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Linear stability of Einstein-Gauss-Bonnet static spacetimes: Tensor perturbations
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(Received 11 April 2005; published 16 August 2005)
*Electronic

1550-7998=20
We study the stability under linear perturbations of a class of static solutions of Einstein-Gauss-Bonnet
gravity in D � n� 2 dimensions with spatial slices of the form �n

� � R�, �n
� an n manifold of constant

curvature �. Linear perturbations for this class of spacetimes can be generally classified into tensor, vector
and scalar types. The analysis in this paper is restricted to tensor perturbations. We show that the evolution
equations for tensor perturbations can be cast in Schrödinger form, and obtain the exact potential. We use
S deformations to analyze the Hamiltonian spectrum, and find an S-deformed potential that factors in a
convenient way, allowing us to draw definite conclusions about stability in every case. It is found that there
is a minimal mass for aD � 6 black hole with a positive curvature horizon to be stable. For anyD, there is
also a critical mass above which black holes with negative curvature horizons are unstable.
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I. INTRODUCTION

The analysis of the properties and behavior of gravity in
higher dimensions has become in recent years a major area
of research, motivated, in particular, by developments in
string theory. Among others, the Einstein-Gauss-Bonnet
(EGB) gravity theory has been singled out as relevant to
the low energy string limit [1]. The EGB Lagrangian is a
linear combination of Euler densities continued from lower
dimensions. It gives equations involving up to second order
derivatives of the metric, and has the same degrees of
freedom as ordinary Einstein theory. An appropriate choice
of the coefficients in front of the Euler densities enlarges
the local Lorentz symmetry to local �A�dS symmetry [2,3].
A number of solutions to the EGB equations, many of them
relevant to the development of the AdS� CFT correspon-
dence [4], are known, among them a variety of black holes
in asymptotically Euclidean or �A�dS spacetimes [5–9].
These were found mostly because they are highly symmet-
ric. Analyzing their linear stability, however, confronts us
with the complexity of the EGB equations, since the per-
turbative terms break the simplifying symmetries of the
background metric. The linear stability under tensor per-
turbations of higher dimensional static black holes in
Einstein gravity was studied in [10]; the stability of higher
dimensional rotating Einstein black holes is analyzed in
[11]. The quasinormal modes of higher dimensional black
holes are analyzed in [12] for Einstein gravity and in [13]
for EGB gravity. In this paper we consider spacetimes that
admit locally a metric of the form

ds2 � �f�r�dt2 � g�r�dr2 � r2 
gijdx
idxj; (1)

where 
gijdxidxj is the line element of an n-dimensional
manifold �n

� of constant curvature � � 1; 0 or �1. Linear
perturbations around (1) can be conveniently classified,
following the scheme proposed in [14], into tensor, vector,
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and scalar perturbations. The � � 1 case �n
1 � Sn gives,

for appropriate f and g, cosmological solutions, as well as
higher dimensional Schwarzchild black holes. The stability
of these solutions under tensor perturbations was studied in
[15]. In this paper we provide the details of the calculations
leading to the results in [15] as we extend them to the cases
� � �1; 0. In Sec. II and Appendix A we introduce tensor
perturbations around (1) and calculate the variation of the
Riemann tensor, then in Sec. III we review the basics of
Einstein-Gauss-Bonnet theory (EGB), exhibit known solu-
tions of the form (1) from [5–8], obtain the perturbative
equation for the tensor mode, and reduce it to a
Schrödinger equation. In Sec. IV we classify the EGB
solutions (1). A number of different possibilities arise
depending on the spacetime dimension, the value of the
cosmological constant and the strength of the coupling of
the Gauss-Bonnet term (string-tension). Compact mani-
folds � of negative (null) curvature can be obtained by
taking quotients of hyperbolic space (Euclidean space) by
appropriate discrete isometry groups, and black holes hav-
ing such manifolds as horizons can be constructed in EGB
gravity (for black holes with exotic horizons see, e.g., [8]).
The stability of cosmologies and black hole solutions is
studied in Sec. V using the S-deformation approach [16]. In
spite of the complexity of the original Schrödinger poten-
tial, an S-deformed potential is found that factors in a
convenient way and allows us to draw definite conclusions
about stability in every case. Our preliminary work on
vector and scalar perturbations [17] seems to indicate
that this factorization is peculiar of the tensor mode.
Conclusions about tensor perturbations can be found in
Sec. VI.
II. TENSOR PERTURBATIONS OF A CLASS OF
STATIC SPACETIMES

