Thus, even

invariant QMMS may be 5−connected. Since this requires a case by case verification, we

have applied Theorem 3 to a sample of QMMS defined by a single constraint, available in the

literature. All cases turned out to be 4−connected with the exception of the theory SU(6)

with + +2¯, which, according to Theorem 3 and the constraint equation given in [5], has

a 5−connected quantum moduli space, and therefore a trivial H5 (note that no WZ term

is required to match anomalies for a broken SU(2) flavor group). We have verified that the

13 invariants given in eqns (A.22)–(A.30) in [5] for this theory is a complete set of basic

invariants up to degree seven, and that the constraint equation in [5] (with minor irrelevant

changes in some coefficients) reduces to a classical constraint, and defines a smooth twelve

dimensional variety 1. SU(6) with + +2¯ is then an example of a theory with a QMMS

that does not support Wess-Zumino terms, in spite of flowing, as every other QMMS theory

does, to SU(2) with 4 , a theory with Wess-Zumino terms in its effective action.

5. Conclusions

The stratification of the classical moduli spaceMc of a supersymmetric gauge theory with

a quantum modified moduli space M plays an unexpected role in the determination of

relevant topological aspects of M. In particular, the fact that these theories have an

[SU(2), 4 ] stratum implies that M is connected, simply connected, and also has trivial

πj(M) for j = 2, 3, 4. As a consequence, M does not support vortexes or skyrmions, these

configuration can “unwind” because π2(M) and π3(M) are trivial. A trivial π4(M) is one

of the necessary conditions to construct a Wess-Zumino-Witten functional onM, the other

requirement being a non trivial H5(M), or, equivalently (in view of Hurewickz theorem),

a non trivial π5(M). Testing this last condition seems to require a case by case analysis,

together with the application of new approaches that we are currently developing.
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1We have not ruled out the possibility of having basic (i.e., algebraically independent from those of lower

degree) invariants of higher degree. These should come together with additional constraints, to ensure the

condition dim Mc = 12.
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A. Selected algebraic topology facts

πo(X) is defined to be the set of path connected components of X [21, pp. 206-], it does not

have a group structure. X is said to be n−connected if πj(X) is trivial for j = 0, 1, . . . , n.

Hurewicz theorem: [21, p. 225] Let X be a simply connected, path connected CW

complex. Then the first non trivial homotopy and homology occur in the same dimension

and are equal, i.e., given a positive integer n ≥ 2, if πq(X) = 0 for 1 ≤ q < n, then

Hq(X) = 0 for 1 ≤ q < n and Hn(X) = πn(X).

Every manifold has the homotopy type of a CW complex ([21, p. 220], [22, p. 36]), also

Hq and Hq are isomorphic groups, then we can re-state Hurewicz theorem as follows: if a

manifold X is (n− 1) connected then H q(X) is trivial if q < n, whereas Hn(X) = πn(X).

Join: ([23, p. 334]) Given two topological spaces X and Y , their join, denoted by

X ∗ Y, is defined to be the quotient space

X ∗ Y := X × [0, 1] × Y/ ∼ ,

where the equivalence relation ∼ is generated by

(x, 0, y1) ∼ (x, 0, y2) for any x ∈ X, y1, y2 ∈ Y, and

(x1, 1, y) ∼ (x2, 1, y) for any y ∈ Y, x1, x2 ∈ X.

Intuitively, X ∗ Y is formed by taking the disjoint union of the two spaces and attaching a

line segment joining every point in X to every point in Y.

Suspension: Given a topological space X, the suspension of X, often denoted by SX,

is defined to be the quotient space X × [0, 1]/ ∼, where (x, 0) ∼ (y, 0) and (x, 1) ∼ (y, 1)

for any x, y ∈ X. Note that SX is homeomorphic to the join X ∗S0, where S0 is a discrete

space with two points, so X ∗ S0 can be taken as an alternative definition of SX.

Freudenthal’s suspension theorem: if X is (n − 1)−connected, πq(X) '

πq+1(SX) for q ≤ 2n−2 and also there is an onto homomorphism h : π2n−1(X)→ π2n(SX)

[23, p. 145 and p. 135].
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