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Plane fronted gravitational waves in Lovelock-Yang-Mills theory
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We obtain plane fronted gravitational waves (PFGWs) in arbitrary dimension in Lovelock gravity, to
any order in the Riemann tensor. We exhibit pure gravity as well as Lovelock-Yang-Mills PFGWs.
Lovelock-Maxwell and pp waves arise as particular cases. The electrovac solutions trivially satisfy the
Lovelock-Born-Infeld field equations. The peculiarities that arise in degenerate Lovelock theories are also
analyzed.
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I. INTRODUCTION

The classical field equation for the space-time metric in
string theory is the condition of conformal invariance of a
two-dimensional �model. It involves higher order terms in
the curvature, which are expected to play a significant role
in regions around singularities. As was shown by Lovelock
in the early seventies [1], the possible corrections to
Einstein gravity are quite limited, since the only symmet-
ric, divergence free tensor than can be constructed out of
the metric and its first two derivatives in a d-dimensional
space-time is

G a
b �

X��d�1�=2�

p�0

�pG�p�b
a; (1)

where the�p’s are arbitrary constants andG
�p�b

a is a tensor
of order p in the curvature, given by,

G
�p�b

a � 

�b
aRi1i2

i1i2Ri3i4
i3i4 � � �Ri2p�1i2p�

i2p�1i2p : (2)

In (2) an implicit sum over repeated indices is understood
after antisymmetrization (which includes a 1=�2p	 1�!
normalization factor). G�0�ab; G�1�ab and G�2�ab are, respec-
tively, proportional to the space-time metric gab, the
Einstein tensor Rab �

1
2Rgab, and the Gauss-Bonnet ten-

sor,

G
�2�b

a / Rcb
deRde

ca � 2Rd
cRcb

da � 2Rb
cRc

a 	 RRb
a

�
1

4

ab�Rcd

efRef
cd � 4RcdRd

c 	 R2� (3)

The field equations are

G b
a � 8�Tab; (4)

where Tab is the stress-energy tensor. Einstein gravity
(with a cosmological constant �o) is recovered if we set
�p � 0 for p > 1. The p > 1 terms appear naturally as
higher order corrections in string theory [2]. Stringy cor-
rections higher than quadratic in the Riemann tensor are
considered in [3], and the role of the quartic Lovelock term
address: gdotti@fis.uncor.edu
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in M-theory is discussed in [4]. A BRST approach to
Lovelock gravity can be found in [5], where it is also
shown that adding terms involving covariant derivatives
of the Riemann tensor to the Lovelock action does not
change the linearized equations around a Minkowskian
background. In this paper we find all PFGW solutions of
Lovelock gravity coupled to a (possibly trivial) source free
Yang-Mills field with gauge group G. As particular cases
we get electrovac (G � U�1�) and ppwaves. The latter are
of current interest in string theory because it is possible to
obtain the string spectrum of a string moving in a pp�
wave background (see, e.g., [6] and references therein).
Our electrovac solutions trivially satisfy the Lovelock-
Born-Infeld field equations. The PFGW equations for
Lovelock-Yang-Mills theory are worked out in Sec. II of
the paper and solved in Sec. III for the case of flat wave
fronts, and in Sec. IV for wave fronts with a nonzero
curvature. As far as we know, this is the first calculation
of PFGWs in Lovelock gravity to any order. Yet, some
previously known results arise as specific limits of ours,
mainly, the higher dimensional Einstein gravity PFGWs
given in [7]. There is also some intersection with our work
in [8], where a restricted class of plane wave solutions of
Einstein equations is shown to satisfy (4) simply because
all p > 1 terms in (4) are trivial. The solutions we exhibit
in this work have G

�p�b
a � 0 for all p. A -by no means

exhaustive- list of further related work includes the grav-
itons in [9], the Einstein-Yang-Mills solutions in [10,11],
the Lovelock-Born-Infeld black holes constructed in
[12,13], and the higher dimensional pp waves studied in,
e.g., [14].