As stated in the previous Section, in this paper we
consider spacetimes with metrics locally given by (1).
We use a; b; c; d; . . . as generic indices, whereas i; j; k; l;
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m; . . . are assumed to take values on �n
�. A bar denotes

tensors and operators on �n
�. The nonzero Riemann tensor

components of the metric (1) are:

Rtrtr �
�2f00fg� f02g� f0g0f

4f2g2

Rij
kl �

�
�g� 1

r2g

�
��ki �

l
j � �kj�

l
i�

Rit
jt �

�f0

2rfg
�ji

Rir
jr �

g0

2rg2
�ji :

(2)

The nonzero Ricci tensor components are

Rtt �
�2f00fg� f02g� f0g0f

4f2g2
�

nf0

2rfg

Rr
r �

�2f00fg� f02g� f0g0f

4f2g2
�

ng0

2rg2

Ri
j �

rg0f� rf0g� 2gf��g� 1��n� 1�

2r2g2f
�ji :

(3)

We study perturbations around (1) of the form,

gab ! gab � hab: (4)

Indices of hab are raised using the background metric,
therefore �gab � �hab. The first order variation of the
Riemann tensors is:

�Rab
cd �

1

2
fRab

dfhf
c � Rab

cfhf
d � �rbr

cha
d

�rar
chb

d� � �rar
dhb

c �rbr
dhac�g: (5)

For transverse (rahab � 0) traceless (gabhab � 0) pertur-
bations (5) gives

�Rac �
1

2
f�rdrdhac � Rafhf

c � Rf
chaf � 2Rad

cfhf
dg

(6)

�R � �Rd
fhf

d; (7)

from where

�Rab � �Ra
cgcb � Ra

chcb

� �
1

2
rdrdhab �

1

2
�Rafhbf � Rb

fhaf� � Rakbfhfk

�
1

2
��Lh�ab; (8)

�L being the Lichnerowicz operator. The transverse trace-
less condition does not restrict the perturbation, it (par-
tially) fixes the gauge. Linear perturbations can be
classified into tensor, vector, and scalar perturbations
[14]. Tensor perturbations are specific of higher dimen-
sional (D> 4) spacetimes and are the ones studied in this
paper. They satisfy hab � 0 unless �a; b� � �i; j�. The non-
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zero components rahbc for such a tensor are

rthij � @thij rrhij � @rhij �
2

r
hij

rihjr � �
1

r
hij rihjk � 
rihjk;

(9)

Thus, tensor perturbations satisfy the conditions

gij 
rihjk � 0 and 
gijhij � 0 (transverse traceless on �n

�)
if and only if gabrahbc � 0 and gabhab � 0 (transverse
traceless on the spacetime). Since transverse traceless ten-
sors (TTT) on �n

� can be expanded using a basis of eigen-
tensors of the Laplacian, we need only consider TTT
perturbations of the form

hij�t; r; x� � r2��r; t� 
hij�x�; (10)

where r2 is factored for later convenience, and


r k 
rk

hij � � 
hij; 
ri 
hij � 0; 
gij 
hij � 0 (11)

Note that, since �n
� is a manifold of constant curvature, an

eigentensor of the Laplacian on �n
� with eigenvalue � is

also an eigentensor of 
�L, the Lichnerowicz operator on
�n
� [10], with eigenvalue � given by

� � 2�n� �: (12)

Solutions to Eq. (11) in the case �n
� � Sn can be obtained

from [18]. From Eqs. (4)–(11) we get the non trivial
components of the variations of the Riemman tensor, the
Ricci tensor and the Ricci scalar. These are displayed in
Appendix A.
III. TENSOR PERTURBATIONS IN EGB GRAVITY

