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Abstract
We analyse the tensor mode perturbations of static, spherically symmetric
solutions of the Einstein equations with a quadratic Gauss–Bonnet term in
dimension D > 4. We show that the evolution equations for this type of
perturbation can be cast in a Regge–Wheeler–Zerilli form, and obtain the exact
potential for the corresponding Schrödinger-like stability equation. As an
immediate application we prove that for D �= 6 and α > 0, the sign choice
for the Gauss–Bonnet coefficient suggested by string theory, all positive mass
black holes of this type are stable. In the exceptional case D = 6, we find a
range of parameters where positive mass asymptotically flat black holes, with
regular horizon, are unstable. This feature is found also in general for α < 0.

PACS numbers: 04.50.+h, 04.20.−q, 04.70.−s

1. Introduction

Alternative gravity theories in higher dimensions have been attracting considerable attention,
particularly the Einstein–Gauss–Bonnet (EGB) theory, which emerges as the low-energy limit
of string theory. The EGB Lagrangian is a linear combination of Euler densities continued from
lower dimensions. It gives equations involving up to second-order derivatives of the metric,
and has the same degrees of freedom as ordinary Einstein theory. A particular choice of the
coefficients in front of the Euler densities gives theories where the local Lorentz symmetry is
enlarged to a local (A)dS symmetry [1, 2]. Interesting solutions to the EGB equations, many
of them relevant to the development of the AdS–CFT correspondence [3], include a variety
of black holes in asymptotically Euclidean or (A)dS spacetimes. These solutions could be
found mostly because they are highly symmetric. Analysing their linear stability, however,
confronts us with the high complexity of the EGB equations, since the perturbative terms break
the simplifying symmetries of the background metric. In this letter we report on the stability
of spherically symmetric, static solutions of the quadratic EGB theory. These are preliminary
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results of ongoing work on the stability of EGB black holes with arbitrary constant curvature
manifolds as horizons [4].

2. Tensor perturbations of spherically symmetric EGB spacetimes

The lowest order Einstein–Gauss–Bonnet (EGB) vacuum equations are

0 = Gb
a ≡ �G(0)b

a + G(1)b
a + αG(2)b

a. (1)

Here � is the cosmological constant, G(0)ab = gab the spacetime metric, G(1)ab = Rab− 1
2Rgab

the Einstein tensor and

G(2)b
a = Rcb

deRde
ca − 2Rd

cRcb
da − 2Rb

cRc
a + RRb

a − 1
4δa

b

(
Rcd

ef Ref
cd − 4Rc

dRd
c + R2

)
(2)

the quadratic Gauss–Bonnet tensor. These are the first in a tower G(s)b
a, s = 0, 1, 2, 3, . . . of

tensors of order s in Rab
cd constructed by Lovelock [5]. As shown in [5], the most general

rank two, divergence free symmetric tensor that can be constructed out of the metric and its
first two derivatives in a spacetime of dimension d, is a linear combination of the G(s)b

a with
2s � d [5]. Here we consider the spherically symmetric case, a spacetime of dimension
D = n + 2 with metric

ds2 = −f (r) dt2 +
1

f (r)
dr2 + r2ḡij dxi dxj , (3)

where ḡij dxi dxj is the line element of the unit n-dimensional sphere Sn. We use indices
i, j, k, l,m, . . . and a bar for tensors and operators on Sn, whereas a, b, c, d, . . . are generic
indices. The nonzero components of the Riemann tensor of the metric (3) are

Rtr
tr = −f ′′

2
, Rit

j t = Rir
jr = −f ′

2r
δ

j

i , Rij
kl =

(
1 − f

r2

) (
δk
i δ

l
j − δk

j δ
l
i

)
. (4)

Inserting (4) in (1) we find that (3) solves the EGB equation if

f (r) = 1 − r2ψ(r), (5)

and ψ(r) satisfies [6]

αn(n − 1)(n − 2)

4
ψ(r)2 +

n

2
ψ(r) − �

n + 1
= µ

rn+1
. (6)

We consider tensor perturbations around (3)

gab → gab + hab, (7)

which satisfy hab = 0 unless (a, b) = (i, j). Tensor perturbations are believed to be the only
potentially unstable modes in ordinary Einstein theory [7]. We choose the gauge where hab

is transverse traceless. This is easily seen to imply that the restriction of hab to the sphere is
transverse traceless, and so can be expanded using a basis of eigentensors of the Laplacian
[8]. Thus, we need only consider the case

hij (t, r, x) = r2φ(r, t)h̄ij (x) (8)

where

∇̄k∇̄kh̄ij = γ h̄ij , ∇̄ i h̄ij = 0, ḡij h̄ij = 0. (9)