II. PFGWS IN LOVELOCK-YANG-MILLS THEORY

As defined in [15], a PFGW is an n	 2 dimensional
space-time with a congruence of null geodesics which is
shear, expansion and twist free. The associated null vector
field ka is orthogonal to n� dimensional spacelike sur-
faces of constant curvature, and there is a—possibly
trivial—Yang-Mills field for which these surfaces are the
wave fronts, and ka the wave vector. As was shown in
[15,16] and generalized to n > 2 in [7], such a space-time
admits local coordinates where the line element reads
-1  2005 The American Physical Society
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ds2 � �2d��Sd�	 d��
�
Q
P

�
2
	

1

P2

Xn
i�1

�dzi�2: (5)

Here ka � @=@�, the wave fronts are the surfaces of con-
stant �, and

P�z� � 1	
 
4

Xn
i�1

�zi�2 (6)

Q��; z� �

 
1�

 
4

Xn
i�1

�zi�2
!
���� 	

Xn
i�1

zi!i��� (7)

S��; �; z� � �
�2

2

"
 ����2 	

Xn
i�1

�!i����2
#
	 �

@�Q
Q

	
PN=2

2Q
H��; z�: (8)

The wave fronts are of constant curvature, namely, the
Riemann tensor corresponding to the n-dimensional metric
ds2

�wf� � P�2Pn
i�1�dz

i�2 satisfies,

R
�wf�ij

k‘ �  �
i
k
j

‘ � 
j
k
i

‘�; (9)

and the scalar curvature is,

R�wf� � n�n� 1� ; (10)

Therefore,  � 0 corresponds to flat wave fronts. The
space-time (5) is a generalization to arbitrary dimensions
of Kundt’s class [17,18]. The coordinate transformations
preserving the form (5) were studied in [18], where it was
shown that we can either set � � 1 or � � 0, and that the
sign of

': �  ����2 	
Xn
i�1

�!i����
2 (11)

is invariant. The metrics (5) were classified in [18] accord-
ing to the signs of  and ' (see also Section V in [15]). For
 � ' � 0, ���� � 1, we get a particular case of the
PFGW that corresponds to a pp� wave:

ds2 � �2d��H��; z�d�	 d�� 	
Xn
i�1

�dzi�2: (12)

The null vector ka is covariantly constant in this case. In
what follows, latin indices from the middle of the alphabet
run from one to n and are raised and lowered using the
Euclidean metric gij � 
ij and its inverse. Indices from the
beginning of the alphabet take the values �;� and i. The
Riemann tensor of the metric (5) is

Rab
cd �  �
a

c
b
d � 
b

c
a
d� 	 Kab

cd; (13)

where the only nonzero components of Kab
cd are those

trivially related by symmetry to
124029
K�j
�i � P
j

i�@mP��@mS� � P2@i@jS�
�
P2

Q

�
��@iQ��@jS�

	 �@iS��@jQ��: (14)

From (13) and (14)

Rab � �n	 1� 
ab 	 Ka
b (15)

Here Ka
b � Kac

bc, its only nonzero component being

K�
� � nP�@mP��@mS� � P2@m@mS� 2

�
P2

Q

�
�@mQ��@mS�;

(16)

which, after using (6)–(8) reduces to

K�
� � �

Pn=2	2

2Q

	
@k@kH 	

n�n	 2� H

4P2



(17)

Finally, the Ricci scalar and Einstein tensor are

R � �n	 1��n	 2� : (18)

Gb
a � �

n�n	 1�

2
 
b

a 	 Kb
a � �

1

4
G

�1�b
a: (19)

In view of the antisymmetrization (2) and the fact that the
only nonzero components of Kab

cd are (14), there are no
terms in G�p�b

a higher than linear in Kab
cd. G�p�b

a contains
a  p term proportional to 
b

a and a  p�1 term proportional
to Kb

a:

G
�p�b

a � u�p; n� p
b
a 	 v�p; n� p�1Kb

a: (20)

After some combinatorics we get

u�p; n� �
2p�n	 1�!

�n	 1� 2p�!
;

v�p; n� �
�2p	1p�n� 1�!

�n	 1� 2p�!