The Einstein-Gauss-Bonnet (EGB) vacuum equations
are

0 � Gb
a � �G

�0�b
a �G

�1�b
a � !G

�2�b
a (13)

Here � is the cosmological constant, G�0�ab � gab the
spacetime metric, G�1�ab � Rab �

1
2Rgab the Einstein ten-

sor and

G
�2�b

a � Rcb
deRde

ca � 2Rd
cRcb

da � 2Rb
cRca � RRb

a

�
1

4
�ab�Rcd

efRef
cd � 4RcdRd

c � R2� (14)

the quadratic Gauss-Bonnet tensor. These are the first in a
tower G

�s�b
a; s � 0; 1; 2; 3; ::: of tensors of order s in Rab

cd

given by Lovelock in [19]. As shown in [19], the most
general rank two, divergence free symmetric tensor that
can be constructed out of the metric and its first two
derivatives in a spacetime of dimension d, is a linear
combination of the G

�s�b
a with 2s < d. Here we consider

the static spacetimes given by (1). These are foliated by
spacelike hypersurfaces, orthogonal to the timelike Killing
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vector, that contain a submanifold of dimension n � D�
2 (D the spacetime dimension) of constant curvature � �
1; 0 or �1. Inserting (2) in (13) we find that (1) solves the
EGB Eq. (13) if [7]

1

g�r�
� f�r� � �� r2 �r�; (15)

and  �r� satisfies

!P� �r�� �
!n�n� 1��n� 2�

4
 �r�2 �

n
2
 �r� �

�

n� 1

�
&

rn�1 : (16)

From (3) and (15), the Ricci scalar for this solution is

R � �n� 2��n� 1� �r� � 2r�n� 2�
d �r�
dr

� r2
d2 �r�

dr2
:

(17)

TTT perturbations around this solution produce first
order variations of the tensors G

�s�b
a; s � 0; 1; 2 which

are trivial unless �a; b� � �i; j�. Setting g � 1=f and using
the equations in Appendix A gives

�G�0�i
j � 0 (18)

�G�1�i
j � �Ri

j �

�
� ��� f2�00�

1

2f
��0

�
f0

2
�
nf
2r

�

�
�

2r2
�2�� ��

�

hi
j (19)

and

�G
�2�i

j �

�
� ��� f2�00�

�
n� 2

2r2f

�

�rf0 � �n� 3���� f��

��0

�
n� 2

2r3

�
f�n� 3�
�n� 2��f� ��f� r�f0�

� r2�f02 � f00f� � �3n� 7�rf0fg

��
�
�� 2�

2r4

�

r2f00 � 2�n� 3�rf0�n� 3�

� �n� 4��f� ���
�
hi
j: (20)

For later simplicity, we introduce three functions Kj�r�,
defined by

�G
�2�i

j � f� ��� f2�00�K1 ��0K2 ��K3g 
hi
j: (21)

Perturbations around a solution of (13) satisfy the equation

�G�1�a
b � !�G�2�a

b � 0; (22)

which, after setting ��r; t� � e!t)�r� gives a second order
ODE for ��r�

0 � �f2)00�r� � p�r�)0�r� � �q�r� �!2�)�r� (23)
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p �
2!rfK2 � rff0 � nf2

r� 2!rfK1
(24)

q �
2!r2fK3 � �2�� ��f

r2 � 2!r2fK1

: (25)

By further introducing,

��r� � )�r�K�r� (26)

with

K�r� � exp
�
�
1

2
ln�f� �

Z r p

2f2
dr
�
; (27)

and switching to ‘‘tortoise’’ coordinate r�, defined by
dr�=dr � 1=f, this ODE can be cast in the Schrödinger
form,

�
d2�

dr�2
� V�r�r���� � �!2� � E� (28)

The spacetimes (1) will therefore be stable if (28) has no
negative eigenvalues. On the other hand, properly normal-
ized eigenfunction of (28) with suitable boundary condi-
tions (see, e.g. [10] for details) having a negative
eigenvalue (E< 0�, signals the possibility of an instability.
The explicit form of K�r� is