Solutions to equations (9) are worked out in [8], where it is shown that the spectrum of
eigenvalues is γ = −l(l + n − 1) + 2, l = 2, 3, 4, . . . . The components of the first-order
variations δG(s)b

a, s = 0, 1, 2 under (8) are trivial unless (a, b) = (i, j). After a long
calculation the (i, j) components are found to be
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δG(0)i
j = 0 (10)

δG(1)i
j = δRi
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nf
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and
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2r2f

)
[−rf ′ + (n − 3)(1 − f )] + φ′

(
n − 2

2r3
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× [(n − 3)((n − 2)(f 2 − f ) − rf ′) + r2(f ′2 + f ′′f ) + (3n − 7)rf ′f ]

+ φ

(
γ − 2

2r4

)
[r2f ′′ + 2(n − 3)rf ′ + (n − 3)(n − 4)(f − 1)]

}
h̄i

j . (12)

Setting φ(r, t) = eωtχ(r) the linearized EGB equations

δG(1)a
b + αδG(2)a

b = 0 (13)

around the metric (3) reduce to a second-order ODE for χ(r). By further introducing,

	(r) = χ(r)K(r) (14)

with,

K(r) = rn/2−1

√
r2 + α(n − 2)

(
(n − 3)(1 − f ) − r

df

dr

)
(15)

and switching to ‘tortoise’ coordinate r∗, defined by dr∗/dr = 1/f , this ODE can be cast in
the Schrödinger form

− d2	

dr∗2
+ V (r(r∗))	 = −ω2	 ≡ E	. (16)

The solutions will therefore be stable if (16) has no negative eigenvalues. On the other
hand, a negative eigenvalue (E < 0) signals the possibility of an instability that requires
also consideration of the normalization of the corresponding eigenfunctions (see, e.g., [7] for
details).

The explicit form of the potential V (r) as a function of r and the parameters of the theory
is rather lengthy. We note however that if we introduce the function,

q =
(

f (2 − γ )

r2

) (
(1 − αf ′′)r2 + α(n − 3)[(n − 4)(1 − f ) − 2rf ′]

r2 + α(n − 2)[(n − 3)(1 − f ) − rf ′]

)
(17)

the potential is given by,

V (r) = q(r) +

(
f

d

dr
ln(K)

)2

+ f
d

dr

(
f

d

dr
ln(K)

)
. (18)

Equations (14)–(18) are the main result of this paper, (18) being the exact potential of
the Schrödinger-like stability equation for spherically symmetric EGB blackholes of arbitrary
mass and cosmological constant. Clearly, it can be applied to the cosmological solutions of
the EGB equations that result by setting µ = 0. Moreover, our results are readily seen to
reproduce those in [7] in the α = 0 (Einstein gravity) limit, which was also extensively studied
by Kodama and Kodama and Ishibashi (see, e.g., [9] and references therein), as well as the
restricted cases studied in [10] and [11]. In what follows, as an application of the formalism,
we analyse briefly the case � = 0 for general n, and also the n = 3 and n = 4 BTZ black holes
[2]. The general case will be considered in a more extended version of this letter, currently in
preparation [4].



L4 Letter to the Editor

3. Stability of Einstein–Gauss–Bonnet black holes

We recall that for � = 0, on account of (5) and (6), for asymptotically flat Einstein–Gauss–
Bonnet black holes with regular horizon f (r) takes the form [6]

f (r) = 1 +
r2

(n − 1)(n − 2)α

[
1 −

√
1 +

4(n − 1)(n − 2)αµ

nrn+1

]
(19)

where µ > 0 corresponds to positive mass. We consider first α > 0 which is the relevant case
for string motivated theories. Then, for any µ > 0, there is a regular horizon at r = rH , and
f (r) grows monotonically from zero to one as r grows from rH to infinity. From (19),

µ = n
[
α(n − 1)(n − 2) + 2r2

H

]
r

(n−3)
H . (20)

Going back to (16), a sufficient criterion for stability is that V (r) is positive for r > rH .
If we consider (18), we note that the second term on the RHS is positive definite in all cases,
while a long computation shows that the first and third terms are also positive definite for
r > rH , for n = 3 and all n > 4, so all these cases are stable under tensor perturbations. The
n = 4 case is exceptional. Here we note that, since V (r(r∗)) is bounded in −∞ < r∗ < +∞,
with V (r(r∗)) → 0 for r∗ → ±∞, a sufficient condition for the existence of a bound state of
negative energy is [12],∫ +∞