(21)

Lovelock’s tensor is

G b
a � F1� �
b

a 	 F2� �Kb
a (22)

where

F1� � �
X��d�1�=2�

p�0

�pu�p; n� 
p (23)

F2� � �
X��d�1�=2�

p�1

�pv�p; n� 
p�1:

Then, if we impose that the wave front curvature  be
related to the theory constants �p through

X��d�1�=2�

p�0

�pu�p; n� p � 0 (24)
-2
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the Lovelock Eqs. (4) take the form

Tba �
1

8�

 X��d�1�=2�

p�1

�pv�p; n� 
p�1

!
Kba (25)

The right hand side in (25) can be interpreted as the stress-
energy tensor of a gauge field with gauge group G and
potential A � �-B��; z�d�TB, with TB, (B � 1; . . . ; dG)
a basis of Lie�G�. The field strength for this potential
reduces to F � dA � @k-

Bd� ^ dzkTB. This field is
required to be source free, so that there are no further
contributions to Tab. The source free condition reads

@k�P
2�n@k-B� � 0;8B: (26)

The only nonzero element of the YM stress-energy tensor
is

T�� �
1

4�
FB�cFC�cGBC �

�P4

4�Q2 �@
k-B��@k-C�GBC;

(27)

GBC being the invariant metric in Lie�G�. The Lovelock-
YM equations therefore reduce to (26) added to X��d�1�=2�

p�1

�pv�p; n� 
p�1

!
K�

�

�
�2P4

Q2 �@k-B��@k-
C�GBC: (28)

Inserting (17) this gives

F2� �
	
@k@kH 	

 n�n	 2�

4P2 H



�

�
4P2�n=2

Q

�
�@k-B��@k-C�GBC (29)

Eqs. (24), (26), and (29) are the Lovelock-YM equations
for a PFGW. Notice that, if G � U�1�, then we have to
drop the gauge indices A;B;C; . . . and replace GBC ! 1
everywhere, and (29) reduces to the same form as Eq. (23)
of [7], although with a different interpretation for the
parameters. Some of the solutions that will be found in
the following sections may, therefore, be seen also as
containing and generalizing the results found in [7].
Also, since FabFab � 0 for the electromagnetic field
above, our electrovac solutions are also solutions of the
Lovelock-Born-Infeld field equations [19]. As in [7], it is
convenient to write the n-dimensional flat space laplacian
in (29) in terms of hyperspherical coordinates, �2; 3��, with

the radial variable 2 given by 2 �
���������
zkz

k
p

�
���������������

jkz

jzk
q

, and

the n� 1 angular variables 3� restricted so that the (n-1)-
sphere is covered in the standard way. We then have,

@k@kH � 21�n@2�2
n�1@2H� 	 2�2
Sn�1

H (30)

where 
Sn�1
is the Laplacian on the �n� 1�-hypersphere.
124029
This suggests immediately a separation of variables,

H��; 2; 3�� �
X

L;‘n�2;:::;‘1

~HL;‘n�2;:::;‘1��; 2�YL;‘n�2;:::;‘1�3
��

(31)

where YL;‘n�2;:::;‘1�3
�� are scalar spherical harmonics on

Sn�1, satisfying (see, e.g., [20]),


Sn�1
YL;‘n�2;:::;‘1�3

�� � �L�L	 n� 2�YL;‘n�2;:::;‘1�3
��;

(32)

the integers L; ‘n�2; :::; ‘1 satisfy L � ‘n�2::: � ‘2 � j‘1j,
and L � 0; 1; 2; :::. Using (31) and (32), for the vacuum
case (29) is reduced to

@2 ~H

@22
	

�n� 1�

2
@ ~H
@2

	

	
 n�n	 2�

4�1	  22=4�2

�
L�L	 n� 2�

22



~H � 0 (33)

where ~H stands for ~HL;‘n�2;:::;‘1 .
III. SOLUTIONS FOR � � 0

Eqs. (26) and (29) simplify considerably when the cur-
vature (9) of the wave front is zero. In this section we
exhibit a number of interesting  � 0 solutions. Notice
from (24) that  � 0 is possible only if the cosmological
constant �o � 0. Note also from (26) and (29) that, for
 � 0, the Lovelock-YM equations are independent of the
�p; p > 1, and thus are solutions of the Einstein-YM equa-
tions with zero cosmological constant.

A. Vacuum solutions

For  � 0, the solution of the vacuum Eq. (33) is

~H��; 2� � f1���2
L 	 f2���2

2�n�L (34)

and the general solution of (29) is obtained by linear
combinations with suitable spherical harmonics

H��; 2; 3�� �
X

L;‘n�2;:::;‘1

�f�1�L;‘n�2;:::;‘1
���2L

	 f�2�L;‘n�2;:::;‘1
���22�n�L�YL;‘n�2;:::;‘1�3

��

(35)

where the f�1;2�L;‘n�2;:::;‘1
are arbitrary functions of �.