K�r� � rn=2�1

���������������������������������������������������������������������������������
r2 � !�n� 2�

�
�n� 3���� f� � r

df
dr

�s
(29)

The explicit form of the potential V�r� as a function of r
and the parameters of the theory is rather lengthy. We
notice however that the function q in (25) is,

q�
�
f�2����

r2

�

�

�
�1�!f00�r2 �!�n� 3�
�n� 4���� f�� 2rf0�

r2 �!�n� 2�
�n� 3���� f�� rf0�

�
;

(30)

and the potential is given by,

V�r� � q�
f
K
d
dr

�
f
dK
dr

�
: (31)

V�r�, given by (31) is the exact potential of the
Schrödinger-like stability equation for the spacetime (1)
in EGB gravity. This includes EGB blackholes of arbitrary
mass and cosmological constant, as well as cosmological
solutions of the EGB equations that result by setting& � 0
in (15). It generalizes the � � 1 case first presented in [15],
and it is readily seen to reproduce the potentials in [10] in
the ! � 0 (Einstein gravity) limit, a case that was exten-
sively studied by Kodama and Kodama and Ishibashi (see,
e.g., [16] and references therein). The restricted cases in
[20,21] can also be studied using (31).
-3



GUSTAVO DOTTI AND REINALDO J. GLEISER PHYSICAL REVIEW D 72, 044018 (2005)
IV. CLASSIFICATION OF MAXIMALLY
SYMMETRIC STATIC SOLUTIONS

A classification scheme for the solutions of the EGB
equations is introduced below following Whitt [7]. It
should be kept in mind that a particular EGB theory is
defined once the values of the spacetime dimension n� 2,
the cosmological constant � and ! (assumed different
from zero), are given. A particular symmetric solution
(1), (15), and (16) of an EGB theory further requires the
specification of the discrete index � and of the integration
constant & in (16). Solutions are classified according to
their singularities, horizons and asymptotic behaviors. To
analyze singularities we rewrite the Ricci scalar (17) en-
tirely in terms of  . This is done using (16) and its first two
derivatives together with (17). We arrive at

R � fn�n� 1��n� 2�
n2�n� 3��n� 1��n� 1�2�n� 2�2

� !2 4 � 4n2�n� 1��n� 1��n� 2�! 3

� 8n�3� 2n��n� 1��n� 2��! 2 � 2n3�n� 1� 2

� 16n�3� 2n�� � 16�2�

� 8n�n� 2��g=f32P0� �3g: (32)

This form of the Ricci scalar shows that the singular points
rsing of a given solution (15) and (16) of the EGB equations
either satisfy limr!rsing �r� � �1 or limr!rsing �r� �  o,
 o being the stationary point of P� �. If & � 0 then
 �r� � constant and the horizon is trivially found. In the
� � 0; & � 0 case there will be a horizon only if  � 0,
which requires that & and � have opposite signs. The
horizon will be at

rh � ���n� 1�&=��1=�n�1� �� � 0; & � 0�: (33)

If & � 0; � � �1, there is a horizon at every point where

sgn � � � � and P� � �
&
!
j jn�1=2

�� � �1; & � 0�:
(34)

For later convenience, we rewrite (16) as

P� � �
n�n� 1��n� 2�

4
� ��1�� ��2� �

&

!rn�1 ;

(35)

where

�i �
1

!�n� 1��n� 2�

�
�1�

��������������������������������������������������
1�

4!��n� 1��n� 2�

n�n� 1�

s �
:

(36)

Note that, for &=! > 0 the condition f � �� r2 > 0
reduces to
044018
 � 0 or 0< ;
&
!
j jn�1=2 � P� � �if � � 1�

(37)

 � 0 �if � � 0� (38)

 � 0 and
&
!
j jn�1=2 � P� � �if � � �1�; (39)

whereas for &=! < 0, f � �� r2 > 0 is equivalent to

 � 0 or 0< ; P� � �
&
!
j jn�1=2 �if � � 1�

(40)