−∞
V (r(r∗)) dr∗ < 0. (21)

This can be written as an integral over r,∫ +∞

rH

(V (r)/f (r)) dr < 0. (22)

The second term on the right-hand side in (18), divided by f , is positive, while the third,
divided by f (r), is a total derivative in r, and gives a vanishing contribution on account of its
behaviour for r → rH and r → +∞, as is easily seen from (15). The ‘dangerous’ contribution
comes then from q(r)/f (r). In fact, since q(r) contains the (positive) factor (2 − γ ), which
can be arbitrarily large for spherical horizons, while the other terms in (18) are independent
of γ , the condition,∫ +∞

rH

q(r)/((2 − γ )f (r)) dr < 0 (23)

implies that (21) will be satisfied for a sufficiently large γ . Note that α has dimension r2 and
that for n = 4, µ has dimension r3. Introducing z ≡ µα−3/2 in (20) we find

rH =
√

α

2

[(
2z + 2

√
16 + z2

)2/3 − 4(
2z + 2

√
16 + z2

)1/3

]
(24)

so that rH → 0+ as z → 0+ (µ → 0+). Setting n = 4 in (17) and defining x ≡ r(µα)−1/5

gives

q

(2 − γ )f
= (µα)−2/5

[
2(x5 + 6)2 − 75

2x2(x5 + 6)(x5 + 1)

]
. (25)

The integral in (23) can be given in closed form using (25), but the expression is too long
and difficult to handle. We may however show that the integral in (23) is negative if we first
change variables to u = 1/x∫ +∞

rH

q(r)

(2 − γ )f (r)
dr = 1

(µα)1/5

∫ 1/xH

0

[
2(1 + 6u5)2 − 75u10

2(1 + 6u5)(1 + u5)

]
du, (26)
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Figure 1. The potential V (r(r∗)) as a function of r∗. Part (a) corresponds to µ = 0.4, α = 1,
while for part (b) we have taken µ = 8, α = 1. The values of the integral in (21) are −9.008 . . .

for part (a), and +10.39 . . . for part (b).

and then note from (24) that xH 	 µ4/5α−6/5/12 for µ � 0, which implies that the upper
limit of the RHS integral above tends to infinity as µ → 0+. Since the integrand stabilizes in
−1/4 for large u, the integral is certainly negative for sufficiently small µ. To illustrate this
point we display in figure 1 the potential V (r(r∗)) as a function of r∗ for two α = 1 cases.
Figure 1(a) shows the potential corresponding to a small µ case where (21) holds, whereas
figure 1(b) shows the potential of a large µ solution. This is positive definite and therefore
does not allow bound states.

In closing this section we remark that, in spacetime dimensions D = 5 and D = 6, EGB
black holes with a cosmological constant contain as particular cases the corresponding BTZ
black holes [2]. In the notation of this letter and that of [2] we have,

α = 
2/2, � = −3/
2, µ = 3
2(M + 1)/4, (for D = 5)

α = 
2/6, � = −5/
2, µ = 2
2M, (for D = 6).
(27)

Interestingly, we find that all D = 5 solutions are stable, while all solutions are unstable
for D = 6. We recall that these cases were actually excluded in the analysis in [2], on
considerations based on cosmic censorship.

4. Comments and conclusions

Summarizing the results reported in this letter, we have found an explicit form for the
Schrödinger-like equation governing the evolution of linear tensor perturbations of static
spherically symmetric solutions of EGB vacuum equations. As a first application we proved
the stability of (asymptotically flat) EGB black holes with positive mass and coupling constant
α, in dimension D = n + 2, for n = 3, and n > 4. In the case n = 4 we found the unexpected
result that the EGB black holes are stable only for sufficiently large mass. The nature of the
instability of the small mass black holes is an intriguing question, outside the scope of the
present work (a thermodynamic instability of some asymptotically (A)dS EGB black holes
was also found in [13]). Preliminary results indicate that in the α < 0 case, for all n � 3 there
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are solutions that represent static black holes with regular horizons, that are, however, unstable
under tensor perturbations. The results obtained in this letter are straightforwardly extended
to black holes with non-positive constant curvature horizons, as those studied in [14]. These
are currently being analysed together with other black holes having more general manifolds
as horizons.
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