B. Lovelock-Yang-Mills solutions

For  � 0 we notice that (26) reduces to

@k�@
k-B� � 0; (36)

and, therefore, the general solution for -B may be written,
-3
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-B��; 2; 3�� �
X

L;‘n�2;:::;‘1

�f�1�BL;‘n�2;:::;‘1
���2L

	 f�2�BL;‘n�2;:::;‘1
���22�n�L�YL;‘n�2;:::;‘1�3

��

(37)

In this case (29) reduces to

@k@kH � �

�
1

�1Q��; z
i�

�
�@k-B��@k-C�GBC (38)

which is of Poisson type for H. However, since Q depends
in general nontrivially on zi, this equation is difficult to
solve, unless we impose some restrictions on - and Q. We
consider first an interesting example of such restrictions
that lead to pp� waves.

1. Lovelock-Yang-Mills pp-waves

pp� waves arise when  � 0 if we further choose
!i��� � 0 for all i, and, without loss of generality, set
���� � 1. The metric reduces to (12) and (29) to

@k@kH � �

�
1

�1

�
�@k-B��@k-

C�GBC: (39)

One can check that, in view of (36), the general solution of
(39) is

H��; 2; 3� � H0��; 2; 3�

�

�
1

2�1

�
-B��; 2; 3�-C��; 2; 3�GBC; (40)

with H0 an arbitrary solution of @k�@kH0� � 0. As ex-
plained above, these Lovelock-YM, pp� waves are also
Einstein-Yang-Mills pp� waves and, as such, have been
studied before. Nonabelian plane waves in Minkowski
space-time were first studied in [21], whereas Einstein-
Yang-Mills pp� waves appeared in [10], and were recon-
sidered in the supergravity context in [11]. For the
Einstein-Maxwell case they were also given in [7].

2. Lovelock-Yang-Mills plane fronted waves

If we allow !i � 0, we may find solutions of (38) for
 � 0, that generalize those found by Obukhov [7].
Recalling that for  � 0 we have Q � ���� 	P
!i���zi, we look for solutions for -B, such that,

@k-B � FBk ��;Q�: (41)

Namely, such that @k-B depends on zi only through Q.
Since we also require @k@k-B � 0, we must have,

FBk ��;Q� �
X
‘m

5k‘m���
@F B

‘ ��;Q�

@zm
(42)

where F B
n �Q� are arbitrary function of �;Q, and 5k‘m is

totally antisymmetric in all its indices, but, otherwise,
arbitrarily dependent on �. We therefore have,
124029
@k-A@k-BGAB � 5k‘m5kij!m!j
eF A
‘
eF B
i GAB (43)

where a sum over all repeated indices is implied, andeF A
n � @F A

n ��;Q�=@Q.
With this ansatz, the right hand side of (38) is, essen-

tially, an arbitrary function of Q, since � may be taken as
constant, as far as solving (38) forH is concerned. If we set
H��; zk� � H��;Q�, (38) takes the form,

!k!
k @

2H

@Q2 �
S��;Q�

Q
(44)

where S��;Q� is obtained by replacement of (43) in (38).
This equation can then be solved, in principle, by quad-
ratures in Q. As an example, consider the case where the
functions F A

i ��;Q� are polynomials in Q. This implies
that S��;Q� is also a polynomial in Q of a certain degree
N. If we write,

S ��;Q� �
XN
k�0

Ck���Qk; (45)

we find that a particular solution of (44) is given by,

H �
1

!j!
j

"
C0Q�lnQ� 1� 	

XN
k�1

Ck
Q�k	1�

k�k	 1�

#
(46)

The general solution is then obtained adding to (46) the
homogeneous solutions forH (34) and (35). We notice also
that if we restrict the gauge group to U�1� (electromagne-
tism), and consider only the case N � 0 in (45), the solu-
tion (46) takes the same form as that given in [7] for the
analogous Einstein-Maxwell case.
IV. SOLUTIONS FOR � � 0

In this Section we consider PFGWs for which the cur-
vature of the wave fronts is nonzero. The pure gravity
solutions are worked out in full detail. For Lovelock-
Yang-Mills we find the general solution for the YM fields
satisfying the source free condition, and the restricted case
of ‘‘hyperspherical symmetry’’ is briefly considered.