 � 0 �if � � 0� (41)

 � 0 and P� � �
&
!
j jn�1=2 �if � � �1�: (42)

We label solutions with a three digit number in the form
a:b:c, with a; b and c labeling the distinct ranges of values
for !, � and & respectively. Only the 1:1:c cases (positive
! and �) will be analyzed in full detail, since the other
cases are trivial variations of this one. A plot of P and
&j j�n�1�=2=! vs  is given in each case; the positive
(negative)  intersections of these curves are � � 1 (� �
�1) horizons,  � 0 being the horizon when � � 0. If
&=! > 0 (< 0), the portion of P above (below) the  axis
gives the two solution branches  i�r� of (16). Note from
(16) that r extends to infinity only if P has real roots, and
that there is a singularity at rsing if either limr!rsing �r� �
�1 or limr!rsing �r� �  o, P0� o� � 0. Eqs. (37)–(42)
are used to find the f � 0 region in each case.

Case 1: !> 0
Case 1.1: �> 0
In this case P has two real roots �1 < 0 � �2, j�2j<

j�1j. If&> 0 (35) has two solutions  i�r�, i � 1; 2; with r
extending to infinity, and limr!1 i�r� � �i [Fig. 1(a)].
For  1�r�, as r goes from infinity down to zero,  runs from
�1 to �1, where, according to our previous analysis, there
is a curvature singularity. Similarly, for  2�r�, as r goes
down to zero,  runs from �2 to �1, where there is a
curvature singularity. Three qualitatively different &> 0
cases are plotted in Fig. 1(b). The positive  intersections
with P give horizons in the � � 1 case (Eq. (34)), the
negative  intersections with P give horizons in the � �
�1 case, and  � 0 is the � � 0 horizon. Note from (34)
that some of the drawn � � �1 horizons (curve intersec-
tions) may be missing in the special case n � 3. Note also
that, as � ! 0;�2 ! 0 and some horizons move to
infinity.

Case 1.1.i: large positive & [Fig. 1(a) and curve (i) of
Fig. 1(b)]

In view of Eqs. (37)–(39) the  2 branch never gives f >
0, whereas, for any �, the  1 branch gives a spacetime with
rsing � 0< r <1 (naked singularity).
-4
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(i) ψ
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ψ
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a) b)

ΛΛ 21

FIG. 1. Cases 1.1.i to 1.1.iii: (a) the two branches  i�r�; i � 1; 2 of Eq. (35) in the case &=! > 0.  i ! �i as r! 1,  1 ( 2) tends
to �1 ( �1) as r! 0�. (b) Plots of &j j�n�1�=2=! for (i) large (ii) intermediate and (iii) small positive &=!.
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Case 1.1.ii: intermediate positive & [Fig. 1(a) and
curve (ii) of Fig. 1(b)]

The analysis for the  1 branch is as in case 1.1.i. The  2

branch gives f > 0 for � � 1, case in which the spacetime
has two horizons and no singularities, rhor1 < r< rhor2 . As
� ! 0�, rhor2 ! 1. If n � 3 one of the intersections of P
with curve (ii) may be absent, and rsing � 0< r< rhor.

Case 1.1.iii: small positive & [Fig. 1(a) and curve (iii)
of Fig. 1(b)]

The analysis for the  2 branch is as in case 1.1.ii. For  1

and � � 0; 1, rsing � 0< r<1 (naked singularity),
whereas for � � �1 there are two f > 0 regions, one for
which rsing � 0< r< rhor1 (naked singularity), the other
ψ

P

a)

rψ ψ
21

ΛΛ
21

ψo

FIG. 2. Cases 1.1.v and 1.1.vi: (a) the two branches  i�r�; i � 1; 2
from rsing to 1. (b) Plots of P and &j j�n�1�=2=! vs  for (v) smal

ψ

P(i)

(ii)

(ii)
P

a)

FIG. 3. Cases 1.2.i to 1.2.vi: (a) the two branches  i�r�; i � 1; 2 o
curve for (i) large and (ii) small positive values of &=!. (b)  i�r�; i �
for (iv) small (v) intermediate and (vi) large negative values of &=!
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satisfying rhor2 < r<1 . The first region may be missing
if n � 3.