A. Vacuum solutions

The general solution of the vacuum Eq. (33) for  � 0
may be written in the form,

~H��; 2� � f1���HL
1 �2� 	 f2���HL

2 �2�; (47)

where

HL
1 �2� � 2L2F1

�
n
2
	 1;�

n
2
;
n
2
	 L;

 22

�4	  22�

�
(48)
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HL
2 �2� � 2L

	
�4	  22�n=2	1

�4�  22�n	L



2

� F1

�
1	 n	 L

2
;
n	 L
2

;
n	 3

2
;
�4	  22�2

�4�  22�2

�
:

(49)

The general solution of (29) is then,

H��; 2; 3�� �
X

L;‘n�2;:::;‘1

�f�1�L;‘n�2;:::;‘1
���HL

1 �2�

	 f�2�L;‘n�2;:::;‘1
���HL

2 �2��YL;‘n�2;:::;‘1�3
��;

(50)

where the f’s are arbitrary. We notice that HL
1 is regular for

2 � 0, while HL
2 is singular. For L � 0, and L � 1 we

have, respectively,

HL�0
1 � f1���

�
1�

 22

4

�	
1	

 22

4



�n=2

(51)

HL�1
1 � f1���2

	
1	

 22

4



�n=2

(52)

Notice that from (24) and (29), a PFGW vacuum solution
of a generic Lovelock theory is also a solution of Einstein
gravity with a suitable cosmological constant, the theory
treated in [7]. Under this identification, the particular so-
lutions given as (24) and (25) in [7] coincide in form with
(50) above if we set all f�i�L::: to zero for L> 1 harmonics,
and recall that in general we have zk � 2 times a linear
combination of L � 1 spherical harmonics. Similarly, it
can be checked that for L � 0, the solutions given by H2

coincide in form with the solutions given as H2 in [7].

B. Lovelock-Yang-Mills solutions

We consider now gravity coupled to a YM field for  �

0. Changing again to hyperspherical coordinates, and sep-
arating variables as in (31), the relevant part of (26) takes
the form,

@2-B

@22
	

	
4�n� 1� � �n� 3� 22

2�4	  22�



@-B

@2

�
L�L	 n� 2�

22
-B � 0: (53)

The general solution of this equation, for L � 0, may be
written in terms of hypergeometric functions. For n	 L
even we have,

-B��;2� �CB
1 ���2

L�4	 22��n�1�
2

�F1

�
n� 1	L;

n
2
;
n
2
	L;�

 22

4

�
	CB

2 ���2

�F1

�
1�

n
2
�
L
2
;
L
2
;
1

2
;�

��4	 22�2

16 22

�
(54)
124029
while, for n	 L odd, the solution may be written in the
form,

-B��; 2� � CB
1 ���2

L�4	  22��n�1�
2

� F1

�
n� 1	 L;

n
2
;
n
2
	 L;�

 22

4

�
	 CB

2 ���
1

2

�
1�

 22

4

�
2

� F1

�
3

2
�
n
2
�
L
2
;
1

2
	
L
2
;
3

2
;�

��4	  22�2

16 22

�
(55)

We remark that both in (54) and (55) the hypergeometric
functions in the second term in the right hand sides reduce
to polynomials of L and n dependent degree in their
arguments.

The solution for L � 0 may be written as

-B��; 2� � CB
1 ��� 	 CB

2 ���
1

2

�
1�

 22

4

�
2

� F1

�
3

2
�
n
2
;
1

2
;
3

2
;�

��4	  22�2

16 22

�
(56)

and the same remark as for (54) and (55) is valid here for
odd n. We also notice that for odd n (and L � 0) we may
also set,

-B��; 2� � CB
1 ��� 	 CB

2 ���2
�2�n�
2

� F1

�
1�

n
2
; 2� n; 2�

n
2
;�

 22

4

�
(57)

The solutions for L � 0 coincide with those given in [7].
It is clear that finding general solutions for (28), for the

general forms of -B, GAB, and Q may be a difficult task.
However, if we restrict to L � 0 (‘‘hyperspherical symme-
try’’), then -B is a function of only�, and 2, and from (53)
we find,

@-B��; 2�

@zk
� CB���

zk

2n
Pn�2 (58)

where CB��� is an arbitrary function of �. Replacing in
(29), we find,

@k@kH 	
 n�n	 2�

4P2 H � A
P3n=2�2

22n�2Q
(59)

where A depends only on �, (and the other parameters of
the theory), and is determined from (29) once (58) is given.
Equation (59) is identical in form to the equation that
results in the restricted Einstein-Maxwell case, analyzed
by Obukhov in [7]. The general solution is given there and
will not be repeated here.
-5
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V. DEGENERATE LOVELOCK THEORIES

A given Lovelock theory is characterized by the set of
coefficients �p in (1), or, equivalently, by the polynomial
F1� � in (22) and (23). Degenerate Lovelock theories are
those for which F1� � has one or more (real) roots with
multiplicity greater than one. As already noticed in [22,23],
the Lovelock equations do not fix the dynamics entirely if
the theory is degenerate. Here we would like to comment
briefly on PFGWs in degenerate Lovelock theories. From
(17) and (22), a possible vacuum solution of Lovelock’s
equations is H � 0,  a root of F1� �. In this case one can
see that Kab

cd � 0, then Rab
cd �  �
ac
b

d � 
b
c
ad�

(see (13) and (14)). This is an �n	 2� dimensional homo-
geneous space-time, and thus locally isometric to (A)dS or
Minkowski space-time, depending on the sign of  .
Homogeneous vacuum solutions of Lovelock gravity are
well known. They were first obtained for Einstein-Gauss-
Bonnet gravity (Lovelock theory with �p � 0 for all p >
2) in [24,25], generalized in [22], and reconsidered, e.g, in
[23]. Now suppose the theory is degenerate, and let  d be a
double root of F1. Note from (23) that F2� � �
��2=�n�n	 1��F0

1� �, then F1� d� � F2� d� � 0, and
Gb

a � 0 for any H. These vacuum solutions contain H
as an extra arbitrary function. This is the degeneracy
noticed in [22–24]. Note also that no PFGWs solutions
with  �  d can be obtained if we add a YM field. If  �
 s is a single root of F1� �, Lovelock-YM PFGWs with
wave fronts of curvature  s do exist in this case, and we
recover the usual degrees of freedom -both for pure gravity
and Lovelock-YM-, as (29) is a nontrivial equation for H.
Since nondegenerate theories have no double roots, they
124029
always give a non trivial equation for H. A highly degen-
erate Lovelock theory was considered in [26,27], for which
f1� � / � ��ADS�

��d�1�=2�;�ADS < 0. The only homoge-
neous solution in this case is AdS. Other interesting solu-
tions are the asymptotically AdS black holes, known as
BTZ black holes. One important feature of BTZ theories is
that the action is locally invariant under the AdS group,
enlarging the usual local Lorentz symmetry of gravity
theories. Since F1 does not have single roots in a BTZ
theory, PFGWs cannot be constructed if we couple a YM
field to a BTZ theory.

VI. COMMENTS AND CONCLUSIONS

In this paper we have given prescriptions for the con-
struction of plane fronted gravitational waves in Lovelock-
Yang-Mills theory with arbitrary Lovelock coefficients.
These are n	 2 dimensional space-times with a shear,
expansion and twist free null congruence, perpendicular
to wave fronts of constant curvature  . In higher dimen-
sional Einstein gravity with a non vanishing cosmological
constant �, these waves always exist, and  � �. In
Lovelock’s theory, on the other hand, PFGWs exist only
if the polynomial F1 introduced in Eq. (22) has real roots,
each real root being an allowed value for the curvature of
the wave front. As is well known, a homogeneous vacuum
solution of Lovelock’s equations with curvature  exist for
each real root of  of F1 [25,27]. We have shown in this
paper that a PFGW propagating in this homogeneous
space-time is always possible. As an example, consider
Einstein-Gauss-Bonnet theory (�2 � 0; �p � 0, for all
p > 2 in (1)). The two possible values of  are
 � �
�n�n	 1��1 �

������������������������������������������������������������������������������������������������
n2�n	 1�2�2

1 � 4�n	 1�n�n� 1��n� 2��2�0

q
4�n	 1�n�n� 1��n� 2��2

(60)
This means that there are no solutions if

�o�2 >
n�n	 1�

4�n� 1��n� 2�
�2
1

In the limit �2 ! 0 (small string tension), (60) we have,

 � � �
�1� 1��1

4�n� 2��n� 1�
��1
2 �

�o

2n�n	 1��1
	O��2�:

Therefore,  � approaches  of Einstein’s theory PFGWs,
whereas  	 becomes unbounded.
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