Case 1.1.iv: & � 0
We obtain cosmological, nonsingular solutions f�r� �

1� r2�2, with 0< r<��1=2
2 , f�r� � �� r2�1, � � 0; 1

and 0< r, and f�r� � �1� r2�1, (� � �1), r >
j�1j

�1=2.
If &< 0 (32) has two solutions  i�r�, i � 1; 2; with r

extending to infinity, and limr!1 i�r� � �i. There is a
minimum value r � rsing defined by  1�rsing� �
 2�rsing� �  o ( o � ��1 ��2�=2), this point is singular
in view of eq. ((32)) because P0� o� � 0. As r grows from
rsing to infinity,  i goes from  o to �i [Fig. 2(a)].
ψ

P

(v)
(vi)

b)

ψo

of Eq. (35) in the case &=!< 0,  i goes from  o to �i as r goes
l and (vi) large negative &=!.

b)

P

ψ

(iv)
(v)

(vi)

ψo

f Eq. (35) in the case &=! > 0 together with the &j j�n�1�=2=!
1; 2 in the case &=! < 0 together with the &j j�n�1�=2=! curve
.
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(i)

(iii)

(ii)

(iii)

(ii)
(i)

P

P

ψψo

FIG. 4. Cases 1.3.i to 1.3.iii: P and &j j�n�1�=2=! for (i) large,
(ii) intermediate and (iii) small positive values of &=!. P has no
real roots, as r grows from rsing,  1�r� ( 2�r�) moves to the left
(right) of  o.

GUSTAVO DOTTI AND REINALDO J. GLEISER PHYSICAL REVIEW D 72, 044018 (2005)
Case 1.1.v: small negative &
The  1 branch has, for � � �1, a horizon that hides a

singularity, f > 0 if �rsing<�rhor < r<1, whereas for � �

0; 1 there is a naked singularity, rsing < r<1. The  2

branch gives no f > 0 solution for � � �1, whereas for
� � 0; 1 gives a spacetime with rsing < r< rhor.

Case 1.1.vi: large negative &
For any �, the  1 branch gives a spacetime with a naked

singularity, f > 0 for rsing < r<1. For any �, there is a
horizon in the  2 branch, and f > 0 for rsing < r< rhor.

Case 1.2: �n�n� 1�=�4!�n� 1��n� 2��<�< 0
In this case P has two real roots �1 <�2 < 0. Six cases

of & values should be distinguished: 1.2.i large positive,
1.2.ii small positive, 1.2.iii null, 1.2.iv small negative, 1.2.v
intermediate negative and 1.2.vi large negative. These
different cases are represented in Fig. 3 below.

Case 1.3: �<�n�n� 1�=�4!�n� 1��n� 2��
P has complex roots, &=! must be positive, and there is

a maximum value of r (corresponding to  �  o) which is
singular. Three ranges of& values should be distinguished:
1.3.i large positive, 1.3.ii intermediate positive and 1.3.iii
small positive. These are illustrated in Fig. 4.
V. STABILITY OF MAXIMALLY SYMMETRIC
STATIC SOLUTIONS

The stability of the solutions (1), (13), and (16) of the
EGB vacuum equation can be analyzed using the ‘‘S-
deformation’’ approach [16]: consider the operator

A :� �
d2

dr�2
� V (43)

acting on smooth functions defined on I � fr�jr�1 < r� <
r�2g, the regular, f > 0 region (note that it is possible that
r�i � �1). E in (28) is greater than or equal to the lower
bound of ��;A��=��;��, � smooth of compact support
on I. However, for any such �, given a smooth S,
044018
��;A�� �
Z r�2

r�1

�jD�j2 � ~Vj�j2�dr�; (44)

where

D �
d
dr�

� S; (45)

and the ‘‘deformed potential’’ ~V is

~V � V � f
dS
dr

� S2: (46)

If an S function is found such that ~V � 0 on I, the stability
of the solution is guaranteed, as follows from (44). Note
from (31) that the choice

S � �f
d
dr

ln�K� (47)

gives ~V � q, then

��;A�� �
Z r�2

r�1

jD�j2dr� �
Z r2

r1

j�j2q
f

dr: (48)

Defining

H �
r2q

f�2�� ��
; (49)

the expectation value of A can be conveniently written as

��;A�� �
Z r�2

r�1

jD�j2dr� � �2�� ��
Z r2

r1

j�j2H

r2
dr:

(50)

Note that neither H nor D depend on �. This factorization
of the ‘‘deformed potential’’ q is the one referred to in
Sec. I, and is crucial to arrive at the stability criterion
below. If the Riemannian manifold �n

� is compact without
boundary, applying Stokes’s theorem to

0 �
Z
�n
�

� 
rihjk � � 
rjhik�� 
rihjk � � 
rjhik� (51)

and using the TT condition of hij together with 
Rijkl �
�� 
gik 
gjl � 
gjk 
gil� we arrive at

� � ��2n) 2�� � � �2n� 2� � 0 (52)

for n � 3. Then from (50) we conclude that H � 0 on I
implies stability. Now suppose H < 0 at some point in I,
then a test � can be found such thatZ r2

r1

j�j2H

r2
dr < 0: (53)

The ‘‘kinetic’’ piece of (50) may certainly be larger than
the absolute value of the integral in (53), but (50) will be
negative for sufficiently high harmonics. We conclude that
a solution is stable if and only if H � 0 on I.

Using (35) and its first r derivatives, and introducing
 o � ��1 ��2�=2 and � � ��2 ��1�=2, a simple ex-
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pression for H in terms of  is found which is even in x �
� �  o�=�:

H �
�n� 3��n� 5�x4 � 2�n� 1��2n� 3�x2 � �n� 1�2

2�n� 2�x2�x2�n� 3� � �n� 1��
:

(54)

Also, if & � 0,

Z r2

r1

H

r2
dr�

�
2

n� 1

�
j
!
&
j1=�n�1�

�
n�n� 1��n� 2��2

4

�
1=�n�1�

�
Z x1

x2

xjx2 � 1j1=�n�1�H

�x2 � 1�
dx: (55)

An immediate consequence of the stability criterion
above and (54) is that the EGB cosmologies are all stable
against tensor perturbations, since, for & � 0,  i�r� � �i,
then x � �1 and H � 1.

Note that the cases n � 3; 4; 5 of (54) are special:

H�n�3� �
3x2 � 2

x2
(56)

H�n�4� �
�x4 � 50x2 � 25

4x2�x2 � 5�
(57)

H�n�5� �
7x2 � 3

x2�x2 � 3�
: (58)
A. Stability analysis

When P has real roots, x is real in (54)–(58).
Furthermore

H�n�3� > 0 iffjxj>

���
2

3

s
’ 0:82 (59)

H�n�4� > 0

iff 0:71 ’
������
15

p
�

������
10

p
< jxj<

������
15

p
�

������
10

p
’ 7:03

(60)

H�n�5� > 0 iffjxj>

���
3

7

s
’ 0:65 (61)

H�n>5� > 0 iffjxj>

���������������������������������
�n� 1��2n� 3�

�n� 3��n� 5�

s

�

� ���������������������������������������������������������
1�

�n� 3��n� 5��n� 1�2

�n� 1�2�2n� 3�2

s
� 1

�
1=2

(62)

The r.h.s. of (62) decreases to
��������������������
�2�

���
5

pp
’ 0:49 as n

grows from n � 5.
044018
Cases 1.1.i to 1.1.iii:
All these solutions are stable if n � 4. The stability

follows from (59), (60), and (62) above, which show that
H > 0 if jxj> 1 (i.e.,  >�2 or  <�1) . The case n � 4
is special, as follows from (60) and was already noticed for
� � 1 and � � 0 in [15]. We now analyze the stability of
every cosmological and black hole n � 4 solution found in
cases 1.1.i through 1.1.iii:

Cases 1.1.ii-iii,  2 branch, � � 1: this black hole solu-
tion has rsing < rhor1 < r< rhor2 and will be stable as long
as xhor1 �

������
15

p
�

������
10

p
, i.e., for large enough &. Note that

this is also true for � � 0 (�2 � 0), the low & instability
being the one found in [15].

Case 1.i.iii,  1 branch, � � �1: there are two f > 0
regions, and one of them gives a black hole solution, which
will be stable as long as xhor �

������
15

p
�

������
10

p
. Contrast this

condition to that obtained before, � � �1 black holes
require small & to be stable.

Case 1.1.iv:
As explained above, H � 1 in this case. These cosmo-

logical solutions are all stable.
Cases 1.1.v to 1.1.vi:
From (59)–(62) the � � �1,  1 branch black hole in

case 1.1.v will be stable for j&=!j small enough.
The analysis of the remaining cases can be readily done

as in the previous cases and is left to the reader.
VI. CONCLUSIONS

We proposed a classification scheme for static solutions
to the Einstein-Gauss-Bonnet gravity of the form �n

� �
R�, �n

� an n-manifold of constant curvature �, and studied
their linear stability under tensor mode perturbations. We
found an explicit form of the potential of the Schrödinger-
like equation governing the time evolution of the perturba-
tion, and studied its spectrum using the S-deformation
approach. An S-deformed Schrödinger potential was found
that conveniently factors out the eigenvalue of the lap-
lacian on �n

� associated with the perturbation, allowing a
definite classification of every spacetime into stable or
unstable. Preliminary results indicate that this feature of
tensor perturbation is shared by vector perturbations. The
scalar case is still under investigation [17]. Cosmological
solutions and a variety of Euclidean or dS black holes with
positive curvature horizons are shown to be stable in space-
times of dimension d � 6 with a positive values of !—the
Gauss-Bonnet term coupling. In six dimensions, these
black holes are stable only if their masses are above a
critical value. Black holes with negative curvature horizons
are found in any dimensions which are stable only if their
masses are below a critical value (see [22] for a thermody-
namic instability of black holes in EGB gravity). The
stability of these spacetimes under vector and scalar per-
turbations is currently being studied.
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APPENDIX A: LINEARIZATION FORMULAS

The first order variation of the Riemman tensor, Ricci
tensor and Ricci scalar under (4) can be obtained after a
long calculation using (4)–(11). These are:

�Rti
tj �

� ��
2f

�
f0�0

4fg

�

hi
j (A1)

�Rti
rj �

�
�

_�0

2g
�

�
f0

4fg
�

1

2gr

�
_�
�

hi
j (A2)

�Rti
jk �

_�

2r2
� 
rk 
hi

j � 
rj 
hi
k� (A3)

�Rri
tj �

��
1

2fr
�

f0

4f2

�
_��

_�0

2f

�

hi
j (A4)

�Rri
rj �

��
g0

4g2
�

1

rg

�
�0 �

�00

2g

�

hi
j (A5)
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�Rri
jk � � 
rk 
hi

j � 
rj 
hi
k�
�0

2r2
(A6)

�Rij
tk �

_�
2f

� 
ri

hj
k � 
rj


hi
k� (A7)

�Rij
rk �

��0

2g
� 
ri


hj
k � 
rj


hi
k� (A8)

�Rij
kl �

��
��

2r2

�
�
�0

2rg

�
��li 
hj

k��lj 
hi
k��kj 
hi

l��ki 
hj
l�

�
�

2r2
� 
rj


rk 
hi
l� 
ri


rk 
hlj�

ri


rl 
hj
k� 
rj


rl 
hi
k�;

(A9)

the other components of �Rab
cd being zero. The nonzero

components of the Ricci tensor then are

�Rji �
� ��
2f

��0

�
g0

4g2
�

n
2rg

�
f0

4fg

�
�
�00

2g

�
�

2r2
�2�� ��

�

hi
j: (A10)

Finally,

�R � 0 (A11)

From these equations and (14) follows (20).
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